
An Aniline-Bridged Bis(pyrazolyl)alkane Ligand for Dizinc-Catalysed Ring-Opening Polymerization

Journal:	<i>Dalton Transactions</i>
Manuscript ID	DT-COM-10-2024-002837
Article Type:	Communication
Date Submitted by the Author:	09-Oct-2024
Complete List of Authors:	Naik, Pratyush; The University of Houston, Chemistry Gu, Zipeng; Proteogenomics Research Institute for Systems Medicine, Comito, Robert; The University of Houston, Chemistry

SCHOLARONE™
Manuscripts

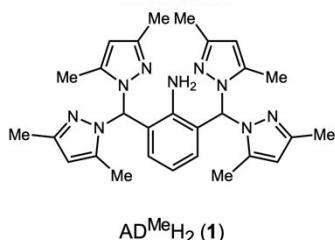
COMMUNICATION

An Aniline-Bridged Bis(pyrazolyl)alkane Ligand for Dizinc-Catalysed Ring-Opening Polymerization

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Pratyush K. Naik ^a, Zipeng Gu ^b and Robert J. Comito ^{*a}


We report an aniline ligand (**1**) with two bis(pyrazolyl)alkane arms, and its cationic, dizinc complexes. XRD, NMR, and modelling of the dizinc complexes resulted in an unprecedented, dynamic μ -anilide core. Compared with published μ -phenolate analogues, our μ -anilide complexes show higher activity and divergent counterion trends in ring-opening polymerization of *rac*-lactide.

The synthesis of biodegradable polymers by ring-opening polymerization (ROP) relies on main-group catalysts for their high activity.¹ However the structural and mechanistic uncertainty of simple main-group polymerization catalysts hinders their optimization and analysis.² The introduction of discrete main-group polymerization catalysts by Chisholm³ and by Coates⁴ significantly improved tractability in ROP. Yet Coates⁴ and later Diaconescu⁵ characterized a complicated role for aggregation and metal-metal cooperativity in ROP. Consequently, well-defined multimetallic catalysts based on multinucleating ligands have been studied as a source of mechanistic insight and new selectivity in ROP.⁶ Notably, record ROP activities were reported with macrocyclic dizinc catalysts, by Rieger⁷ and by Williams.⁸ Phenolate-bridged dizinc complexes, especially those reported by Tolman and Hillmyer,⁹ by Williams,¹⁰ and by Garden,¹¹ have been especially prominent in this endeavour.

Our laboratory introduced binucleating bis(pyrazolyl)alkane ligands with BINOL¹² and phenol¹³ bridging groups as sterically and electronically modular platforms for di(main group) catalysis. We first reported a versatile method for the synthesis of bis(pyrazolyl)alkanes by nucleophile-catalysed condensation between aldehydes and bis(pyrazolyl)methanones.¹⁴ This

method gives the bis(pyrazolyl)alkanes considerable covalent flexibility compared to existing binucleating ligands, providing improved scope for catalyst optimization and structure-activity analysis. In particular, the phenol-linked ligands PD^RH (**2-R**, Figure 1) form cationic complexes with the composition [PD^RZn₂Et₂]⁺ ($-R = -H, -Me, -Ph, -iPr$) that were active, controlled, and optimizable catalysts for ROP. But we found that the cationic charge on [PD^RZn₂Et₂]⁺ considerably reduced its activity in ROP through a coordination/insertion mechanism, which favours more nucleophilic catalysts. On this basis, we speculated that replacing the phenol with a less electronegative bridging group would improve activity.

This report:

Our prior work:

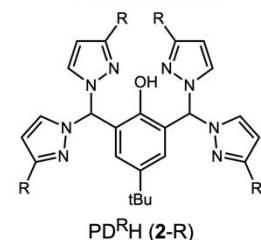
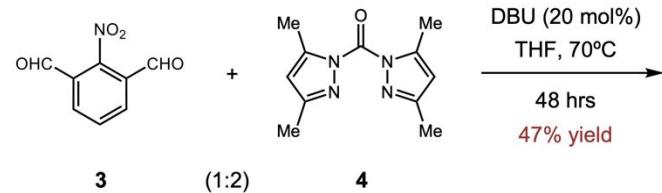


Figure 1. Binucleating bis(pyrazolyl)alkanes.

