
In situ Raman investigation of Dy complexation in Cl⁻ bearing aqueous solutions at 20-300 °C

Journal:	<i>Dalton Transactions</i>
Manuscript ID	DT-ART-07-2024-002170.R2
Article Type:	Paper
Date Submitted by the Author:	23-Jan-2025
Complete List of Authors:	Smith-Schmitz, Sarah; New Mexico Bureau of Geology & Mineral Resources, New Mexico Institute of Mining and Technology Hurtig, Nicole; New Mexico Institute of Mining and Technology, Earth and Environmental Science; New Mexico Tech Gysi, Alexander; New Mexico Institute of Mining and Technology, Earth and Environmental Science; New Mexico Bureau of Geology & Mineral Resources, New Mexico Institute of Mining and Technology

SCHOLARONE™
Manuscripts

1 ***In situ* Raman investigation of Dy complexation in Cl-bearing aqueous solutions at 20-300 °C**

Sarah E. Smith-Schmitz^{1*}, Nicole C. Hurtig², Alexander P. Gysi¹

¹ New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, 87801 Socorro

² Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology, 801 Leroy Place, 87801 Socorro

*corresponding author: sarah.smith@nmt.edu

Keywords: Dy speciation, Raman spectroscopy, hydrothermal fluids

14 Abstract

15 Raman spectroscopy provides a versatile tool for *in situ* characterization of aqueous rare earth
16 elements (REE) speciation at the molecular level. Complexation of REE with ligands such as Cl⁻
17 and OH⁻ is of particular interest for understanding the mobility of REE in NaCl-bearing
18 hydrothermal fluids responsible for enriching REE to economic levels in nature. Raman
19 spectroscopic studies of REE speciation in Cl-bearing aqueous fluids are primarily conducted at
20 ambient temperature, whereas natural systems indicate temperatures of >100–600 °C. In this study,
21 the speciation of Dy in acidic chloride-bearing hydrothermal solutions was investigated using
22 confocal Raman spectroscopy equipped with a new capillary Raman heating stage at 20–300 °C.
23 Background solutions (pure water, NaCl-solutions) and solutions with 0.14–1.8 mol/kg dissolved
24 DyCl₃ were sealed in quartz capillary cells. Comparison of the spectra for Dy chloride solutions
25 with those for background solutions and the spectra for reference Dy-bearing solids was used to
26 identify Raman bands specific to Dy-O and Dy-Cl bonds. The Raman band for the Dy-O stretching
27 mode of hydrated Dy³⁺ aqua ions was measured at 365–384 cm⁻¹ and a Raman band for the Dy-Cl
28 stretching modes of Dy chloride complexes was measured near 240 cm⁻¹. The Dy-O band decreases
29 systematically with temperature, whereas the Dy-Cl band systematically increases, indicating a
30 systematic increase in the stability of Dy chloride complexes with temperature. This study provides
31 the framework for expanding the use of *in situ* Raman spectroscopy to investigate the speciation of
32 REE in aqueous solutions to hydrothermal conditions.

33

34 **Introduction**

35 The rare earth elements (REE) are composed of the 15 lanthanides (La-Lu) plus Y and Sc ¹ and
36 can be further subdivided into light (L)REE, comprising La-Gd, and heavy (H)REE, consisting
37 of Tb-Lu and Y. The LREE/HREE are commonly grouped based on their chemical properties
38 such as their increasing atomic mass and decreasing ionic radius from LREE to HREE ¹.
39 Dysprosium (Dy) is primarily used to improve the temperature stability and performance of
40 NdFeB permanent magnets used in offshore wind turbines and electric vehicles ²⁻⁵. Due to the
41 importance of Dy to sustainable energy technologies it is included in the recent United States
42 Department of Energy Critical Materials List ⁶. In natural geologic systems, hydrothermal fluids
43 play a key role in the enrichment of REE mineral deposits, which form due to a combination of
44 magmatic and hydrothermal processes ⁷⁻⁹. In NaCl-bearing hydrothermal fluids at acidic
45 conditions, geochemical simulations predict REE chloride complexes to be the most important
46 species whereas the REE³⁺ species dominate at low temperature ^{7,10}.

47 Geochemical simulations depend on accurate measurement of thermodynamic properties
48 for REE complexes at relevant temperature and pressure, which are based on experimental
49 studies, including solubility experiments ^{11,12}, UV-vis speciation experiments ¹³⁻¹⁶, time resolved
50 laser-induced spectroscopy ^{17,18}, *in situ* Raman spectroscopy ¹⁹⁻²⁴, and X-ray absorption
51 spectroscopy experiments (XAFS) ²⁵⁻³¹. Experimental studies of the speciation of the REE in
52 chloride-bearing solutions indicate that the REE³⁺ aqua ion is the dominant REE species at
53 ambient temperature and low pH, and that REECl²⁺ and REECl₂⁺ are the primary REE chloride
54 complexes to form at temperatures above 200 to 300 °C ^{7,30-33}. The stability of REE chloride
55 complexes increases with temperature with the LREE over the HREE in hydrothermal fluids

56 7,30,31. X-ray absorption spectroscopy experiments show that REE³⁺ ions are hydrated with 7–9
57 H₂O molecules and the REE chloride complexes are hydrated with 2–7 H₂O molecules, and that
58 the hydration number decreases with an increase in temperature 25–27,30,31,33–35.

59 Each experimental method used to determine REE speciation has specific challenges.
60 Solubility experiments are an indirect method for determining speciation at hydrothermal
61 conditions 11,12, UV-vis can only be used to determine speciation of colored solutions for REE
62 like Nd, Sm, Eu, and Ho 13–16. Time resolved laser-induced fluorescence spectroscopy (TRLFS)
63 can be used to determine speciation of fluorescent REE, but emission duration and intensity are
64 significantly reduced in aqueous solution at elevated temperatures 17,18,36,37. Finally, XAFS
65 generally requires access to synchrotron radiation source 25–31.

66 Raman spectroscopy provides a powerful method for *in situ* characterization of REE
67 speciation in aqueous fluids due to its sensitivity to the intra- and inter- molecular vibrational
68 modes of water and to perturbations in the water structure caused by changes in fluid chemistry
69 and variation of complexing ligands 38–42. Changes in aqueous REE speciation are derived from
70 the measurement of Raman active bands specific to REE-ligand bonds and water bands related to
71 hydration shells around REE complexes 40,41,43,44. At low temperature, Raman bands for the
72 REE³⁺ aqua ions are located at 354–406 cm^{−1} 41,45,46 and those for REE chloride species at 221–
73 256 cm^{−1} 19–22,24. Additionally, *in situ* Raman spectroscopy has been used to derive formation
74 constants for LuCl²⁺ and YbCl²⁺ 22,23 at ambient temperature and for LaCl²⁺ and LaCl₂⁺ at 5 to 80
75 °C 24. Raman spectroscopy may be combined with fused quartz capillary cells 47–49, high
76 pressure-temperature autoclaves with sapphire cells 50–53, or hydrothermal diamond anvil cells
77 54,55 which allows expanding this method to elevated temperature and pressure relevant for the
78 study of hydrothermal fluids and REE mobilization in ore-forming systems.

79 In this study, a new capillary Raman heating stage was developed to extend the
80 temperature range of *in situ* Dy speciation experiments in Cl-bearing aqueous solutions from 20
81 to 300 °C. For identification of the relevant spectral range of the Dy-O and Dy-Cl Raman modes,
82 a series of reference solids including Dy-oxide, -hydroxide, and -chloride were measured.
83 Experiments were performed at ambient temperature and at 50 °C intervals between 100–300 °C
84 for pure water, 1–3 mol/kg NaCl solutions, and experimental solutions with 0.1–1.8 mol/kg
85 dissolved DyCl₃. Raman spectra were processed and peak areas for Dy³⁺ aqua ion ($\nu_{1,\text{Dy-O}}$) and
86 Dy chloride complexes ($\nu_{\text{Dy-Cl}}$) were extracted after background solution corrections and
87 compared to predicted Dy speciation using GEM-Selektor^{56,57} and current thermodynamic data
88 implemented in the MINES thermodynamic database⁵⁸. This study provides new insights into
89 Dy speciation in acidic fluids at hydrothermal conditions using *in situ* Raman spectroscopy.

90

91 Materials and Methods

92 Materials

93 The pH stock solutions were prepared using 0.9990 ± 0.0005 mol/L HCl (Inorganic Ventures,
94 NIST traceable certified standard) diluted with ultra pure water (MilliQ, 18.2 MΩ·cm) to make a
95 solution with a pH of 2, 4, and 5. Dysprosium chloride stock solutions were prepared by
96 dissolving solid DyCl₃·xH₂O (Thermo scientific 99.9% REO basis) in aliquots of the previously
97 prepared pH 2 stock solutions. These Dy stock solutions were subsequently diluted using the pH
98 2 stock solution to generate a range of Dy concentrations, see Table 1. The NaCl-bearing stock
99 solution was prepared by dissolving high purity sodium chloride (Thermo scientific Puratronic®
100 99.998% metal basis) in ultra pure water to a concentration of ~3 mol/kg NaCl. This solution

101 was subsequently diluted using the pH stock solutions and ultra pure water to achieve a range of
102 NaCl concentrations at pH 2, 4, and 5.

103 Commercial solids analyzed in this study are anhydrous DyCl₃ (Strem Chemicals, 99.9%
104 REO), DyCl₃·xH₂O (Thermo scientific, 99.9% REO basis), and Dy₂O₃ (Alfa Aesar, REacton™
105 grade, 99.99% REO). The Dy(OH)₃ powder used for Raman analysis was synthesized according
106 the method of Diakonov et al.⁵⁹. Pure Dy₂O₃ powder (Alfa Aesar, REacton™ grade, 99.99%
107 REO) was mixed with ultra pure water in a Teflon-lined steel acid digestion vessel (Parr 4744)
108 that was sealed and placed in a muffle furnace (Cole-Palmer Stable Temp muffle furnace, EW-
109 33858-80) where it was allowed to react for up to 21 days at 250 °C.

110

111 *Analytical Methods*

112 The pH of the dilute stock solutions was measured using a 913 Metrohm pH meter (accuracy of
113 ± 0.003) equipped with a pH electrode (Metrohm 6.0260.010 unitrode with Pt1000 temperature
114 sensor) calibrated using 1.68, 4.01, and 7.00 Fisher buffer solutions (accuracy of ±0.01). The pH
115 of the high ionic strength solutions was measured before the salts were added and calculated
116 using the GEMS code package^{56,57,60,61} based on the measured Dy and Na concentrations and
117 amounts of salts added (Table 1).

118 Dissolved Dy and Na concentrations in the experimental solutions were measured using
119 an Agilent 5900 inductively coupled plasma optical emission spectrometer (ICP-OES) equipped
120 with an advanced valve system (AVS) for sample introduction at the Analytical Chemistry
121 Laboratory in the New Mexico Bureau of Geology and Mineral Resources. An internal standard
122 containing 10 ppm In (SCP Science, NIST traceable) was used for drift corrections. The
123 experimental solutions were acidified to a 2 wt% HNO₃ matrix (trace metal grade, Fisher

124 Chemical) and diluted to concentrations ranging between 2–5 ppm Na and of 200–400 ppb Dy.
125 Matrix-matched external calibration standards were prepared by dilution of a 10.01 ± 0.04 ppm
126 Dy stock solution (CMS-1, Inorganic Ventures) and a 1002 ± 4 ppm Na stock solution (CGNA1
127 Inorganic Ventures). The analytical precision (95% confidence level) based on repeated standard
128 analysis was better than 1% for Dy measured using the 353.2 nm wavelength at concentrations
129 between 6×10^{-7} and 5×10^{-6} mol/kg Dy (100–500 ppb) and better than 3% for Na measured
130 using the 589.0 nm wavelength at concentrations between 5×10^{-5} and 2×10^{-4} mol/kg Na (1.3–
131 5.1 ppm). The instrument limits of detection (LOD) were determined as the 5σ (standard
132 deviation) from repeat analysis of the 2 wt% HNO₃ blank, yielding 1 ppb Dy and 0.01 ppm Na.
133 The ICP Expert software was used for data reduction and analysis.

134 Characterization of the synthetic Dy(OH)₃ powder was carried using powder X-ray
135 diffraction (XRD) performed on a Panalytical X-Pert Pro diffractometer at the New Mexico
136 Bureau of Geology and Mineral Resources. A Cu-K α radiation was used to scan powders from 5
137 to 70° 2 θ angles with a step size of 0.01° 2 θ and a step time of 0.3s. The XRD pattern was
138 analyzed using Panalytical HighScore Plus software. Lattice parameters for the synthetic
139 Dy(OH)₃ powder derived from Rietveld refinement of the XRD pattern and reported in Smith-
140 Schmitz and Gysi⁶² are consistent with those published in Beall et al.⁶³ (ESI Table S1) and
141 indicate the formation of pure crystalline Dy hydroxide with a hexagonal crystal structure in the
142 P6₃/m space group.