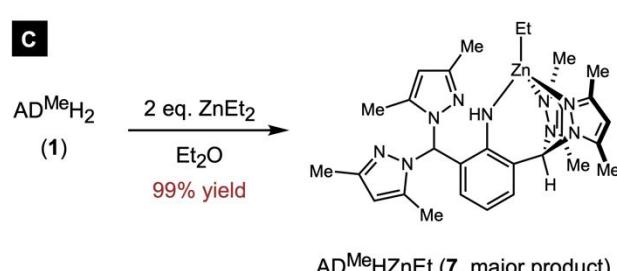
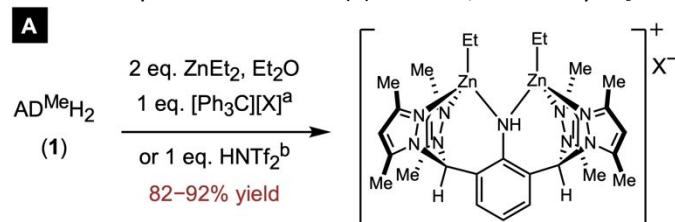
This manuscript reports an aniline ligand AD^{Me}H₂ (**1**) and a direct comparison of its coordination chemistry and catalysis to its PD^RH (**2-R**) analogues. Our work represents a rare example of a μ -anilide in a binucleating ligand. Primary amines and anilines do readily form μ -amide dizinc complexes¹⁵ by reaction with simple organozincs¹⁶ or with zinc amides.¹⁷ But neither primary amines nor anilines have been used as the bridging group in a binucleating ligand for dizinc coordination chemistry despite the diversity of phenolate-binucleated dizincs.¹⁸

Our synthesis of AD^{Me}H₂ (**1**) commenced with DBU-catalysed condensation between 2-nitro-1,3-benzenedialdehyde¹⁹ (**3**) and bis(3,5-dimethylpyrazolyl)methanone (**4**, Scheme 1), based on our published procedure.¹⁴ This reaction afforded

^a Department of Chemistry, The University of Houston, 4800 Calhoun Road, Houston, Texas 77004.

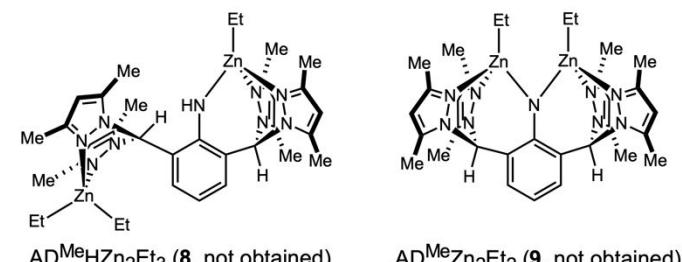
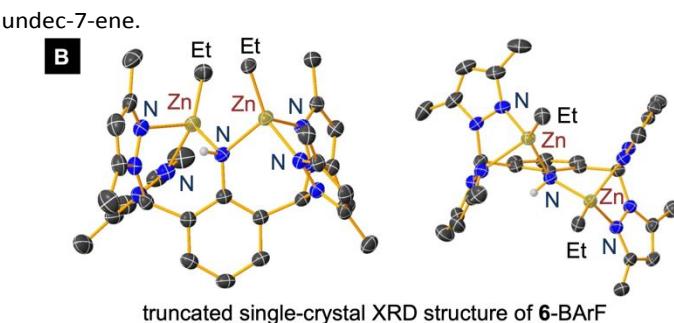
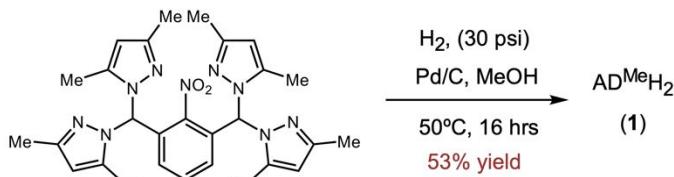

^b Proteogenomics Research Institute for Systems Medicine, 505 Coast Blvd. South, La Jolla, CA 92037.