143 All solids were analyzed using Raman spectroscopy and the main peaks are summarized
144 in Table 2 and reference spectra are summarized in the Electronic Supplementary Information
145 (ESI Table S2). Raman spectroscopy was carried out at the Raman Spectroscopy Laboratory at
146 the New Mexico Bureau of Geology and Mineral Resources using a Horiba LabRAM HR

147 Evolution confocal microscope. The Raman systems is equipped with a 532 nm excitation
148 Nd:YAG laser and an air cooled diode-pumped solid state 266 nm (UV) excitation laser.
149 Analysis of the solid Dy reference materials was performed using the 266 nm laser and an
150 Olympus 10x LUVB objective (NA = 0.24; WD = 15 mm) and 2400 grooves/mm grating with a
151 spectral resolution of 2 cm^{-1} . Analysis using the 532 nm excitation laser was performed using a
152 1800 grooves/mm grating with a spectral resolution of 0.2 cm^{-1} and an Olympus 50x LWD
153 objective (NA = 0.5; WD = 10.6 mm) for the solids and an Olympus 20x SLMPLN objective
154 (NA = 0.25; WD = 25 mm) for capillary cell experiments. The Raman spectrometer was
155 calibrated using a first-order C line in diamond at 1332 cm^{-1} for the 266 nm excitation line and
156 an in-line standard reference objective (SP-RCO, Horiba, polystyrene) at 1000.0 cm^{-1} and a first-
157 order Si line at 520.7 cm^{-1} (silicon wafer) for the 532 nm laser. The instrument was calibrated
158 before and after analyses to check for instrument drift and both analyses consistently fell within
159 $\pm 0.8\text{ cm}^{-1}$

160

161 *Experimental Method for Solutions*

162 The capillary Raman heating stage (Fig. 1) presented in this study was specifically developed to
163 conduct experiments at elevated temperatures and make *in situ* measurements of the Raman
164 modes of Dy species in aqueous solutions. Capillary cells were made using fused quartz capillary
165 tubing (Technical Glass Products, Inc.) with a 2 mm outer diameter and 1 mm inner diameter.
166 The tubes were cut to 11 cm lengths then cleaned in a 5 wt% nitric acid solution and rinsed with
167 pure water. One end of each tube was welded using an acetylene torch, then the tubes were
168 loaded with sample solution to less than 70% of the total volume. Loaded tubes were centrifuged
169 to ensure that the sample solution was collected at the sealed end of the tubes and position of the

170 meniscus was marked on each tube. The tubes are placed into a liquid nitrogen bath to freeze the
171 liquid before they were sealed. The capillary cells were centrifuged after sealing to ensure that
172 the solution volume was unchanged and no leakage occurred. The capillary cells were then
173 heated to 300 °C in a muffle furnace to ensure that they would not break during the Raman
174 experiments, which were subsequently performed. A small vapor bubble is observed to remain in
175 the capillaries at 300 °C, indicating that the solutions are at saturated water vapor pressure during
176 the experiments. Examination of the capillaries under an optical microscope showed that they
177 were free of solids and clouding both before and after heating experiments.

178 The capillary Raman heating stage was machined from a block of aluminum alloy (6061-
179 T6511-Extruded, Online Metals) as illustrated in Figure 1. The capillary cells are placed in a 4.5
180 mm diameter channel with open ends drilled through the block. Two stainless steel 150 W
181 cartridge heaters (Omega, 6.35 mm OD and 10.16 cm length) are inserted into the channels
182 drilled parallel to the capillary cell placed optimally for the best heat distribution. A 2 mm
183 diameter window was drilled orthogonally to the capillary channel to allow Raman analysis. The
184 temperature during experiments was monitored using a high temperature K-type thermocouple
185 (Super OMEGACLAD™XL, 1.57mm OD, 7.62 cm length) inserted into an oblique channel that
186 reaches the capillary cell close to the Raman window allowing for accurate temperature
187 measurements. The heating cartridges and thermocouple are attached to a 1/16 DIN Omega High
188 Performance Temperature Controller (part# CN16DPT-220) used to regulate and record the
189 temperature during the experiments. The capillary Raman heating stage was wrapped in multiple
190 layers of ceramic pads (Fisher Scientific, GSC Go Science Crazy CP510) for insulation.
191 Temperature testing using multiple thermocouples above and below the capillary at the Raman
192 window indicate that the temperature measured using the K-type thermocouples is within 0.2 °C,

193 and the temperature gradient between the inside and outside of the capillary is negligible. The
194 capillary Raman heating stage is mounted onto the XYZ-stage using a specifically made holder
195 that locks it into place for the duration of the experiments. The Raman window is aligned
196 optically using the transmitted light source and the automated XYZ-stage.

197 A capillary cell filled with an experimental solution (Table 1) is inserted into the capillary
198 Raman heating stage at ambient temperature. Laser focusing is achieved by performing a vertical
199 Z-scan at 3200-3800 cm⁻¹ and the heights (Z) of the XYZ-stage were set to maximize the peak
200 intensity of the water band. The first measurement was collected at ambient temperature. For
201 each isotherm, the capillary Raman heating stage was heated at a rate of less than 10 °C per
202 minute to minimize the risk of decrepitation. At the experimental temperature the capillary cell
203 was equilibrated for 20 min after which the Raman spectra were collected. Replicate analyses at
204 100 °C indicate that the spectra are reproducible to within ±1 cm⁻¹ after ~15 min at constant
205 temperature. Capillaries containing experimental solutions were reanalyzed following multiple
206 heating and cooling cycles. The final peak positions and normalized intensities were consistent
207 and within analytical uncertainty of those collected initially.

208

209 *Data Analysis*

210 Raw Raman spectra are exported as text files and background correction, area normalization, and
211 de-convolution are carried out using the Fityk 1.3.1 open-source software ⁶⁴. Prior to processing
212 in Fityk the raw aqueous spectra are smoothed using a 14-point Savitzky-Golay algorithm to
213 improve background subtraction for low intensity peaks. The raw spectra (I(ν)) are corrected to
214 remove the influence of temperature and excitation wavelength on the spectral band shape and
215 intensity ^{41,65-67} producing the reduced spectra (R(ν)) according to,

216 $R(v) = I(v) \cdot B \cdot F_v / \rho$ (1)

217 where ρ is the density of the fluids at P and T calculated using the IAPS-84 equation-of-state⁶⁸.

218 The term F_{vt} represents the combined scattering and frequency factor used to account for the
219 wavenumber dependence of the Raman scattering intensity, which is given by,

220 $F_v = (v_0 - v_i)^{-3} \cdot v_i$ (2)

221 where v_0 and v_i are the laser excitation and Raman scattered light in cm^{-1} , respectively^{66,67}. The
222 Bose-Einstein thermal population correction factor (B) which adjusts for the temperature
223 dependence of the Stokes-Raman scattering intensity is equal to,

224 $B = 1 - \exp(-h \cdot v_i \cdot c / k_b \cdot T)$ (3)

225 where h is Planck's constant in J/Hz ; c is the speed of light in cm/s ; k_b is Boltzmann's constant in
226 J/K ; and T is temperature in Kelvin.

227 All spectra are background subtracted and spectra of aqueous solutions were normalized using
228 the total spectral area to adjust for variation in intensity arising from differences in laser focus
229 depth within the capillaries in Fytik. Normalization using the total spectral area dominated by the
230 area of the water stretching band was previously described in Schmidt and Seward⁴² for S
231 species. Aqueous experimental solutions were reduced to two regions of interest at $75\text{--}475 \text{ cm}^{-1}$
232 for REE speciation and $2600\text{--}4000 \text{ cm}^{-1}$ for the main water band. The peaks were de-convoluted
233 using Gaussian functions for aqueous solutions and using a combination of Lorentzian and
234 Gaussian functions for solids based on the best fit for the peaks. The water stretching band was
235 fitted using three peaks (S-1 to S-3, ESI Fig. S1A, B), the librational region was fitted with one
236 peak near 370 cm^{-1} (L-1). The fitted peak centers, peak areas, and full width half maxima
237 (FWHM) are listed in ESI Tables S3-5.

238

239 **Results and Discussion**240 *Raman Spectra of reference Dy solids*

241 Raman spectra of the Dy-bearing solids including $\text{Dy}_2\text{O}_3(\text{s})$, $\text{Dy}(\text{OH})_3(\text{s})$ and anhydrous and
242 hydrous DyCl_3 , were measured at ambient temperature using two laser excitation wavelengths
243 (532 nm and 266 nm). The reference spectra of different solids were used to establish the main
244 vibrational modes for Dy-O and Dy-Cl bonds, which is needed for interpretation of aqueous
245 solutions. The Raman analyses of Dy-bearing solids measured in this study are summarized in
246 Table 2 and representative Raman spectra for each solid are shown in Figure 2.

247 Dysprosium sesquioxide occurs in the C-type bixbyite crystal structure and belongs to the
248 Ia-3 space group, where Dy is coordinated with six oxygen^{69,70}. Using theoretical calculations,
249 22 Raman active modes; $4\text{A}_\text{g} + 4\text{E}_\text{g} + 14\text{F}_\text{g}$ were predicted in previous studies^{69,71-75}, of which
250 1–17 Raman modes were previously measured^{69,71,73,74,76-80}. The spectra is dominated by one
251 Raman mode at $372 \pm 1.2 \text{ cm}^{-1}$ with a number of minor peaks between ~ 90 and 600 cm^{-1} (See
252 Hurtig et al.⁸⁰ for more details), which is consistent with measurements in this study. The
253 Raman mode at $372 \pm 1.2 \text{ cm}^{-1}$ corresponds to the symmetric stretching vibration (ν_s) of Dy-O
254 bond and is generally assigned to F_g ⁷⁵ or $\text{F}_\text{g} + \text{A}_\text{g}$ ⁸¹.

255 Dysprosium hydroxide, $\text{Dy}(\text{OH})_3(\text{s})$, has a hexagonal crystal structure and belongs to the
256 $\text{P}6_3/m$ space group with Dy showing a 9-fold coordination with oxygen⁶³. Factor group analysis
257 predicts 11 Raman active modes: $4\text{A}_\text{g} + 2\text{E}_\text{1g} + 5\text{E}_\text{2g}$ ⁸². Previous studies measured between three
258 and 21 bands for Dy hydroxide, comprising of a group of three main peaks between 302 – 488
259 cm^{-1} , a double peak at 696 and 737 cm^{-1} , peaks at 262 and 133 cm^{-1} and 13 small peaks below
260 130 cm^{-1} ^{80,83}. Additionally, $\text{Dy}(\text{OH})_3$ has a prominent Raman band at 3598 cm^{-1} with a shoulder
261 at 3612 cm^{-1} that arises from the vibrational modes of the O-H bond⁸⁰. The three most prominent

262 Raman bands are related to A_g at 312 cm^{-1} , A_g or E_{2g} at 394 cm^{-1} with a shoulder at 406 cm^{-1} and
263 E_{1g} at 501 cm^{-1} of the Dy-OH bond^{80,82-85}, which are consistent with measurements made in this
264 study.

265 The anhydrous Dy trichloride $\text{DyCl}_3(\text{s})$ occurs in the monoclinic crystal structure
266 belonging to the $C2/m$ space group⁸⁶. The Dy ion is 6-fold coordinated with chloride ions
267 showing three pairs of Dy-Cl bonds with unique bond distances⁸⁶. Factor group analysis predicts
268 12 Raman active modes: $6A_g+6B_g$ ⁸⁷. In this study $\text{DyCl}_3(\text{s})$ was analyzed using the 266 nm
269 excitation laser, due to photoluminescence using the 532 nm excitation laser (Fig. 2C). The
270 strongest peak for $\text{DyCl}_3(\text{s})$ occurs at 242 cm^{-1} with a shoulder at 255 cm^{-1} and a smaller
271 shoulder at 272 cm^{-1} and can be attributed to the vibrational modes of the Dy-Cl bond consistent
272 with previous studies⁸⁷⁻⁸⁹. Dysprosium trichloride is hygroscopic and shows minor peaks at
273 $3200-3600\text{ cm}^{-1}$ corresponding to the Raman mode of water. As a result of hydration minor Dy-
274 H_2O stretching modes ($\sim 300-400\text{ cm}^{-1}$) may also occur⁹⁰.

275 Hydrated Dy chlorides ($\text{DyCl}_3 \cdot x\text{H}_2\text{O}$) can incorporate $x = 6-15$ water molecules^{10,90}, of
276 which $\text{DyCl}_3 \cdot 6\text{H}_2\text{O}$ is stable at ambient temperature. The crystal structure of $\text{DyCl}_3 \cdot 6\text{H}_2\text{O}$ is
277 monoclinic belonging to the $P2/n$ space group⁸⁹⁻⁹¹. Dysprosium is 8-fold coordinated with two
278 Cl and six water in a $[\text{DyCl}_2(\text{H}_2\text{O})_6]^+$ polyhedron with the remaining Cl^- ion acting as a counter
279 anion connecting the cation polyhedra through six hydrogen bonds. Factor group analysis
280 predicts 66 Raman active modes ($32A_g+34B_g$) with 20-28 Raman bands measured in previous
281 studies⁸⁹⁻⁹¹. The bands for vibrational modes involving Dy-Cl and Dy-O bonds are located in the
282 low frequency region at $314-360\text{ cm}^{-1}$ for Dy- H_2O stretching modes and at 159 and 240 cm^{-1} for
283 the symmetric and asymmetric Dy-Cl stretching modes, respectively. Minor modes at $\sim 210\text{ cm}^{-1}$

284 and \sim 94–140 cm^{-1} can be associated to O-Dy-O bending modes and O-Dy-Cl and Cl-O-Cl
285 bending modes⁹⁰.

286 In summary, Raman spectroscopy of reference Dy solids indicate that Raman bands for
287 Dy-O stretching modes occur at 311–502 cm^{-1} and for Dy-Cl stretching modes at 153–272 cm^{-1}
288 (Table 2; Fig. 2). The bands for Dy-O and Dy-Cl are therefore distinct and easily identifiable in
289 their respective positions.

290

291 *Raman spectra of water at 20–300 °C*

292 Raman spectra of pure water (MilliQ) and H_2O -NaCl-HCl background solutions were collected
293 to distinguish them from the effect of Dy speciation on the Raman spectra for experimental
294 solutions spectra collected at 20–300 °C. The most prominent Raman bands (Fig. 3) correspond
295 to vibrational modes of H_2O , identified as the water translational region at 50–300 cm^{-1} , water
296 librational modes (L) at \sim 300–1000 cm^{-1} , the water bending mode at 1600–1650 cm^{-1} and the
297 water stretching mode (S) at 3000–3800 cm^{-1} ^{41,92–95}. The addition of DyCl_3 in solution shows a
298 similar shape of the water bands compared to NaCl-bearing solutions with a distinct peak at
299 \sim 370 cm^{-1} in the region of Dy-O bonds (Figs. 3, 4).

300 The translational region of water at 50–300 cm^{-1} overlaps significantly with the region of
301 interest for the Raman modes of Dy-Cl bonds at ambient temperature (Fig. 4). The translational
302 region of water comprises information on the structures of networked water as a whole, which
303 can be separated into the lower frequency bending (61 cm^{-1}) and torsion (83 cm^{-1}) restricted
304 translational modes, and higher frequency asymmetric (111 cm^{-1}) and symmetric (157 cm^{-1})
305 stretching restricted translational modes combined with a coupled translation/rotation mode at
306 221 cm^{-1} ^{39,94}. With increasing temperature, the bending and torsion translational modes remain

307 relatively constant, whereas the stretching restricted translation and coupled translation/rotation
308 modes (111–221 cm⁻¹) shift to lower frequency and decrease in intensity ^{39,92,96,97}. The high
309 frequency edge of the translational region shifts from ~300 cm⁻¹ at 25 °C to ~190 cm⁻¹ at 300 °C
310 (Fig. 4A, C, E), which decreases the overlap with the region for Dy-Cl vibrational modes at high
311 temperature (Fig. 4E).

312 Librational modes of water centered at 430–480, 550–650, and 720–790 cm⁻¹ at 25 °C are
313 weak broad bands arising from limited rotational movement of water molecules within the water
314 network ^{41,92,97}. The intensities of the librational modes of liquid water decrease with temperature
315 up to 100 °C after which the intensities remain relatively constant ^{92,97}. In this study, two broad
316 low-intensity peaks appear at ~370 cm⁻¹ (L-1) at 100 °C and at ~300 cm⁻¹ (L-2) at 250 °C (Fig.
317 4A), which may represent the lower frequency librational modes of water ⁹⁷. The L-1 peak can
318 overlap with the region for Dy-O bonds ($\nu_{1,\text{Dy-O}}$) and a correction needs to be applied to Dy-O
319 vibrational modes based on measurements of the background electrolyte solutions. The minor
320 librational mode at 370 cm⁻¹ (L-1) was therefore determined in the pure water and background
321 solutions for each temperature and is applied to subsequent solutions as an area normalized
322 contribution, which is described in ESI Tables S3 and S5.

323 The water stretching band at 3000–3800 cm⁻¹ is a broad band that represents
324 intramolecular stretching vibrations of the O-H bond ^{41,93,98–100}. Here, the stretching band is de-
325 convoluted using three sub-peaks i.e., sub-peak S-1 at 3271 cm⁻¹, sub-peak S-2 at 3446 cm⁻¹ and
326 sub-peak S-3 at 3588 cm⁻¹ at 25 °C (ESI Fig. S1A, B; Table S4). The stretching vibrational band
327 of water is strongly influenced by hydrogen bonding and the structure of water clusters, which
328 indicates that sub-peak S-1 at lower wavenumbers represents fully networked bulk water, sub-
329 peak S-2 is intermediate with smaller hydration clusters and sub-peak S-3 at the highest

330 wavenumbers represents the weakest hydrogen bonding and smallest monomer and dimer
331 clusters^{41,99,100}. With increasing temperature, the water band decreases in intensity and is shifted
332 to higher wavenumbers (Fig. 4B), which indicates decreasing hydrogen bond networks^{99,101}. The
333 relative area of sub-peak S-1 decreased from 59% to 6%, sub-peak S-2 increases from 26% to
334 73% and sub-peak S-3 increases from 15% to 21% from 20 to 300 °C. Sub-peak 2 also shifts to
335 higher wavenumbers which indicates a greater overlap with sub-peak S-3 at high temperatures
336 and the dominance of smaller hydrogen clusters.

337

338 *The effect of chlorinity on the water on Raman spectra at 20–300 °C*

339 In the translational region, the addition of NaCl shifts the high frequency edge by ~10 cm⁻¹ to
340 lower wavenumbers at ambient temperature (Fig 4A, C). The high frequency edge of the
341 translational region shifts to lower wavenumbers and decreases in intensity with increasing
342 temperature in NaCl-bearing and pure water. The librational modes at ~300, 370 and 450 cm⁻¹
343 occur in NaCl-bearing solutions and pure water above 100 °C as low intensity broad peaks.

344 The addition of NaCl affects the water stretching band by decreasing the intensity of sub-
345 peak S-1 at 3271 cm⁻¹ and increasing sub-peak S-2 at 3446 cm⁻¹ accompanied by a very slight
346 decrease in sub-peak S-3 at 3584 cm⁻¹^{41,102–106}. The sub-peaks changes are proportional to the
347 concentration of NaCl in solution (Fig. 5B, D; ESI Table S4), indicating that the addition of
348 NaCl breaks up hydrogen bond networks in water^{40,41,105}. At ambient temperature, the relative
349 sub-peak contributions to the water band systematically shift as a function of NaCl (Fig. 5A).
350 Sub-peak 1 is the largest peak in pure water and gradually decreases with increasing NaCl
351 content, whereas sub-peak 2 increases until they are of similar peak areas at ~3 mol/kg NaCl.
352 Sub-peak 3 is the smallest peak and remains constant in peak area contribution as a function of

353 NaCl concentration. The water stretching bands show a decrease in relative peak areas of sub-
354 peak S-1 from 41-51% to 7-8% and a corresponding increase in relative areas of sub-peak S-2
355 from 34-45% to 78-82% with increasing temperature from 20–300 °C (Fig. 5; ESI Table S4). At
356 300 °C, sub-peak 2 is the largest peak and contributes an increasing percentage to the water band
357 with increasing NaCl content (Fig. 5B), whereas the second largest peak is S-3, which decreases
358 in peak area contribution with increasing NaCl content. Sub-peak 1 is the smallest peak at high
359 temperature and increases with increasing NaCl content. The effect of salinity on the relative
360 contributions of sub-peaks S-1 and S-2 decrease significantly at elevated temperatures and the
361 total peak shape of NaCl-bearing solutions starts to resemble that of pure water. This observation
362 is consistent with increased species association and the formation of aqueous NaCl⁰ at high
363 temperature resulting in less perturbation to the local water structure¹⁰⁷. Prediction of Na
364 speciation using the NaCl⁰ association constant from Miron et al.¹⁰⁸ indicates that the proportion
365 of NaCl⁰ increases significantly between 25 and 300 °C, from 6.9% to 37% of total dissolved Na
366 in a 1 mol/kg NaCl solution and from 19% to 47% in a 2.9 mol/kg NaCl solution (ESI Fig. S2),

367 Chloride in DyCl₃-bearing solutions causes systematic perturbations to the water
368 stretching band similar to those observed for NaCl-bearing solutions (Figs. 4, 5; ESI Table S4),
369 though the effect of added DyCl₃ is less pronounced, especially for sub-peaks S-1 and S-2 below
370 200 °C and sub-peaks S-2 and S-3 above 200 °C. The lower correlation between dissolved Cl⁻
371 concentrations and changes to sub-peak contributions in DyCl₃-bearing solutions than in the
372 NaCl-bearing solution suggests that Dy chloride species are likely present resulting in less Cl⁻
373 available for perturbation of the water structure (Fig. 5). As in the NaCl solutions, with
374 increasing temperature the effect of DyCl₃ on the water stretching band becomes less extreme.

375

376 *Raman spectra of DyCl₃-bearing solutions as function temperature*

377 In DyCl₃-bearing solutions a new peak appears at 378–384 cm⁻¹ and increases in intensity with
378 increasing dissolved DyCl₃ concentrations at ambient temperature (Figs. 4E, 6A; ESI Fig. S1C,
379 D). The band at 378–384 cm⁻¹ is attributed to the Dy-O symmetric stretching mode ($\nu_{1,\text{Dy-O}}$) of
380 the hydrated Dy³⁺ aqua ions in octahedral coordination ^{19,22,41,46} (Table 4). The Dy-O ($\nu_{1,\text{Dy-O}}$)
381 band systematically shifts to lower wavenumbers from 384 cm⁻¹ in the 0.14 mol/kg DyCl₃
382 solution to 378 cm⁻¹ in the 1.8 mol/kg DyCl₃ solution, indicating a change in coordination
383 chemistry of the hydration shell (Fig. 6A, Table 4). The shift of REE-O bands to lower
384 wavenumbers with increasing REECl₃ concentrations has been attributed to Cl⁻ ions changing the
385 hydration shells of the REE³⁺ aqua ions at ambient temperature ^{19–23}. At ambient temperature, the
386 area of the Dy-O ($\nu_{1,\text{Dy-O}}$) band increases near linearly with increasing DyCl₃ concentration (Fig
387 7A, Table 4). The band at 240 cm⁻¹ corresponding to the Dy-Cl bond ^{19,22}, is overprinted by the
388 translational mode of water at room temperature and appears as a shoulder of increasing intensity
389 on the translational water band with increasing dissolved DyCl₃ concentrations (Fig. 7A; Table
390 2).

391 With increasing temperature, the intensity of the Dy-O band ($\nu_{1,\text{Dy-O}}$) decreases (Figs. 6
392 and 7B-F). Above 100 °C, the 370 cm⁻¹ (L-1) peak occurring in pure water and NaCl-bearing
393 solutions need to be subtracted from the Dy-O band area to distinguish the Dy-O peaks (Table 4;
394 ESI Table S5). The Dy-O band becomes indistinguishable from the librational band of water at
395 370 cm⁻¹ above 150 °C for the 0.14 mol/kg DyCl₃ solution, and above 200 °C for the 0.27
396 mol/kg DyCl₃ solution (Fig. 6A, B). The Dy-O band shifts systematically from 378 cm⁻¹ at
397 ambient temperature to 365 cm⁻¹ at 300 °C for the 1.8 mol/kg DyCl₃ spectra (Table 4). The Dy-
398 Cl band ($\nu_{\text{Dy-Cl}}$) near 240 cm⁻¹ is measurable in the 0.59 to 1.8 mol/kg DyCl₃ solutions at 100 °C,

399 however, the Dy-Cl band in the 0.14 and 0.27 mol/kg DyCl_3 solutions is indistinguishable from
400 noise observed in the background spectra at 100 °C. The Dy-Cl band becomes measurable in all
401 DyCl_3 solutions above 150 °C and its intensity increases systematically with increasing
402 temperature (Fig. 6B-F).

403 The Dy-Cl band position measured in this study is consistent with Rudolph and Irmer^{19–}
404²³ who report a chloride band at 228 cm^{-1} for $[\text{La}(\text{H}_2\text{O})_{9-n}\text{Cl}_n]^{3-n}$, 245 cm^{-1} for $[\text{Ce}(\text{H}_2\text{O})_{9-n}\text{Cl}_n]^{3-n}$,
405 248 cm^{-1} for $[\text{Y}(\text{H}_2\text{O})_{8-n}\text{Cl}_n]^{3-n}$, 254 cm^{-1} for $[\text{Lu}(\text{H}_2\text{O})_{8-n}\text{Cl}_n]^{3-n}$, and 256 for $[\text{Yb}(\text{H}_2\text{O})_{8-n}\text{Cl}_n]^{3-n}$,
406 with $n = 1$ or 2. Conversely, Ghosh et al.⁴¹ attributes the band measured at 239 cm^{-1} in a 0.17 M
407 DyCl_3 solution to intermolecular H-bond stretching band, which is shifted to lower wavelengths
408 due to the presence of a Dy^{3+} ion at ambient temperature. However, based on the reference Dy
409 solids measured in this study (Fig. 2) we interpret the peak measured at 240 cm^{-1} (Fig. 5) to
410 represent the Dy-Cl stretching mode and attribute the bands at 363–384 cm^{-1} to represent the
411 hydrated Dy^{3+} aqua ion in accordance with Rudolph and Irmer^{19–23}. Persaud et al.²⁴, used two
412 Gaussian sub-peaks to fit the broad band at ~230 cm^{-1} in their La chloride solutions to estimate
413 two La chloride species. In this study one Gaussian peak was used to fit the Dy-Cl band (ESI
414 Fig. S1C, D) because a single peak provides a better overall fit to the Dy-Cl peak shape;
415 therefore we do not distinguish two chloride species.

416 Examination of the Dy-O ($A_{\text{Dy-O,corr}}$; corrected for the area contribution of L-1) and Dy-Cl
417 ($A_{\text{Dy-Cl}}$) peak areas (Table 4, ESI Table S5) show that peak intensity appears to increase near
418 linearly with increasing dissolved DyCl_3 concentrations at all temperatures (Fig. 7A, C).
419 However, closer examination shows that the slope of $A_{\text{Dy-O,corr}}$ decreases and the slope of $A_{\text{Dy-Cl}}$
420 increases with increasing DyCl_3 concentration and temperature, indicating a higher affinity to
421 form Dy chloride complexes in the more concentrated solutions^{19–23}. The Dy-O band becomes

422 indistinguishable from background at concentrations below 0.59 mol/kg DyCl₃ at a temperature
423 of 250 °C and above (Fig. 7A). Conversely, the Dy-Cl band only becomes quantifiable at a
424 temperature above 100 °C (Fig. 7B). This behavior is interpreted to indicate increased formation
425 of Dy chloride complexes. With increasing temperature, the Dy-O peaks decrease with near
426 linear slopes, whereas the Dy-Cl peaks increase exponentially (Fig. 7B,D).

427

428 *Dy speciation as a function of temperature and chlorinity*

429 Speciation of Dy in the experimental fluids was simulated using the GEM-Selektor code package
430 ^{56,57,60,61} and the MINES thermodynamic database ⁵⁸. The thermodynamic data for the aqueous
431 species in the Dy-Cl-O-H system is summarized in ESI Table S6. The TSolMod library ¹⁰⁹ was
432 used for all activity and equation of state calculations and the revised HKF equation-of-state ¹¹⁰⁻
433 ¹¹³ was used to calculate the thermodynamic properties of aqueous species at elevated
434 temperature (for more details see ESI).