† Supplementary Information available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x



COMMUNICATION

nitrobenzene-linked double *bis*(pyrazolyl)alkane **5** in 47% yield. Next, hydrogenation of **5** over palladium on carbon gave the title aniline ligand $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) in 53% yield. This step required careful optimization to mitigate cleavage of the C–N(pyrazole) bonds. Nevertheless, the nitro group proved strategic for the condensation reaction, as we never successfully obtained $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) by condensation with 2-amino-1,3-benzenedialdehyde. Previously,¹⁴ we showed that electron-withdrawing groups accelerate this reaction, an effect that considerably favours the nitro group in **3**.

We first prepared cationic anilide complexes $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2]^+$, by analogy to our published synthesis of $[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2]^+$ complexes.¹³ Thus reaction of $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) with two equivalents of Et_2Zn and one equivalent of a trityl salt ($[\text{Ph}_3\text{C}][\text{X}]$) or protic acid (HX) gave us salts $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{X}]$ (**6-X**; $\text{X}^- = \text{BArF}^-, \text{NTf}_2^-, \text{BF}_4^-, \text{PF}_6^-, \text{TfO}^-$; $\text{BArF}^- = \text{tetrakis}(3,5\text{-bis}(trifluoromethyl)phenyl)borate$) in good yields (82–92%, Scheme 2A). Single-crystal XRD analysis of **6-BArF** resulted in a twisted μ -anilide structure, with two pseudotetrahedral zinc atoms. Nevertheless, all four pyrazoles are NMR-equivalent at room temperature, suggesting rapid conformational interconversion. Indeed, we modelled two oppositely twisted and isoenergetic conformers of this ion **S9-4** and **S9-6**, and a transition state **S9-4** for their interconversion,

Scheme 1. Synthesis of $\text{AD}^{\text{Me}}\text{H}_2$ (**1**). DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

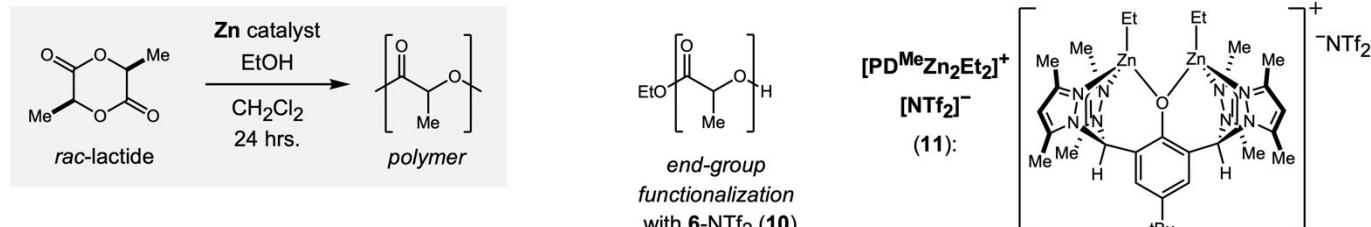
Scheme 2. Metalation of $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) with Et_2Zn : A) synthesis of cationic complexes ($^a\text{X}^- = \text{BArF}^-, \text{BF}_4^-, \text{PF}_6^-, \text{TfO}^-$; $^b\text{X}^- = \text{NTf}_2^-$), B) crystal structure of **6-BArF**, C) metalation without acids.