435 Four experimental solutions with DyCl₃ concentrations of 0.14, 0.27, 0.59, and 1.8
436 mol/kg and an acidic starting pH of 2 were simulated at temperatures between 25 and 300 °C
437 (Fig. 8). At the lowest DyCl₃ concentration, Dy speciation is dominated by the Dy³⁺ ion at low
438 temperature and Dy chloride species at temperatures above 200 °C (Fig 8A). The Dy chloride
439 species become more stable with increasing dissolved DyCl₃ concentrations and dominate Dy
440 speciation above 195 °C in 0.27 mol/kg DyCl₃, 175 °C in 0.59 mol/kg DyCl₃, and 25 °C in 1.8
441 mol/kg DyCl₃ solutions (Fig. 8B, C, D).

442 At ambient temperature, Dy chloride species could not be identified using *in situ* Raman
443 spectroscopy due to the overlap of the translational water region with the Dy-Cl peak. The Dy³⁺
444 aqua ion is identified in all experimental solutions at ambient temperature (Fig. 6A), which is

445 consistent with thermodynamic simulations indicating that Dy^{3+} contributes nearly 50 mol% to
446 the total dissolved Dy concentration in the 1.8 mol/kg $DyCl_3$ solution and more than 75 mol% in
447 the less concentrated $DyCl_3$ solutions (Fig. 8). The peak center position of the Dy-O band shifts
448 to lower wavenumbers with increasing dissolved $REECl_3$ concentrations at ambient temperature
449 (Fig. 9). This shift indicates that Cl^- affects the Dy^{3+} hydration shells^{19,22} (Fig. 9). The effect of
450 Cl^- on inner and outer hydration shells cannot be simulated using the thermodynamic equilibrium
451 approach presented in Figure 8, which is limited to Dy chloride species based on thermodynamic
452 data available in the literature; the chloride species are generally modeled as stable inner sphere
453 chloride complexes in macroscopic thermodynamics vs. molecular models.

454 Comparison of molar ratios ($M_{DyCl_{total}}/M_{Dy^{3+}}$) from thermodynamic calculations to
455 measured peak area ratios (A_{Dy-Cl}/A_{Dy-O}) from *in situ* Raman spectroscopy (Fig. 10) provides a
456 qualitative measure of the accuracy of thermodynamic predictions. Importantly, the scattering
457 coefficients for Dy chloride and Dy^{3+} species are unknown as is their behavior with increasing
458 temperature. If they are assumed to be similar, then area ratios can be directly compared to molar
459 ratios from simulations. However, the peak areas of Dy-Cl increase exponentially and Dy-O
460 decrease linearly with increasing temperature, indicating that the scattering coefficients are likely
461 temperature-dependent and different for Dy^{3+} and Dy chloride species. Determination of
462 scattering coefficients from Raman spectra requires internal calibration using solutions having
463 only one REE complex present as shown in previous studies^{22,24}.

464 *In situ* Raman spectroscopy indicates that the Dy chloride species become dominant
465 above 200 °C in all experimental solutions, which is in agreement with thermodynamic
466 predictions for the $DyCl_3$ -bearing solutions with lowest $DyCl_3$ concentration (0.14 mol/kg
467 $DyCl_3$), whereas the model starts to deviate in more concentrated solutions (Fig. 10). The

468 increased DyCl_3 content of the solutions shifts the Dy chloride predominance field to lower
469 temperature. However, the Dy^{3+} aqua ion is more stable than the Dy chloride species below 200
470 °C. The greater stability of REE^{3+} relative to REE chloride species at low temperature is
471 consistent with other *in situ* Raman spectroscopy studies^{22,24}.

472

473 **Conclusions**

474 The speciation of Dy^{3+} aqua ion and Dy chloride complexes were measured *in situ* at elevated
475 temperature 20–300 °C and a range of dissolved DyCl_3 concentrations providing new insights
476 into the speciation dominance fields at hydrothermal conditions. Peak center positions for Dy-O
477 ($\nu_{1,\text{Dy-O}}$) Raman modes were identified at 365–384 cm⁻¹ and for Dy-Cl ($\nu_{\text{Dy-Cl}}$) near 240 cm⁻¹ in
478 aqueous solutions corresponding to the hydrated Dy^{3+} aqua ion, i.e., $[\text{Dy}(\text{H}_2\text{O})_8]^{3+}_{(\text{aq})}$ and the Dy
479 chloride complexes, respectively. A systematic decrease in wavenumber of the Dy-O peak with
480 increasing DyCl_3 concentrations at ambient temperature indicates the replacement of water with
481 Cl⁻ ions in the hydration shells of the Dy^{3+} aqua ion. A separate peak for the Dy-Cl bond appears
482 as a shoulder on the translational mode of water at ambient temperatures, as a discrete peak at
483 100 °C that becomes the major peak above 200 °C, indicating the presence and subsequent
484 dominance of inner sphere Dy chloride complexes in aqueous solutions with increasing
485 temperature.

486 Comparison of the relative abundance of *in situ* measured Dy^{3+} aqua ion and Dy chloride
487 species using the ratio of $A_{\text{Dy-O}}/A_{\text{Dy-Cl}}$ to predicted ratios of molar concentrations
488 ($M_{\text{Dy}^{3+}}/M_{\text{DyCl,tot}}$) indicate that the available thermodynamic models overestimate the stability of
489 Dy chloride complexes at low temperature and high salinities (Fig. 10). Above 200 °C,

490 thermodynamic predictions are in accordance with the Raman experiments and indicate that Dy
491 chloride complexes are the primary Dy species in acidic chloride bearing aqueous fluids.

492 These findings indicate the need for further research to improve the thermodynamic
493 properties of Dy chloride species and the Dy³⁺ aqua ion in acidic Cl-bearing hydrothermal fluids.
494 This study provides a benchmark for expanding the use of *in situ* Raman spectroscopy applied to
495 REE speciation in aqueous solutions to hydrothermal conditions. Importantly, the change in
496 species dominance between the Dy³⁺ aqua ion and Dy chloride species could be quantified
497 experimentally in acidic solutions as a function of temperature, providing new insights that were
498 not possible to obtain using other experimental techniques.

499

500 **Acknowledgments**

501 The experimental research was supported by the U.S. Department of Energy, Office of Science,
502 Office of Basic Energy Sciences, Geosciences program under Award DE-SC0022269 to AG and
503 NH. The Raman Spectrometer was purchased with NSF grant EAR-MRI-2117061 to NH and
504 AG. The authors would like to thank New Mexico Tech colleagues Bonnie Frey and Hannah
505 Han for their assistance with ICP-OES analyses and Bryan Maciag for interesting discussions
506 about method development. We are grateful to two anonymous reviewers for their constructive
507 reviews. We also thank Dr. Vadapalli Chandrasekhar for the editorial handling.

508

509 **Author Contributions**

510 SS – Writing, Original draft, Methodology, Formal analysis, Validation, Investigation,
511 Conceptualization, Data curation. AG and NH – Conceptualization, Funding acquisition,

512 Supervision, Resources, Writing, Review and Editing, Validation, Investigation, Data Curation,
513 Methodology.

514

515 **Conflicts of interest**

516 There are no conflicts to declare.

517

518 **References**

- 1 N. G. Connelly, Royal Society of Chemistry (Great Britain), and International Union of Pure and Applied Chemistry, Eds., *Nomenclature of inorganic chemistry. IUPAC recommendations 2005*, Royal Society of Chemistry Publishing/IUPAC, Cambridge, UK, 2005.
- 2 B. Zhou, Z. Li and C. Chen, *Minerals*, 2017, **7**, 203.
- 3 B. J. Smith and R. G. Eggert, *Environ. Sci. Technol.*, 2018, **52**, 3803–3811.
- 4 B. Smith, M. Riddle, M. Earlam, C. Illoeje and D. Diamond, *Rare Earth Permanent Magnets: Supply Chain Deep Dive Assessment*, 2022.
- 5 Y. Liang, R. Kleijn, A. Tukker and E. Van Der Voet, *Renew. Sustain. Energy Rev.*, 2022, **161**, 112334.
- 6 U.S. Department of Energy, Notice of Final Determination on 2023 DOE Critical Materials List, (accessed July 1, 2024).
- 7 A. Migdisov, A. E. Williams-Jones, J. Brugger and F. A. Caporuscio, *Chem. Geol.*, 2016, **439**, 13–42.
- 8 A. P. Gysi, A. E. Williams-Jones and P. Collins, *Econ. Geol.*, 2016, **111**, 1241–1276.
- 9 A. K. Patel, D. Upadhyay, B. Mishra and K. L. Pruseth, *Lithos*, 2023, **444–445**, 107097.
- 10 G. Das, M. M. Lencka, A. Eslamimanesh, A. Anderko and R. E. Rimani, *Fluid Phase Equilibria*, 2017, **452**, 16–57.
- 11 Art. A. Migdisov, A. E. Williams-Jones and T. Wagner, *Geochim. Cosmochim. Acta*, 2009, **73**, 7087–7109.
- 12 C. H. Gammons, S. A. Wood and A. E. Williams-Jones, *Geochim. Cosmochim. Acta*, 1996, **60**, 4615–4630.
- 13 A. A. Migdisov and A. E. Williams-Jones, *Geochim. Cosmochim. Acta*, 2002, **66**, 4311–4323.
- 14 Art. A. Migdisov and A. E. Williams-Jones, *Chem. Geol.*, 2006, **234**, 17–27.
- 15 Art. A. Migdisov, A. E. Williams-Jones, C. Normand and S. A. Wood, *Geochim. Cosmochim. Acta*, 2008, **72**, 1611–1625.

- 16 S. A. Stepanchikova and G. R. Kolonin, *Russ. J. Coord. Chem.*, 2005, **31**, 193–202.
- 17 T. Kimura and Y. Kato, *J. Alloys Compd.*, 1998, **278**, 92–97.
- 18 T. Kimura and Y. Kato, *J. Alloys Compd.*, 1998, **271–273**, 867–871.
- 19 W. W. Rudolph and G. Irmer, *Dalton Trans.*, 2015, **44**, 18492–18505.
- 20 W. W. Rudolph and G. Irmer, *Dalton Trans.*, 2015, **44**, 295–305.
- 21 W. W. Rudolph and G. Irmer, *Dalton Trans.*, 2017, **46**, 4235–4244.
- 22 W. Rudolph and G. Irmer, *Molecules*, 2019, **24**, 1953.
- 23 W. Rudolph and G. Irmer, *Molecules*, 2018, **23**, 3237.
- 24 A. A. Persaud, S. Sasidharanpillai, J. S. Cox and P. R. Tremaine, *Can. J. Chem.*, 2024, cjc-2024-0074.
- 25 R. A. Mayanovic, S. Jayanetti, A. J. Anderson, W. A. Bassett and I.-M. Chou, *J. Phys. Chem. A*, 2002, **106**, 6591–6599.
- 26 R. A. Mayanovic, A. J. Anderson, W. A. Bassett and I.-M. Chou, *Chem. Geol.*, 2009, **259**, 30–38.
- 27 M. Louvel, A. Bordage, D. Testemale, L. Zhou and J. Mavrogenes, *Chem. Geol.*, 2015, **417**, 228–237.
- 28 R. A. Mayanovic, A. J. Anderson, W. A. Bassett and I.-M. Chou, *Chem. Geol.*, 2007, **239**, 266–283.
- 29 R. A. Mayanovic, A. J. Anderson, W. A. Bassett and I.-M. Chou, *Am. Mineral.*, 2009, **94**, 1487–1490.
- 30 Q. Guan, Y. Mei, B. Etschmann, M. Louvel, D. Testemale, R. Spezia and J. Brugger, *Geochim. Cosmochim. Acta*, 2022, **330**, 27–46.
- 31 W. Liu, B. Etschmann, A. Migdisov, H. Boukhalfa, D. Testemale, H. Müller, J.-L. Hazemann and J. Brugger, *Chem. Geol.*, 2017, **459**, 61–74.
- 32 H. J. Han and A. P. Gysi, *Dalton Trans.*, 2024, **53**, 13129–13141.
- 33 Q. Guan, Y. Mei, B. Etschmann, D. Testemale, M. Louvel and J. Brugger, *Geochim. Cosmochim. Acta*, 2020, **281**, 168–189.
- 34 A. J. Anderson, S. Jayanetti, R. A. Mayanovic, W. A. Bassett and I.-M. Chou, *Am. Mineral.*, 2002, **87**, 262–278.
- 35 R. A. Mayanovic, A. J. Anderson, W. A. Bassett and I.-M. Chou, *Rev. Sci. Instrum.*, 2007, **78**, 053904.
- 36 P. Lindqvist-Reis, R. Klenze, G. Schubert and T. Fanghänel, *J. Phys. Chem. B*, 2005, **109**, 3077–3083.
- 37 C. Koke, A. Skerencak-Frech and P. J. Panak, *J. Chem. Thermodyn.*, 2019, **131**, 219–224.
- 38 G. E. Walrafen, *J. Chem. Phys.*, 1966, **44**, 1546–1558.
- 39 G. E. Walrafen, Y. C. Chu and G. J. Piermarini, *J. Phys. Chem.*, 1996, **100**, 10363–10372.
- 40 Y. Marcus, *J. Solut. Chem.*, 2009, **38**, 513–516.
- 41 N. Ghosh, A. Bandyopadhyay, S. Roy, G. Saha and J. A. Mondal, *J. Mol. Liq.*, 2023, **389**, 122927.

42 C. Schmidt and T. M. Seward, *Chem. Geol.*, 2017, **467**, 64–75.

43 W. W. Rudolph, G. Irmer and E. Königsberger, *Dalton Trans.*, 2008, 900–908.

44 Y. Wan, X. Wang, I.-M. Chou and X. Li, *Earth Planet. Sci. Lett.*, 2021, **569**, 117068.

45 H. Kanno, *J. Phys. Chem.*, 1988, **92**, 4232–4236.

46 W. W. Rudolph and G. Irmer, *J. Solut. Chem.*, 2020, **49**, 316–331.

47 L. M. S. G. A. Applegarth, C. Alcorn, K. Bissonette, J. Noël and P. R. Tremaine, *Appl. Spectrosc.*, 2015, **69**, 972–983.

48 I.-M. Chou, R. C. Burruss and W. Lu, in *Advances in High-Pressure Technology for Geophysical Applications*, Elsevier, 2005, pp. 475–485.

49 X. Wang, I.-M. Chou, W. Hu, R. C. Burruss, Q. Sun and Y. Song, *Geochim. Cosmochim. Acta*, 2011, **75**, 4080–4093.

50 M. Louvel, A. Bordage, C. Da Silva-Cadoux, D. Testemale, E. Lahera, W. Del Net, O. Geaymond, J. Dubessy, R. Argoud and J.-L. Hazemann, *J. Mol. Liq.*, 2015, **205**, 54–60.

51 S. Sasidharanpillai, H. Arcis, L. Trevani and P. R. Tremaine, *J. Phys. Chem. B*, 2019, **123**, 5147–5159.

52 J. Conrad and P. R. Tremaine, *Phys. Chem. Chem. Phys.*, 2021, **23**, 10670–10685.

53 S. Sasidharanpillai, J. S. Cox, C. C. Pye and P. R. Tremaine, *Dalton Trans.*, 2023, **52**, 18391–18406.

54 K. Mibe, I. Chou and W. A. Bassett, *J. Geophys. Res. Solid Earth*, 2008, **113**, 2007JB005179.

55 C. Schmidt and A. Watenphul, *Geochim. Cosmochim. Acta*, 2010, **74**, 6852–6866.

56 D. A. Kulik, T. Wagner, S. V. Dmytrieva, G. Kosakowski, F. F. Hingerl, K. V. Chudnenko and U. R. Berner, *Comput. Geosci.*, 2013, **17**, 1–24.

57 G. D. Miron, D. A. Kulik, S. V. Dmytrieva and T. Wagner, *Appl. Geochem.*, 2015, **55**, 28–45.

58 A. P. Gysi, N. C. Hurtig, R. Pan, G. D. Miron and D. A. Kulik, 2023.

59 I. I. Diakonov, B. R. Tagirov and K. V. Ragnarsdottir, *ract*, 1998, **81**, 107–116.

60 I. K. Karpov, K. V. Chudnenko, D. A. Kulik, O. V. Avchenko and V. A. Bychinskii, *Geochem. Int.*, 2001, **39**, 1108–1119.

61 I. K. Karpov, *Am. J. Sci.*, 2002, **302**, 281–311.

62 S. E. Smith-Schmitz and A. P. Gysi, *Chem. Geol.*, 2025, **674**, 122576.

63 G. W. Beall, W. O. Milligan and H. A. Wolcott, *J. Inorg. Nucl. Chem.*, 1977, **39**, 65–70.

64 M. Wojdyr, *J. Appl. Crystallogr.*, 2010, **43**, 1126–1128.

65 M. H. Brooker, O. F. Nielsen and E. Praestgaard, *J. Raman Spectrosc.*, 1988, **19**, 71–78.

66 M. Steele-MacInnis and C. Schmidt, *Geochim. Cosmochim. Acta*, 2014, **136**, 126–141.

67 W. W. Rudolph and G. Irmer, *Appl. Spectrosc.*, 2007, **61**, 1312–1327.

68 J. Kestin, J. V. Sengers, B. Kamgar-Parsi and J. M. H. L. Sengers, *J. Phys. Chem. Ref. Data*, 1984, **13**, 175–183.

69 W. B. White and V. G. Keramidas, *Spectrochim. Acta Part Mol. Spectrosc.*, 1972, **28**, 501–509.

70 S. C. Atkinson, PhD, University of Salford, 2013.

71 J. B. Gruber, R. D. Chirico and E. F. Westrum, *J. Chem. Phys.*, 1982, **76**, 4600–4605.

72 Y. Repelin, C. Proust, E. Husson and J. M. Beny, *J. Solid State Chem.*, 1995, **118**, 163–169.

73 J.-C. Panitz, J.-C. Mayor, B. Grob and W. Durisch, *J. Alloys Compd.*, 2000, **303–304**, 340–344.

74 A. Ubaldini and M. M. Carnasciali, *J. Alloys Compd.*, 2008, **454**, 374–378.

75 M. V. Abrashev, N. D. Todorov and J. Geshev, *J. Appl. Phys.*, 2014, **116**, 103508.

76 L. A. Tucker, F. J. Carney, P. McMillan, S. H. Lin and L. Eyring, *Appl. Spectrosc.*, 1984, **38**, 857–860.

77 N. Dilawar, S. Mehrotra, D. Varandani, B. V. Kumaraswamy, S. K. Haldar and A. K. Bandyopadhyay, *Mater. Charact.*, 2008, **59**, 462–467.

78 X. Fu, Y. Xu and J. Zhou, *J. Mater. Sci.*, 2012, **47**, 1697–1701.

79 J. Yu, L. Cui, H. He, S. Yan, Y. Hu and H. Wu, *J. Rare Earths*, 2014, **32**, 1–4.

80 N. C. Hurtig, A. P. Gysi, S. E. Smith-Schmitz and D. Harlov, *Dalton Trans.*, 2024.

81 G. Schaack and J. A. Koningstein, *J. Opt. Soc. Am.*, 1970, **60**, 1110.

82 K. Ahrens, H. Gerlinger, H. Lichtblau, G. Schaack, G. Abstreiter and S. Mroczkowski, *J. Phys. C Solid State Phys.*, 1980, **13**, 4545–4564.

83 S. Liu, Y. Liu, Q. Mu, F. Zhang, H. Li and Y. Wang, *Appl. Phys. A*, 2013, **111**, 1229–1240.

84 Q. G. Zeng, Z. J. Ding, Z. M. Zhang and Y. Q. Sheng, *J. Phys. Chem. C*, 2010, **114**, 4895–4900.

85 S. R. Sanivarapu, J. B. Lawrence and G. Sreedhar, *ACS Omega*, 2018, **3**, 6267–6278.

86 D. H. Templeton and G. F. Carter, *J. Phys. Chem.*, 1954, **58**, 940–944.

87 G. N. Papatheodorou, *J. Chem. Phys.*, 1977, **66**, 2893–2900.

88 A. Chrissanthopoulos and G. N. Papatheodorou, *J. Mol. Struct.*, 2008, **892**, 93–102.

89 I. D. Zakiryanova, V. A. Khokhlov, A. B. Salyulev and I. V. Korzun, *Z. Für Naturforschung A*, 2015, **70**, 153–157.

90 G. Oczko and L. Macalik, *Polyhedron*, 2010, **29**, 1231–1236.

91 G. Oczko, L. Macalik, J. Legendziewicz and J. Hanuza, *J. Alloys Compd.*, 2004, **380**, 327–336.

92 G. E. Walrafen, *J. Chem. Phys.*, 1967, **47**, 114–126.

93 Q. Sun, *Vib. Spectrosc.*, 2009, **51**, 213–217.

94 M. Galvin and D. Zerulla, *ChemPhysChem*, 2011, **12**, 913–914.

95 T. Seki, K.-Y. Chiang, C.-C. Yu, X. Yu, M. Okuno, J. Hunger, Y. Nagata and M. Bonn, *J. Phys. Chem. Lett.*, 2020, **11**, 8459–8469.

96 G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi and W.-H. Yang, *J. Chem. Phys.*, 1986, **85**, 6970–6982.

97 D. M. Carey and G. M. Korenowski, *J. Chem. Phys.*, 1998, **108**, 2669–2675.

98 W. F. Murphy and H. J. Bernstein, *J. Phys. Chem.*, 1972, **76**, 1147–1152.

99 Q. Hu, X. Lü, W. Lu, Y. Chen and H. Liu, *J. Mol. Spectrosc.*, 2013, **292**, 23–27.

100 A. W. Knight, N. G. Kalugin, E. Coker and A. G. Ilgen, *Sci. Rep.*, 2019, **9**, 8246.

101 G. E. Walrafen, W.-H. Yang and Y. C. Chu, *J. Phys. Chem. B*, 1999, **103**, 1332–1338.

102 J. Dubessy, T. Lhomme, M.-C. Boiron and F. Rull, *Appl. Spectrosc.*, 2002, **56**, 99–106.

103 F. Rull, *Pure Appl. Chem.*, 2002, **74**, 1859–1870.

104 Q. Sun, L. Zhao, N. Li and J. Liu, *Chem. Geol.*, 2010, **272**, 55–61.

105 Q. Sun, *Vib. Spectrosc.*, 2012, **62**, 110–114.

106 M. Ahmed, V. Namboodiri, A. K. Singh and J. A. Mondal, *J. Chem. Phys.*, 2014, **141**, 164708.

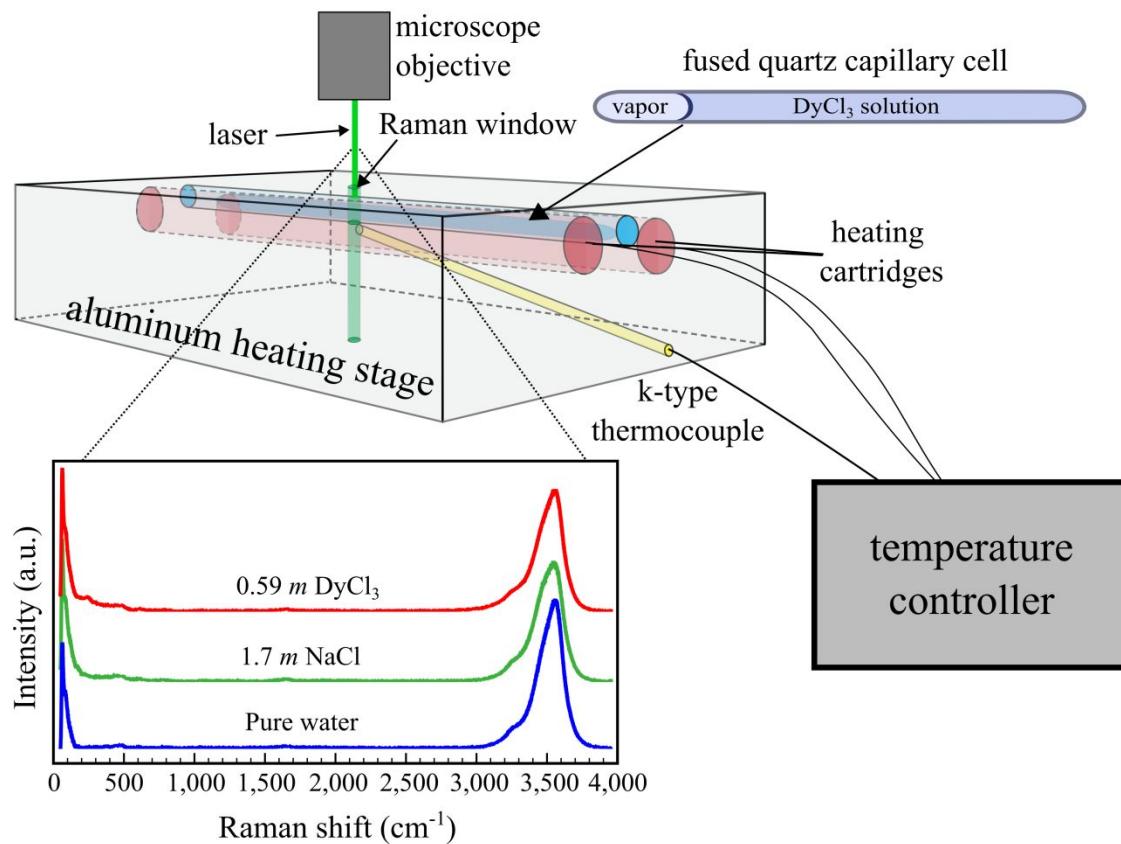
107 X. Wu, W. Lu, W. Ou, M.-C. Caumon and J. Dubessy, *J. Raman Spectrosc.*, 2017, **48**, 314–322.