obtaining a low activation energy of 5.76 kcal/mol (Section S9.3). The Zn–Zn distance 3.345 Å and the Zn–N–Zn bond angle 108.4° in **6-BArF** are both larger than those for $[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2]$ $[\text{BArF}]$ (3.188 Å, 102.9°)¹³ and for $[\text{ZnEt}(\text{NHMes})(\text{THF})_2]$ (2.902 Å, 88.9°).^{16a} By contrast, treating the proligand $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) with two equivalents of diethylzinc without acid instead furnished the monozinc complex $\text{AD}^{\text{Me}}\text{H}\text{ZnEt}$ (**7**; Scheme 2C) quantitatively. Varying the solvent and stoichiometry of this reaction never gave neutral dizinc complexes with the compositions $\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_3$ (**8**) or $\text{AD}^{\text{Me}}\text{Zn}_2\text{Et}_2$ (**9**). To understand this outcome, we modelled the reaction of a truncated analogue of **7** (**S9-1**) with dimethylzinc to give truncated analogues of $\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_3$ (**S9-2**) and $\text{AD}^{\text{Me}}\text{Zn}_2\text{Et}_2$ (**S9-3**, Section S9.2). We found that the reaction to form the trialkyl complex was exothermic ($\Delta H = -4.78$ kcal/mol) but endergonic ($\Delta G = +4.58$ kcal/mol), consistent with our analysis on why $\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_3$ was not formed from $\text{PD}^{\text{H}}\text{H}$ and ZnEt_2 .¹³ However, our model indicated that protonolysis to generate dizinc imido **S9-3** was exergonic ($\Delta G = -10.51$ kcal/mol). Presumably, this reaction is kinetically disfavoured. Power reported that anilines do not react with organozincs to give imidos even though analogous organomagnesium compounds do.^{16a,20} Reports of isolated zinc imidos remain rare.²¹ As an alternative, we attempted to

COMMUNICATION

prepare imido $\text{AD}^{\text{Me}}\text{Zn}_2\text{Et}_2$ (**9**) by deprotonation of $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{BArF}]$ (**6**- BArF , Section S4.2), but this approach always lead to decomposition of the zinc complex.

We next compared the dizinc catalysts $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{X}]$ (**6**- X) in the ROP of *rac*-lactide (Table 1), finding **6**- NTf_2 to have the highest activity overall and the only complex that had a higher activity than Et_2Zn (entries 1–5, 8). The use of an alcohol co-initiator proved essential, as the reaction of **6**- NTf_2 on its own was much lower (entry 6). Monometallic complex $\text{AD}^{\text{Me}}\text{H}\text{ZnEt}$ (**7**) was nearly unreactive until longer reaction times, in contrast to our results with the phenolate catalysts in which $\text{PD}^{\text{H}}\text{ZnEt}$ was much more reactive than its most active $[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2]^+$ counterpart.¹³ GPC analysis of the polymer produced by **6**- NTf_2 resulted in a low dispersity ($D = 1.03$) and a number-average molecular weight ($M_n = 7,800$ Da) lower than that expected for one chain per zinc atom (12,700 Da). Although $\text{AD}^{\text{Me}}\text{H}\text{ZnEt}$ (**7**)


Table 1. Ring-opening polymerization of *rac*-lactide.

Entry ^a	Zn complex	conversion	conversion	conversion	$M_{n,\text{theo}}$	$M_{n,\text{GPC}}$	D^{d}
		(30 min) ^b	(1 h) ^b	(24 h) ^b	(kg/mol) ^c	(kg/mol) ^c	
1.	$[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{BArF}]$ (6 - BArF)	0%	0%	2%	--	--	--
2.	$[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{BF}_4]$ (6 - BF_4)	0%	0%	2%	--	--	--
3.	$[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{PF}_6]$ (6 - PF_6)	0%	0%	0%	--	--	--
4.	$[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{OTf}]$ (6 - OTf)	0%	0%	3%	--	--	--
5.	$[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (6 - NTf_2)	13%	21%	88%	12.7	7.80	1.03
6. ^e	$[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (6 - NTf_2)	0%	0%	2%	--	--	--
7.	$\text{AD}^{\text{Me}}\text{H}\text{ZnEt}$ (7)	0%	0%	85%	12.2	7.60	1.08
8.	ZnEt_2	0%	3%	96%	13.8	6.3	1.09
9.	$[\text{PD}^{\text{Me}}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (11)	0%	1%	3%	--	--	--
10. ^f	$[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (12)	0%	3%	98%	14.1	11.2	1.12

^aConditions: [*rac*-lactide]₀ = 0.5 M in CH_2Cl_2 at room temperature, catalyst was premixed with ethyl alcohol (1 equivalent w.r.t. zinc) for 24 h and then treated with *rac*-lactide (100 equivalents w.r.t. zinc). ^bDetermined by ¹H NMR spectroscopy in CDCl_3 . ^cCalculated from $(100 \times \% \text{ conversion} \times 144.13)$ (molecular weight of *rac*-lactide). ^dDetermined by GPC in THF (calibrated with polystyrene standards) and a correction factor of 0.58 was applied to all molecular weights. ^eEthyl alcohol was not used in this reaction. ^fBenzyl alcohol was used in place of ethyl alcohol.

By contrast, the BArF^- salt $[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2][\text{BArF}]$ was the optimal catalyst among our published phenolate series,¹³ and it showed much higher activity (95% conversion in 1 hour) than $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (**6**- NTf_2). However, these two catalysts also have different pyrazoles and different counterions. To more rigorously compare the bridging atoms, we prepared phenolate analogues $[\text{PD}^{\text{Me}}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (**11**) and $[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (**12**). We used benzyl alcohol for polymerization with **12** because that was the cocatalyst that we used in our previous manuscript.¹³

and ZnEt_2 also gave low dispersities (1.08 and 1.09 respectively), the GPC trace for the polymer produced by $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (**6**- NTf_2) was clearly more monomodal (Figure S53). End-group analysis by ¹H-NMR and MALDI resulted in an ethyl ester (**10**), consistent with coordination/insertion polymerization initiated by an alkoxide (Figure S47), although it would also be consistent with an activated monomer mechanism. We favor a coordination/insertion mechanism in light of our previous report.¹³ The presence of nearly equal mass peaks separated by 72, half the mass of lactide, was consistent with transesterification or backbiting (Section S8.1). Stereochemical analysis of this sample resulted in $\text{Pr} = 0.49$, indicating no selectivity (Section S7.3). The modest selectivity obtained by ZnEt_2 ($\text{Pr} = 0.63$) suggests that **6**- NTf_2 and ZnEt_2 do not have the same active catalyst.

Both were less active than $[\text{AD}^{\text{Me}}\text{H}\text{Zn}_2\text{Et}_2][\text{NTf}_2]$ (**6**- NTf_2), with only **12** showing appreciable activity at long reaction times. These results suggest that the μ -anilide increases ROP activity compared to the phenolate. However, we acknowledge that the divergent counterion trends complicates a straightforward comparison between these two series. Unfortunately, we did not successfully prepare a simple pyrazole analogue of $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) to compare with $[\text{PD}^{\text{H}}\text{Zn}_2\text{Et}_2][\text{BArF}]$.

COMMUNICATION

In summary, this work introduces the μ -anilide core to the growing field of binucleating ligands for dizinc catalysis, and demonstrates its direct analogy to more established phenolate ligands. Our aniline ligand $\text{AD}^{\text{Me}}\text{H}_2$ (**1**) shows metalation reactivity similar to its phenol counterparts $\text{PD}^{\text{R}}\text{H}$ (**2-R**), while its dizinc complexes $[\text{AD}^{\text{Me}}\text{H}^{\text{Zn}_2}\text{Et}_2][\text{X}]$ (**6-X**) show conformational dynamics similar to our published phenolate series $[\text{PD}^{\text{R}}\text{Zn}_2\text{Et}_2][\text{X}]$. This structural homology allowed us to compare μ -phenolate and μ -anilide bridging in catalysis, resulting in an influence on counterion effects and on activity. These results will further expand the tools available for optimization and structure-activity analysis in bimetallic catalysis.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as a part of Supplementary Information.