108 G. D. Miron, T. Wagner, D. A. Kulik and C. A. Heinrich, *Geochim. Cosmochim. Acta*, 2016, **187**, 41–78.

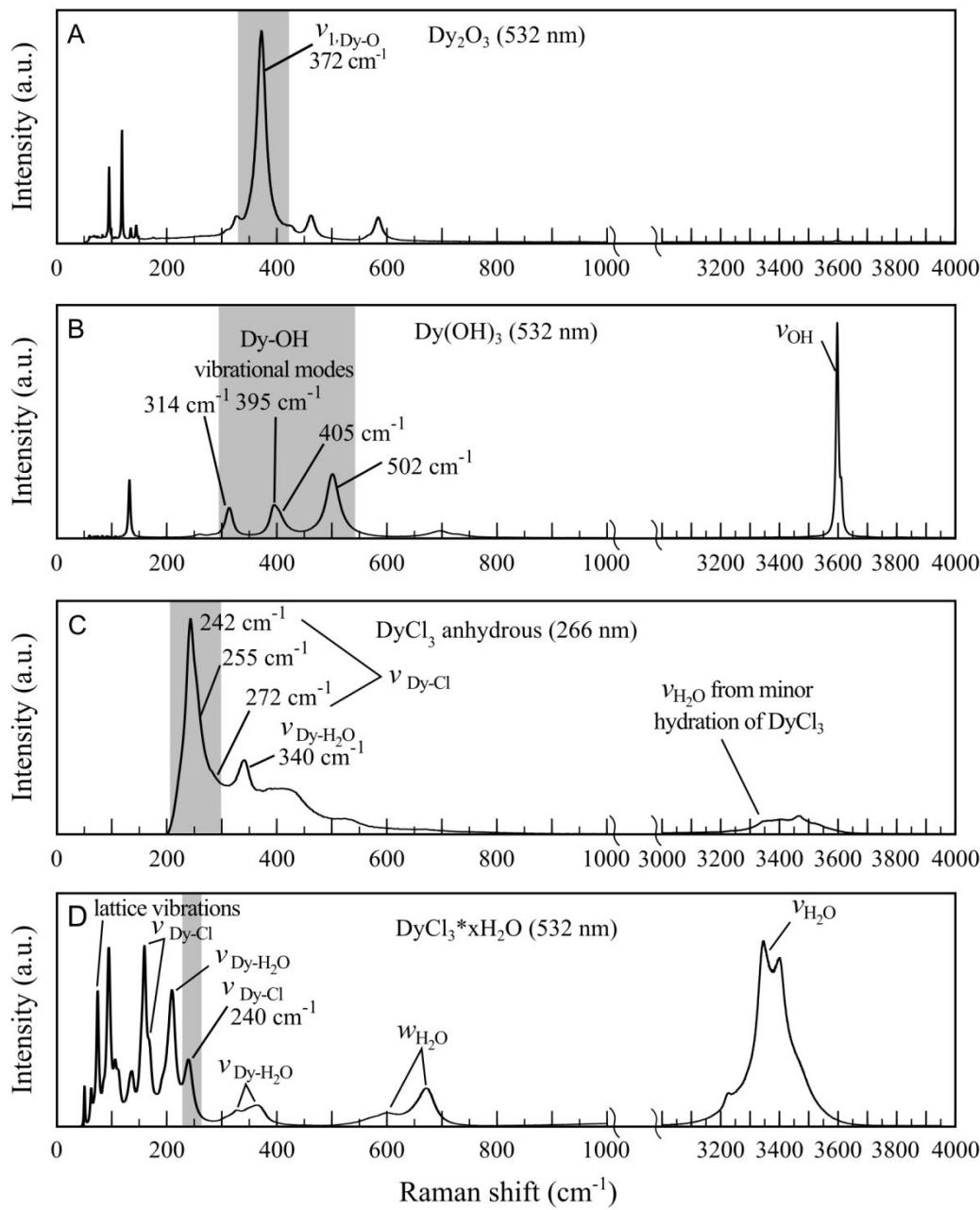
109 T. Wagner, D. A. Kulik, F. F. Hingerl and S. V. Dmytrieva, *Can. Mineral.*, 2012, **50**, 1173–1195.

110 H. C. Helgeson, D. H. Kirkham and G. C. Flowers, *Am. J. Sci.*, 1981, **281**, 1249–1516.

111 E. L. Shock and H. C. Helgeson, *Geochim. Cosmochim. Acta*, 1988, **52**, 2009–2036.

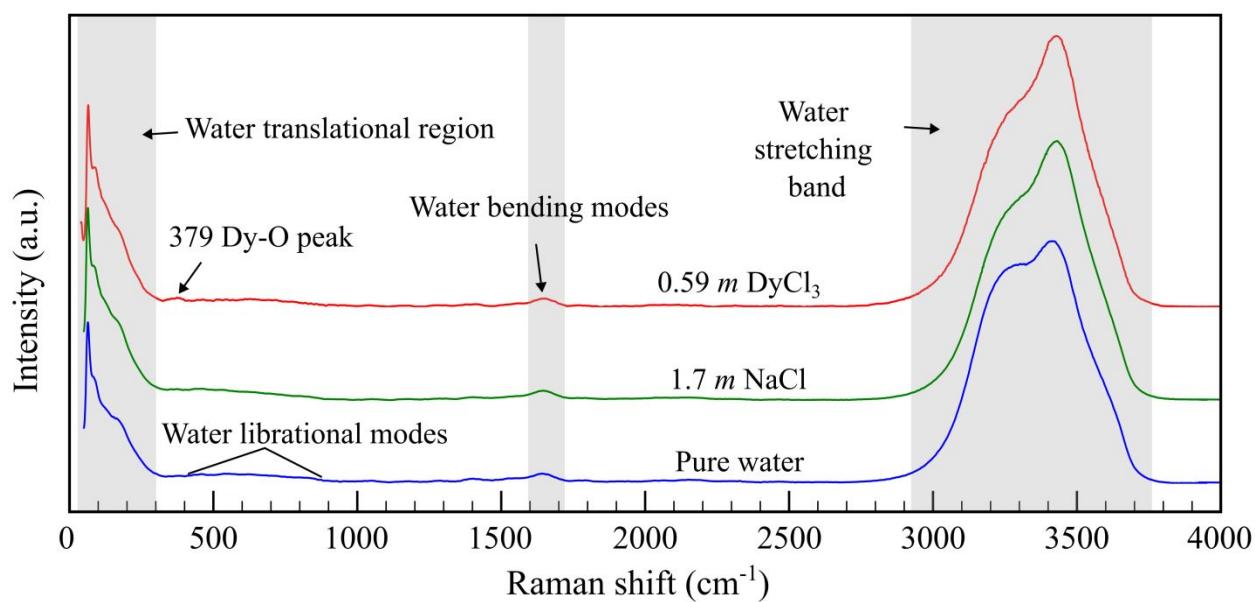

112 J. C. Tanger and H. C. Helgeson, *Am. J. Sci.*, 1988, **288**, 19–98.

113 E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky and H. C. Helgeson, *J. Chem. Soc. Faraday Trans.*, 1992, **88**, 803–826.


114 E. L. Shock, D. C. Sassani, M. Willis and D. A. Sverjensky, *Geochim. Cosmochim. Acta*, 1997, **61**, 907–950.

115 S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy and S. Angaiah, *New J. Chem.*, 2018, **42**, 2923–2932.

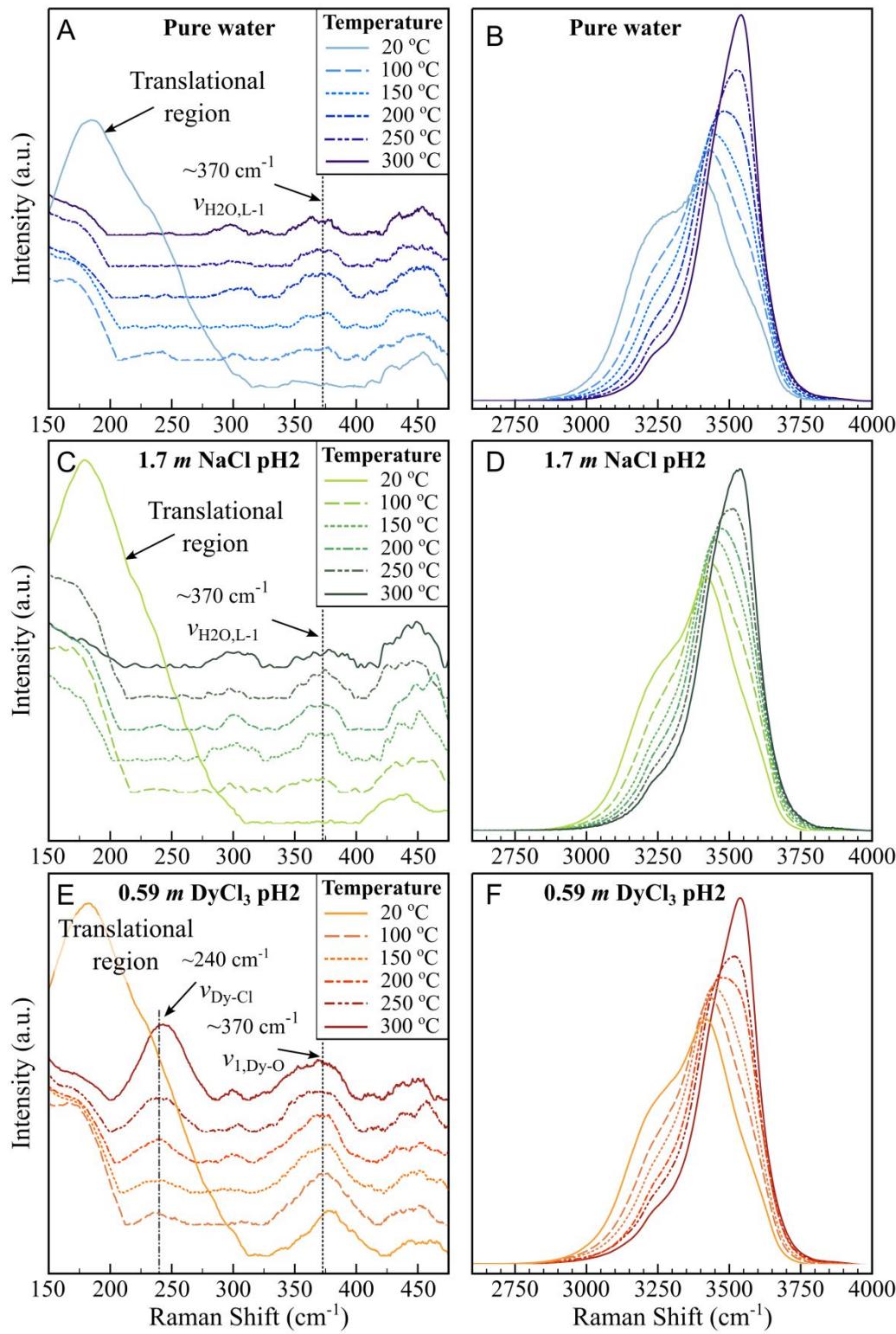
519 **Figures:**


520 **Figure 1:** Schematic diagram of the capillary Raman heating stage used for *in situ* measurement
521 of aqueous Dy speciation at 20–300 °C. The capillary Raman heating stage is made of aluminum
522 and has two 8 mm diameter holes for the heating cartridges, one 4.5 mm hole for the capillary
523 cell and an inclined 2 mm hole for the thermocouple. The capillary cells are made of fused quartz
524 glass and contain an aqueous solution and a vapor bubble. The Raman window crosscuts the cell
525 in the center to allow for Raman analysis of experimental solutions.

526

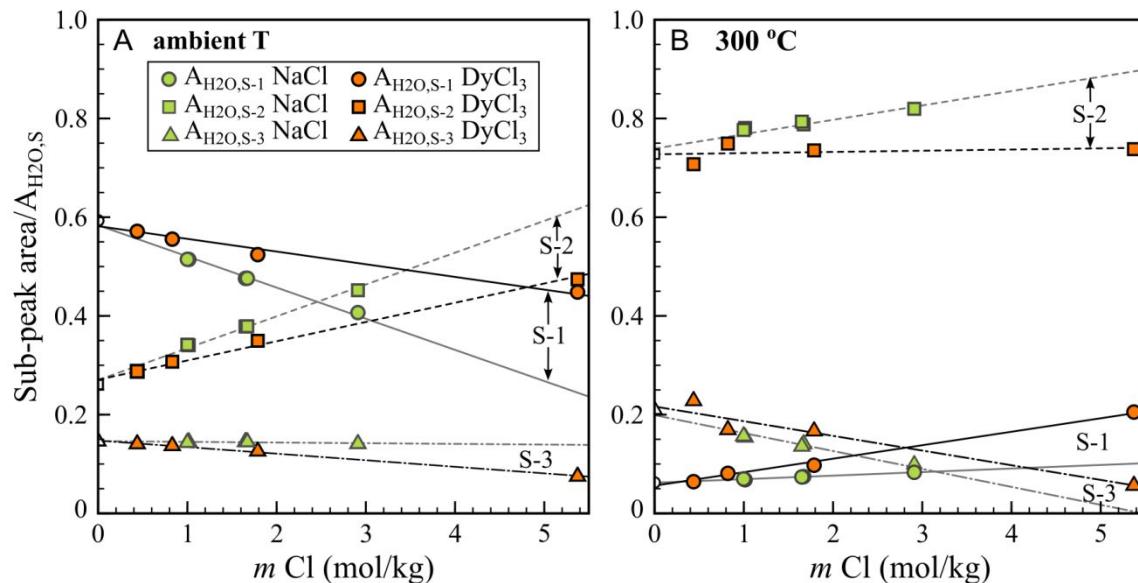
527 **Figure 2:** Raman spectra of reference Dy solids. A) Dy-sesquioxide showing one large peak for
 528 Dy-O at 372 cm^{-1} . B) Dy-hydroxide showing three peaks for Dy-OH at 314 , 395 cm^{-1} with a
 529 shoulder at 405 , and 502 cm^{-1} . C) Anhydrous Dy chloride showing a dominant peak at 242 cm^{-1}
 530 for Dy-Cl bonds. D) Hydrated Dy chloride exhibiting a similar peak at 240 cm^{-1} for Dy-Cl
 531 compared to the anhydrous solid.