Acknowledgements

We gratefully acknowledge funding from the Welch Foundation (#E-2135-20230405), the National Science Foundation (#2337696), and the ACS Petroleum Research Fund (65402-DNI1). We also gratefully acknowledge the use of instrumentation in the Polymer Center for Excellence at the University of Houston, supported by grant #H-E-0041. We also acknowledge the use of the Sabine cluster and support from the Hewlett Packard Enterprise Data Science Institute at the University of Houston.

Notes and references

- (A) O. Decy-Cabaret, B. Martin-Vaca and D. Bourissou, *Chem. Rev.*, 2004, **104**, 6147. (B) J. Gao, D. Zhu, W. Zhang, G. A. Solan, Y. Ma, W.-H. Sun. *Inorg. Chem. Front.* 2019, **6**, 2619.
- M. Szwarc and M. van Beylen. *Ionic Polymerization and Living Polymers*. Springer Science+Business Media, 1993.
- M. H. Chisholm and N. W. Eilerts, *Chem. Commun.*, 1996, 853.
- (A) B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky and G. W. Coates. *J. Am. Chem. Soc.* 2001, **123**, 3229. (B) L. R. Rieth, D. R. Moore, E. B. Lobkovsky and G. W. Coates, *J. Am. Chem. Soc.*, 2002, **124**, 15239. (C) D. R. Moore, M. Cheng, E. B. Lobkovsky and G. W. Coates. *J. Am. Chem. Soc.*, 2003, **125**, 11911.
- M. Abubekerov, J. Wei, K. R. Swartz, Z. Xie, Q. Pei and P. L. Diaconescu. *Chem. Sci.*, 2018, **9**, 2168.
- (A) W. T. Diment, W. Lindeboom, F. Fiorentini, A. C. Deacy and C. K. Williams, *Acc. Chem. Res.*, 2022, **55**, 1997. (B) Z. Cai, D. Xiao and L. H. Do, *Comments in Inorganic Chemistry*, 2019, **39**, 27. (C) A. J. Plajer and C. K. Williams, *Angew. Chem. Int. Ed.*, 2021, **61**, e202104495. (D) J. M. Gil-Negrete and E. Hevia, *Chem. Sci.*, 2020, **12**, 1982. (E) S. Matsunaga, M. Shibasaki, *Chem. Commun.*, 2014, **50**, 1044. (F) A. J. Plajer and C. K. Williams, *Angew. Chem. Int. Ed.* 2021, **60**, 2. (G) U. Yolsal, P. J. Shaw, P. A. Lowy, R. Chambenahalli and J. A. Garden, *ACS Catal.*, 2024, **14**, 1050.
- S. Kissling, M. W. Lehenmeier, P. T. Altenbuchner, A. Kronast, M. Reiter, P. Deglmann, U. B. Seemann and B. Rieger. *Chem. Commun.*, 2015, **51**, 45.
- A. Thevenon, C. Romain, M. S. Bennington, A. J. White, H. J. Davidson, S. Brookere and C. K. Williams, *Angew. Chem. Int. Ed.*, 2016, **55**, 8680.
- (A) L. E. Breyfogle, C. K. Williams, V. G. Young, M. A. Hillmyer and W. B. Tolman, *Dalton Trans.*, 2006, 928-936. (B) C. K. Williams, N. R. Brooks, M. A. Hillmyer and W. B. Tolman, *Chem. Commun.*, 2002, 2132.
- (A) C. Romain and C. K. Williams, *Angew. Chem. Int. Ed.*, 2014, **53**, 1607-1610. (B) A. C. Deacy, A. F. R. Kilpatrick, A. Regoutz and C. K. Williams, *Nature Chem.* 2020, **12**, 372.