532

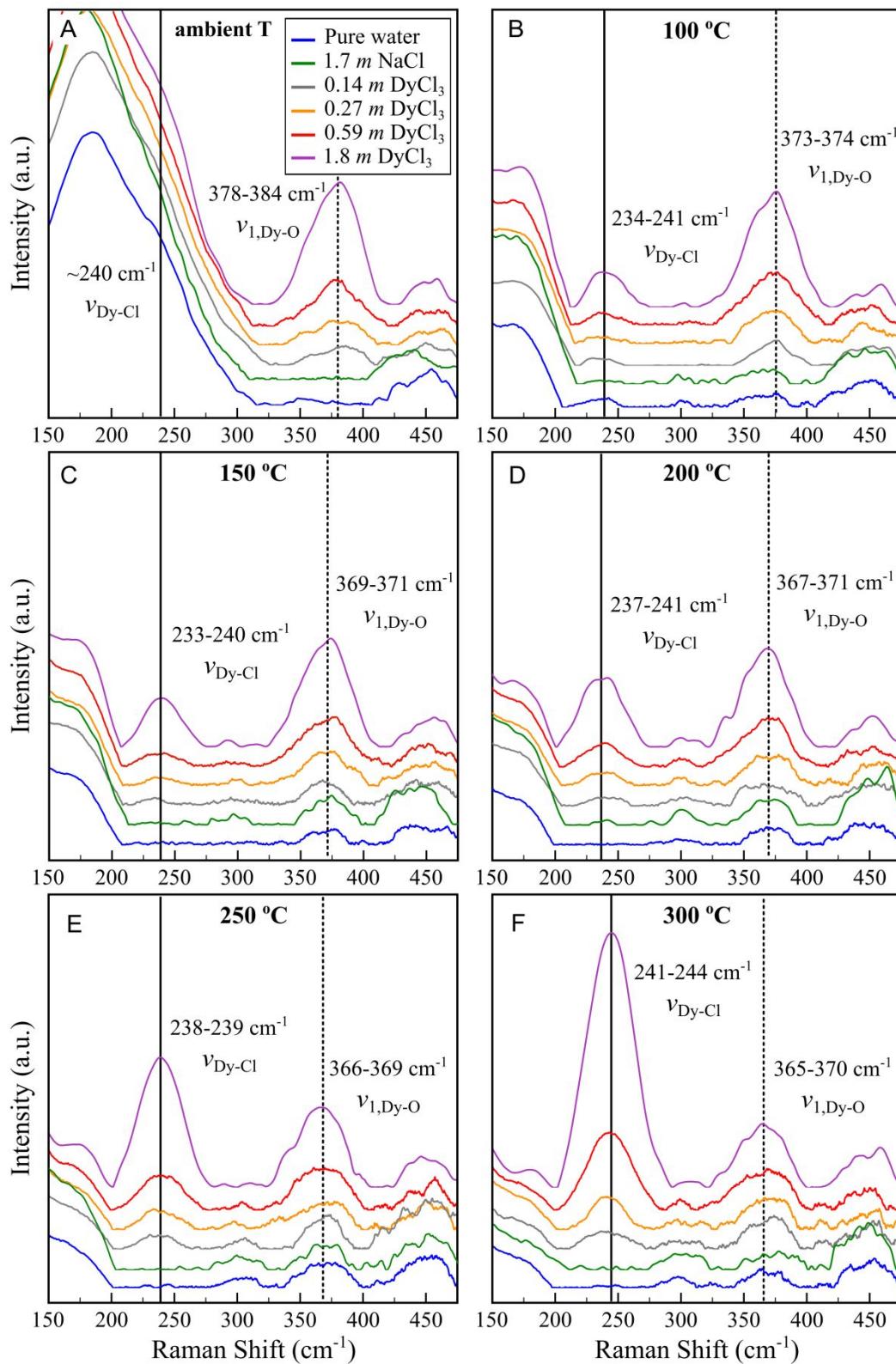


533 **Figure 3:** Raman spectra at ambient temperature for pure water (MilliQ), 1.7 mol/kg NaCl pH 2

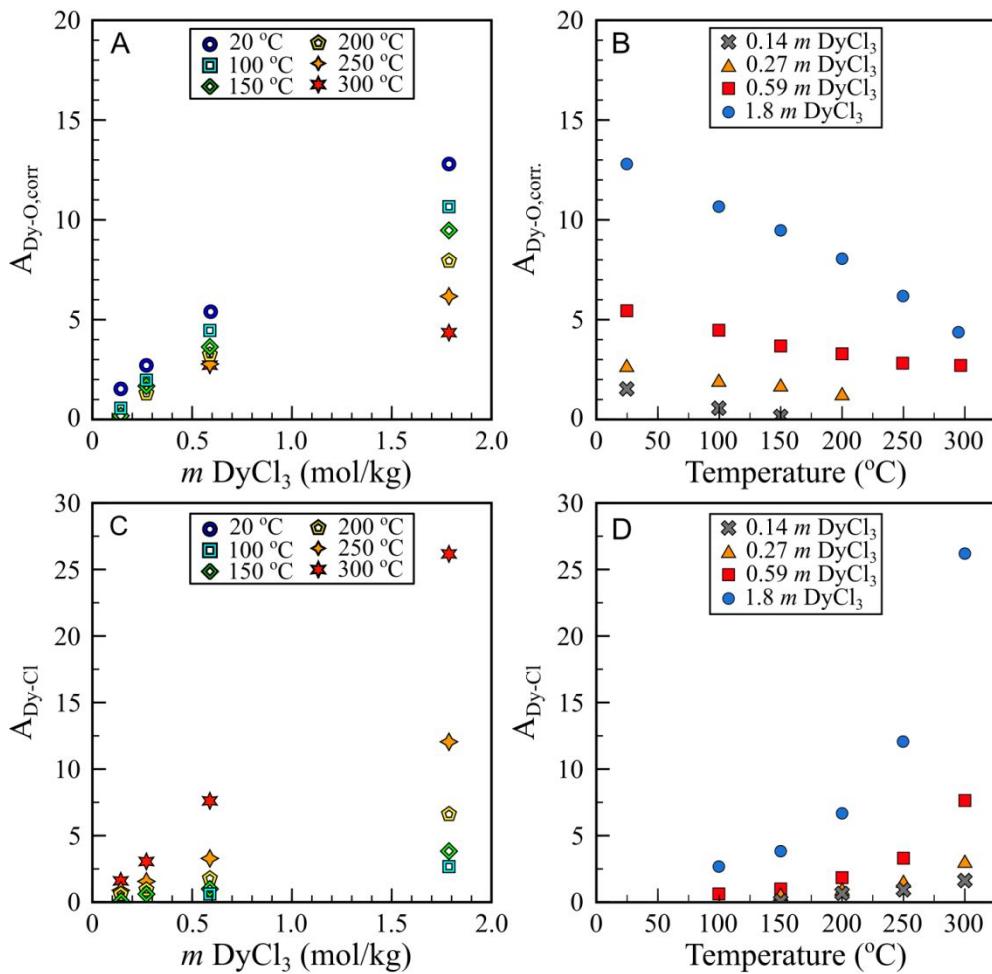
534 solution, and 0.59 mol/kg DyCl₃ pH 2 solution showing the major features of the water band


535 including translational, librational, bending, and stretching modes and the Dy-O band at 379 cm⁻

536 ¹.

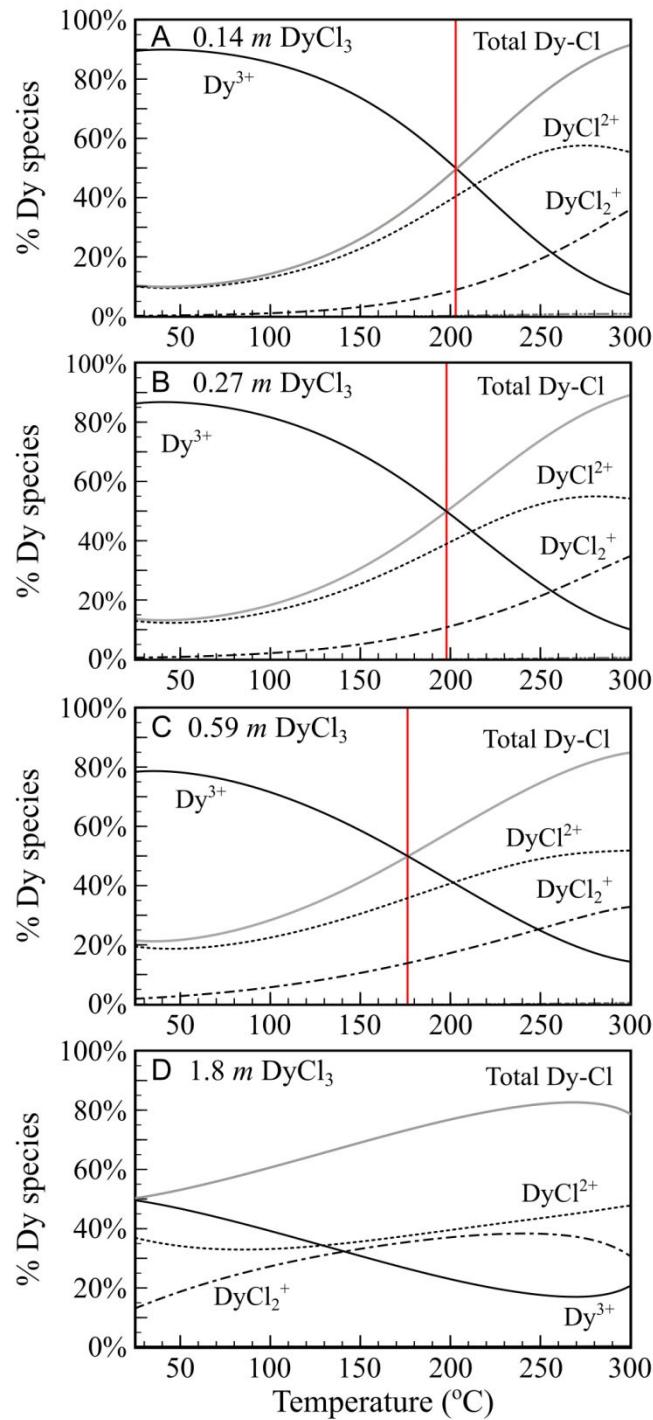

538 **Figure 4:** Corrected Raman spectra of the low-frequency region (A, C, E) and stretching
539 vibrations of water (B, D, F) with increasing temperature from 20–300 °C. In the low-frequency
540 region, the translational water modes decrease in peak intensity and shift to lower wavenumbers
541 with increasing temperature in A) pure water, C) NaCl-bearing and E) DyCl₃-bearing solutions.
542 Librational modes of water appear at 300 and 370 cm⁻¹ with increasing temperature in all
543 solutions, (E) with the mode at 370 cm⁻¹ being overprinted by the larger Dy-O mode in DyCl₃-
544 bearing solutions. The stretching vibrational band of water systematically shifts to higher
545 wavenumbers with increasing temperature (B, D, F).

546


547 **Figure 5:** Systematic trends in the area fraction contributions of the three sub-peaks (S-1 to S-2)
 548 to the total water stretching band as a function of Cl concentration in NaCl-bearing and DyCl₃-
 549 bearing solutions. A) At ambient temperature, in Cl poor solutions sub-peak S-1 dominates the
 550 and decreases with increasing Cl content and becomes equal to sub-peak S-2 above ~3 mol/kg
 551 Cl. Sub-peak 3 S-3 is the smallest peak and only shows minor variation with increasing Cl
 552 content. B) At 300 °C, S-2 is the dominant peak at all Cl concentrations, showing little variation
 553 in DyCl₃-bearing solutions and increases in NaCl-bearing solutions. S-1 and S-3 comprise minor
 554 contributions to the water band, with S-1 increasing and S-3 decreasing with increasing Cl
 555 concentrations.

556

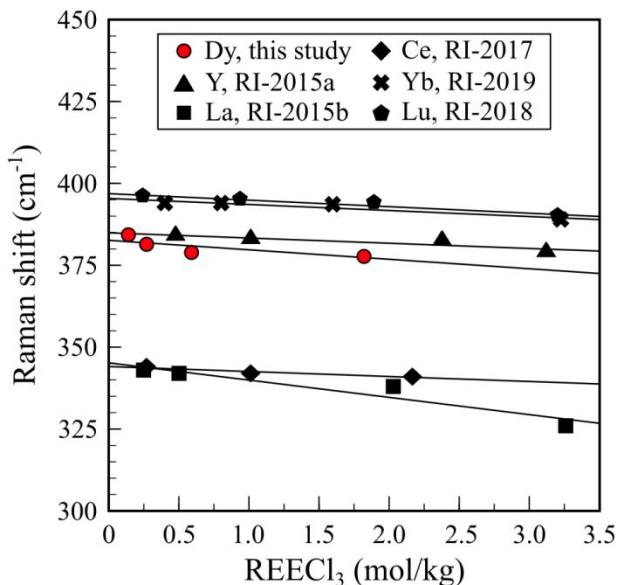
557 **Figure 6:** Raman spectra from 150 to 475 cm^{-1} of pH 2 solutions with increasing dissolved


558 DyCl₃ concentrations, pure water (MilliQ) and the 1.7 mol/kg NaCl background solution at 20–
559 300 °C. A) At ambient temperature the edge of the water translational bands obscures the Dy-Cl
560 vibrational band at 240 cm⁻¹. The Dy-O vibrational band at 378-384 cm⁻¹ increases with
561 increasing DyCl₃ concentrations. With increasing temperature B) 100 °C, C) 150 °C, D) 200 °C,
562 E) 250 °C, F) 300 °C the Dy-O vibrational band (~370 cm⁻¹) decreases and the Dy-Cl vibrational
563 band (~240 cm⁻¹) increases. The spectra are plotted as reduced intensities and are off-set using a
564 constant value for better visualization.

565

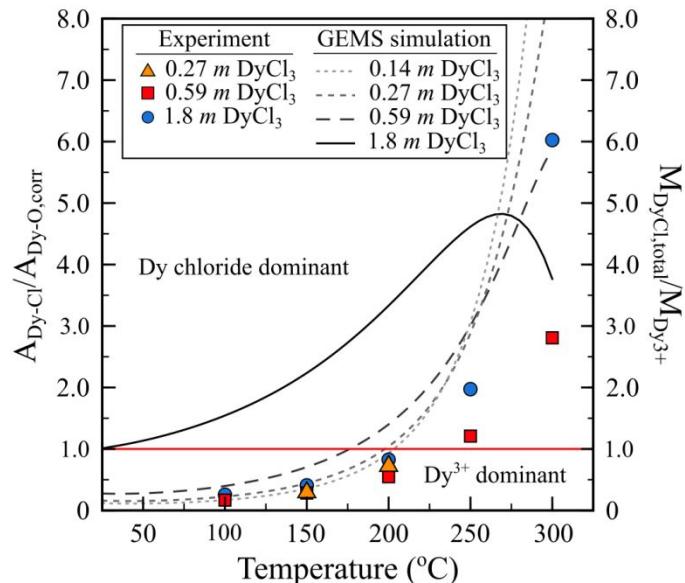
566 **Figure 7:** Peak areas for the reduced and normalized Dy-O and Dy-Cl bands as a function of
 567 total dissolved DyCl_3 and temperature. A) Corrected peak area of the Dy-O band ($A_{\text{Dy-}}$
 568 $\text{O,corr}/A_{\text{H}_2\text{O}}$) for each isotherm as a function of total dissolved DyCl_3 in mol/kg and B) as a
 569 function of temperature. C) Peak area of the Dy-Cl band ($A_{\text{Dy-Cl}}/A_{\text{H}_2\text{O}}$) for each isotherm as a
 570 function of total dissolved DyCl_3 and D) as a function of temperature.