- (A) W. Gruszka, A. Lykkeberg, G. S. Nichol, M. P. Shaver, A. Buchard and J. A. Garden, *Chem. Sci.*, 2020, **11**, 11785-11790. (B) M. A. Rahman, T. J. Neal and J. A. Garden, *Chem. Commun.*, 2024, **60**, 5530.
- M. Tansky and R. J. Comito, *Dalton Trans.*, 2023, **52**, 8784.
- Z. Gu and R. J. Comito, *Organometallics*, 2022, **41**, 1911.
- M. Tansky, Z. Gu and R. J. Comito, *J. Org. Chem.*, 2021, **86**, 1601.
- (A) A. Lennartson, A. Hedström and M. Hakansson, *Organometallics*, 2010, **29**, 177. (B) M. Kahnes, H. Görts and M. Westerhausen, *J. Organometal. Chem.* 2011, **696**, 1618. (C) T. Chlupatý, Z. Ruzicková, H. Kampová, J. Merna and A. Ruzicka, *Inorg. Chem.*, 2022, **61**, 9392. (D) R. K. Sahoo, A. G. Patro, N. Sarkar and S. Nembenna, *Organometallics* 2023, **42**, 1746. (E) R. Olejník, M. Bílek, Z. Ruzickova, Z. Hostálek, J. Merna and A. Ruzicka, *J. Organometal. Chem.*, 2015, **794**, 237. (F) M. Kahnes, J. Richthof, H. Görts, D. Escudero, L. González and M. Westerhausen, *J. Organometal. Chem.*, 2010, **695**, 280. (G) A. Harinath, H. Karmakar, D. A. Kisan, H. P. Nayek and T. K. Panda, *Org. Biomol. Chem.*, 2023, **21**, 4237.
- (A) M. M. Olmstead, W. J. Grigsby, D. R. Chacon, T. Hascall and P. P. Power, *Inorganica Chimica Acta*, 1996, **251**, 273. (B) M. G. Davidson, D. Elilio, S. L. Less, A. Martin, P. R. Raithby, R. Snaith and D. S. Wright, *Organometallics*, 1993, **12**, 1. (C) J. Boersma, A. L. Spek and J. G. Noltes, *J. Organometal. Chem.*, 1974, **81**, 7.
- B. Luo and W. L. Gladfelter, *J. Coord. Chem.* 2011, **64**, 82.
- (A) P. Dapporto, M. Formica, V. Faci, L. Giorgi, M. Micheloni, P. Paoli, R. Pontellina and P. Rossi, *Inorg. Chem.*, 2001, **40**, 6186. (B) C. Sulbrake and H. Vahrenkamp, *Eur. J. Inorg. Chem.*, 2001, 751. (C) H. Sugimoto and A. Ogawa, *Polymers*, 2007, **67**, 1277. (D) M. Fondo, A. M. Garcia-Deibe, N. Oombo, J. Sanmartin and M. R. Bermejo, *Dalton Trans.*, 2004, 2135. (E) Y. D. M. Champouret, W. J. Nodes, J. A. Scrimshire, K. Singh, G. A. Solan and I. Young, *Dalton Trans.* 2007, 4565. (F) K. Hossain and A. Majumdar, *Inorg. Chem.*, 2022, **61**, 6295.
- Y. Fu, Z. Xing, C. Zhu, H. Yang, W. He, C. Zhu and Y. A. Cheng, *Tetrahedron Lett.*, 2012, **53**, 804.
- (A) T. Hascall, M. M. Olmstead and P. P. Power, *Angew. Chem. Int. Ed.*, 1994, **33**, 1000. (B) T. Hascall, K. Ruhlandt-Senge and P. P. Power, *Angew. Chem. Int. Ed.*, 1994, **33**, 356.
- (A) H. Tani, T. Araki, N. Oguni and N. Ueyama, *J. Am. Chem. Soc.*, 1967, **89**, 173. (B) H. Tani and N. Oguni, *J. Polym. Sci., Polym. Lett. Ed.*

COMMUNICATION

1969, **7**, 769. C) H. Link, P. Reiss, S. Chitsaz, H. Pfistner and D. Fenske, *Z. Anorg. Allg. Chem.*, 2003, **629**, 755.

The data supporting this article have been included as a part of Supplementary Information.