571



572

573 **Figure 8:** Simulated Dy speciation as a function of temperature. A) The 0.14 mol/kg DyCl_3 pH 2574 experimental solution, B) the 0.27 mol/kg DyCl_3 , pH 2 experimental solution, C) the 0.59 mol/kg


575 DyCl₃ pH 2 experimental solution, and D) the 1.8 mol/kg DyCl₃ pH 2 experimental solution. The
576 vertical red lines in A), B), and C) represent the temperatures at which speciation shifts from
577 Dy³⁺ aqua ion dominant to Dy chloride species dominant. Thermodynamic equilibrium
578 calculations were conducted using the GEMS code package and the MINES thermodynamic
579 database. The thermodynamic properties for Dy are from Shock and Helgeson¹¹¹ and Shock et
580 al.⁸⁰ for Dy³⁺, from Migdisov et al.¹¹ for Dy chloride species.

581

582 **Figure 9:** Peak center positions of the REE-O bond ($v_{1,\text{REE-O}}$) shift to lower wavenumbers with
583 increasing dissolved REECl_3 concentration at ambient temperature. Peak center positions of
584 REE-O bonds shift to higher wavenumbers with decreasing ionic radii of the REE^{3+} aqua ion and
585 the systematic trend with increasing DyCl_3 concentrations can be fit to a linear function (solid
586 black lines). References: RI-2015a = Rudolph and Irmer (2015a); RI-2015b = Rudolph and Irmer
587 (2015b); RI-2017 = Rudolph and Irmer (2017); RI-2018 = Rudolph and Irmer (2018); RI =
588 Rudolph and Irmer (2019).

589

590 **Figure 10:** Comparison of the relative abundance of hydrated Dy^{3+} and Dy chloride species in
 591 experimental solutions using the ratio of the peak areas ($A_{\text{Dy-Cl}}/A_{\text{Dy-O,corr}}$) and the simulated mol
 592 ratio ($M_{\text{DyCl},\text{total}}/M_{\text{Dy}^{3+}}$). The red line at $M_{\text{DyCl},\text{total}}/M_{\text{Dy}^{3+}} = 1$ indicates the boundary between Dy^{3+}
 593 dominant and Dy chloride species dominant fields.

594

595

596

597

598

599

600 **Tables:**

601 Table 1: Composition of all experimental solutions.

Solution ID	T °C	pH (25 °C)	HCl mol/L	DyCl ₃ mol/kg	NaCl mol/kg	Cl mol/kg	Cl/Dy
<i>Pure water</i>							
MilliQ	20-300	7.00	-	-	-	-	-
<i>Water-NaCl-HCl</i>							
1 <i>m</i> NaCl-pH2	20-300	2.00	0.01001	-	1.00	1.01	-
1.7 <i>m</i> NaCl-pH2	20-300	2.02 ^a	0.01002	-	1.66	1.67	-
1.7 <i>m</i> NaCl-pH4	20-300	3.99 ^a	0.00012	-	1.65	1.65	-
1 <i>m</i> NaCl-pH5	20-300	5.01	0.00001	-	1.00	1.00	-
3 <i>m</i> NaCl-pH7	20-300	6.93 ^a	-	-	2.91	2.91	-
<i>Water-DyCl₃-HCl</i>							
0.14 <i>m</i> DyCl ₃ -pH2	20-300	2.03	0.01102	0.142	-	0.44	3.08
0.27 <i>m</i> DyCl ₃ -pH2	20-300	2.01	0.01032	0.271	-	0.82	3.04
0.59 <i>m</i> DyCl ₃ -pH2	20-300	2.17 ^a	0.00995	0.593	-	1.79	3.02
1.8 <i>m</i> DyCl ₃ -pH2	20-300	2.27 ^a	0.01102	1.788	-	5.37	3.01

602

603 ^a pH calculated using GEM-Selektor from pH measured in dilute salt free HCl solutions and

604 added salt amount.

605 Table 2: Raman modes of the main vibrational peak centers for Dy-O and Dy-Cl in reference Dy
 606 solids measured using the 532 nm and the 266 nm excitation laser.

Raman modes	Dy ₂ O ₃ cm ⁻¹	Dy ₂ O ₃ cm ⁻¹	Dy(OH) ₃ cm ⁻¹	Dy(OH) ₃ cm ⁻¹	DyCl ₃ cm ⁻¹	DyCl ₃ ·xH ₂ O cm ⁻¹	DyCl ₃ ·xH ₂ O cm ⁻¹
Laser (nm)	532	266	532	266	266	532	266
$\nu_{\text{s}, \text{Dy-Cl}}^{(\text{a})}$						153-159	
$\nu_{\text{as}, \text{Dy-Cl}}^{(\text{a})}$						240	237-269
$\nu_{\text{Dy-Cl}}^{(\text{b})}$					242-272		
$\nu_{\text{Dy-O}}^{(\text{c-e})}$			314-502	311-499			
$\nu_{\text{l,Dy-O}}^{(\text{e-g})}$	372	370					
$\nu_{\text{l,Dy-H}_2\text{O}}^{(\text{a})}$						315-359	314-348
$\nu_{\text{H}_2\text{O}}^{(\text{a})}$						3224-3442	3231-3444
$\nu_{\text{OH}}^{(\text{c-e})}$			3597-3611	3598-3612			

607

608 References: (a) Oczko and Macalik ⁹⁰; (b) Papatheodorou ⁸⁷; (c) Arunachalam et al. ¹¹⁵; (d)
 609 Sanivarapu et al. ⁸⁵; (e) Hurtig et al. ⁸⁰; (f) Schaack and Koningstein ⁸¹; (g) Abrashev et al. ⁷⁵.

610

611 Table 3: Peak center positions and peak areas in the range of 300-400 cm⁻¹ and total area of
 612 water stretching band (A_{H2O,S}) for background solutions.

Solution ID	T	$\nu_{H2O,L-1}$	$A_{H2O,L-1}$	$\nu_{H2O,S}$	$A_{H2O,S}$
	°C	cm ⁻¹		cm ⁻¹	
MilliQ	20	-	-	3271-3588	98909
MilliQ	100	367.3	1.197	3288-3584	98916
MilliQ	150	370.5	1.077	3323-3578	98516
MilliQ	200	370.8	1.263	3291-3579	98702
MilliQ	250	370.2	2.360	3247-3571	98303
MilliQ	300	367.6	1.264	3251-3566	98781
1 m NaCl-pH2	20	-	-	3271-3588	99268
1 m NaCl-pH2	100	372.4	1.237	3288-3584	98795
1 m NaCl-pH2	150	369.7	1.318	3323-3578	98288
1 m NaCl-pH2	200	371.5	1.261	3291-3579	98764
1 m NaCl-pH2	250	372.7	1.552	3247-3571	99107
1 m NaCl-pH2	300	367.1	1.575	3251-3566	97645
1.7 m NaCl-pH2	20	-	-	3271-3588	99235
1.7 m NaCl-pH2	100	367.0	1.236	3288-3584	98658
1.7 m NaCl-pH2	150	367.4	1.610	3323-3578	98948
1.7 m NaCl-pH2	200	369.9	1.880	3291-3579	98386
1.7 m NaCl-pH2	250	369.3	2.031	3247-3571	98749
1.7 m NaCl-pH2	300	376.2	1.920	3251-3566	98417
1.7 m NaCl-pH4	20	-	-	3271-3588	99201
1.7 m NaCl-pH4	100	369.5	1.224	3288-3584	98928
1.7 m NaCl-pH4	150	370.2	1.738	3323-3578	98818
1.7 m NaCl-pH4	200	367.9	1.942	3291-3579	98764
1.7 m NaCl-pH4	250	367.3	2.110	3247-3571	98901
1.7 m NaCl-pH4	300	368.1	2.442	3251-3566	98149
1 m NaCl-pH5	20	-	-	3271-3588	99266
1 m NaCl-pH5	100	372.9	1.162	3288-3584	98751
1 m NaCl-pH5	150	369.8	1.185	3323-3578	98740
1 m NaCl-pH5	200	370.1	1.347	3291-3579	98751
1 m NaCl-pH5	250	374.6	1.654	3247-3571	98936
1 m NaCl-pH5	300	365.3	1.692	3251-3566	98399
3 m NaCl-pH7	20	-	-	3271-3588	99140
3 m NaCl-pH7	100	374.3	1.252	3288-3584	98933
3 m NaCl-pH7	150	370.6	1.944	3323-3578	98993
3 m NaCl-pH7	200	370.7	2.263	3291-3579	98830
3 m NaCl-pH7	250	368.8	1.645	3247-3571	98781
3 m NaCl-pH7	300	370.0	1.962	3251-3566	97884

613

614 Symbols: $\nu_{H2O,L-1}$ = peak center position of the librational mode in background solutions used to

615 correct $\nu_{1,\text{Dy-O}}$; $\nu_{\text{H}_2\text{O}}$ range of peak centers for the water stretching band at 300-3800 cm^{-1} ; $A_{\text{H}_2\text{O,L-1}}$
616 = peak area of the librational mode in background solutions used to correct $\nu_{1,\text{Dy-O}}$; $A_{\text{H}_2\text{O,S}}$ = total
617 peak area of the water stretching band.

618 Table 4: Peak center positions and peak areas for Dy-O and Dy-Cl Raman modes in the range of
 619 200-400 cm⁻¹ in DyCl₃-bearing solutions.

Solution ID	T °C	Dy-O		Dy-Cl		$A_{Dy-Cl}/A_{Dy-O,corr}$	$\nu_{H2O,S}$ cm ⁻¹	$A_{H2O,S}$
		$\nu_{1,Dy-O}$ cm ⁻¹	$A_{Dy-O,corr}$	ν_{Dy-Cl} cm ⁻¹	A_{Dy-Cl}			
0.14 m DyCl ₃ -pH2	20	384.3	1.533	-	-	-	3271-3588	99347
0.14 m DyCl ₃ -pH2	100	374.0	0.5677	-	-	-	3288-3584	98827
0.14 m DyCl ₃ -pH2	150	368.7	0.1865	233.2	0.3173	1.702	3323-3578	98556
0.14 m DyCl ₃ -pH2	200	-	-	240.7	0.6008	-	3291-3579	98601
0.14 m DyCl ₃ -pH2	250	-	-	237.7	0.9141	-	3247-3571	98202
0.14 m DyCl ₃ -pH2	300	-	-	241.0	1.589	-	3251-3566	97047
0.27 m DyCl ₃ -pH2	20	381.4	2.711	-	-	-	3271-3588	99215
0.27 m DyCl ₃ -pH2	100	372.8	1.970	-	-	-	3288-3584	98754
0.27 m DyCl ₃ -pH2	150	370.7	1.734	239.5	0.4825	0.2782	3323-3578	98633
0.27 m DyCl ₃ -pH2	200	370.3	1.299	238.5	0.9373	0.7215	3291-3579	98538
0.27 m DyCl ₃ -pH2	250	-	-	238.5	1.559	-	3247-3571	98250
0.27 m DyCl ₃ -pH2	300	-	-	242.1	3.047	-	3251-3566	97586
0.59 m DyCl ₃ -pH2	20	378.6	5.399	-	-	-	3271-3588	99085
0.59 m DyCl ₃ -pH2	100	373.3	4.422	239.0	0.6268	0.1417	3288-3584	98725
0.59 m DyCl ₃ -pH2	150	370.6	3.635	238.4	1.000	0.2751	3323-3578	98672
0.59 m DyCl ₃ -pH2	200	367.6	3.242	238.1	1.780	0.5490	3291-3579	98611
0.59 m DyCl ₃ -pH2	250	367.6	2.773	239.0	3.283	1.184	3247-3571	98445
0.59 m DyCl ₃ -pH2	300	365.5	2.707	243.7	7.601	2.808	3251-3566	97574
1.8 m DyCl ₃ -pH2	20	378.0	12.80	-	-	-	3271-3588	98219
1.8 m DyCl ₃ -pH2	100	372.7	10.66	240.8	2.683	0.2516	3288-3584	98553
1.8 m DyCl ₃ -pH2	150	370.3	9.473	240.4	3.838	0.4052	3323-3578	98836
1.8 m DyCl ₃ -pH2	200	367.1	8.006	237.0	6.612	0.8258	3291-3579	98567
1.8 m DyCl ₃ -pH2	250	366.1	6.164	239.3	12.05	1.954	3247-3571	99499
1.8 m DyCl ₃ -pH2	300	365.3	4.342	244.5	26.16	6.025	3251-3566	97940

620 Symbols: $\nu_{1,Dy-O}$ = peak center position of the main stretching vibration of the Dy-O bond; ν_{Dy-Cl}
 621 = peak center position of the main stretching vibration of the Dy-Cl bond; ν_{H2O} range of peak
 622 centers for the water stretching band at 3000-3800 cm⁻¹; A_{Dy-O} = peak area of the Dy-O mode;
 623 A_{Dy-Cl} = peak area of the Dy-Cl mode; $A_{H2O,S}$ = total peak area of the water stretching band. Italic
 624 notation: high uncertainty, excluded from evaluation of speciation.

625

The data supporting this article have been included as part of the Electronic Supplementary Information (ESI).