
Design of Low Temperature La2O3 Oxidative Coupling of 
Methane Catalysts using Feature Engineering and 

Automated Sampling

Journal: Catalysis Science & Technology

Manuscript ID CY-ART-09-2024-001142.R1

Article Type: Paper

Date Submitted by the 
Author: 25-Oct-2024

Complete List of Authors: Escobar, Fernando; Hokkaido University, Department of Chemistry
Takahashi, Lauren; Hokkaido University, 
Nishimura, Shun; Japan Advanced Institute of Science and Technology, 
Graduate School of Advanced Science and Technology
Takahashi, Keisuke; Hokkaido University, Department of Chemistry
Shaaban, Ali; Hokkaido University, Department of Chemistry

 

Catalysis Science & Technology



Journal Name

Design of Low Temperature La2O3 Oxidative Coupling
of Methane Catalysts using Feature Engineering and
Automated Sampling

Fernando Garcia-Escobara∗, Lauren Takahashia, Ali Shaabana, Shun Nishimurac,
Keisuke Takahashiab∗

The design of efficient catalysts remains an challenge
for complex systems such as the Oxidative Coupling of
Methane (OCM), where reaction mechanisms are still de-
bated. Catalysts informatics workflows have proved use-
ful in identifying high-performing material candidates and
optimizing reaction conditions from underlying trends in
experimental data. Herein, a data set composed La2O3-
supported catalysts for the OCM reaction is used to con-
struct a Support-Vector Regression (SVR) model and extract
four element combinations to support on La2O3 and test for
low temperature catalytic activity, with the best result ob-
served for (Y, Cs)/La2O3. This methodology presents an ef-
fective approach from building a regression model using en-
gineered features with an automated sampling technique to
the extraction and experimental validation of promising cat-
alyst candidates, which can also be extended toward other
catalytic reactions.

1 Introduction
Methane is an abundant resource that has been used for both the
production of higher-value chemicals and in fuel applications. Al-
though the direct synthesis of C2 hydrocarbons from methane was
proposed more than forty years ago1, the high stability of the C-
H bond remains an obstacle to this day, since the conversion of a
methane molecule to a methyl radical is the starting point of the
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reaction2. The need for highly selective catalysts is widely un-
derstood, as the formation of deep oxidation products is more
thermodynamically-favored at higher temperatures3. Catalyst-
assisted mechanism studies have also been carried out, as the
reaction pathways depend directly on the catalyst surface’s struc-
ture, chemistry and the process conditions4–9. However, to this
day, a definitive mechanism has not been elucidated, which leaves
structure-activity relationships unclear.

Among the various metal oxides that have been studied as suit-
able OCM catalysts, lanthanum oxide (La2O3) has shown good ac-
tivity and high selectivity for C2 products at relatively low temper-
atures10 that can be improved with the addition of promoter ele-
ments11–18. These properties make it a good candidate as a sup-
port material for low temperature catalysts. In recent years, data-
driven approaches have been adopted to propose and test new
catalyst systems as an attempt to increase overall C2 yield. Start-
ing from literature data19–24, first-principle calculations25–27 to
high-throughput experimentation approaches28–34, data-driven
approaches have proven successful in proposing and uncovering
new active OCM catalysts and experimental conditions35 that im-
prove C2 yield. Nevertheless, the complete optimization of this re-
action remains unsolved, as it involves the reactions occurring gas
phase36, the surface reactions on the catalyst surface8,37, the na-
ture of the catalyst surface2,38,39 and the inclusion of additional
elements through procedures such as impregnation that change
the nature of the catalyst’s surface13–15.

This work presents a Machine Learning-assisted approach to
design descriptors (features) that represent catalyst composition
to predict C2 yield as a function of reaction temperature and ex-
tract impregnated element combinations to enhance the C2 yield
for the low temperature La2O3 OCM activity. For simplicity, the
analyzed data set fixes the metallic oxide support, supported ele-
ment amount and reaction gas flow conditions, leaving the iden-
tity of the supported elements and reaction temperature as the
only variables to optimize towards low temperature-high C2 yield.
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2 Methodology
Data handling, processing, analysis and visualization are done
with Python (v. 3.10.12), and the Scikit-learn library (v. 0.23.2)
is implemented for ML procedures40.

2.1 Data set

The data set employed for this study (from here on referred to
as the training data) to develop first-order features has been re-
ported by Nishimura et al41, with this work focusing only on the
catalysts tested under the same gas flow conditions with a feed
composed of CH4:O2:Ar at 66.7%, 22.6% and 9.7% vol., respec-
tively. The data set is composed of 429 data points pertaining to
34 La2O3-supported Oxidative Coupling of Methane (OCM) reac-
tion activity and their observed C2 yield (%) across 500-850 °C.
The catalysts correspond to equimolar binary and ternary combi-
nations of impregnated metallic elements and expressed as M1 · · ·
Mn/La2O3, where M1 to Mn correspond to elements selected from
Ba, Ca, Ce, Eu, K, La, Li, Mg, Mo, Na, Sm, Sr, Ti and W.

2.2 Data Analysis and Method

OCM Catalyst C2 yield (%) is predicted with a Support-Vector Re-
gression (SVR) model implemented with the radial basis function
(RBF) kernel. To evaluate the performance of the regression mod-
els, a train-test split (80:20) is used to cross validate the predic-
tions, with the evaluation metric being the average r2 Score of the
test data of data splits over random states 0-9. Hyperparameter
values (C = 10, γ = 0.01) are optimized to avoid overfitting.

2.3 Reagents

Lanthanum (III) oxide (La2O3, > 99%) purchased from Tokyo
Chemical Industry, Co., Ltd. is used as support for the prepared
catalysts. Potassium (KNO3, ≥ 99%) and yttrium (Y(NO3)3·6H2O,
99%) nitrates from Junsei Chemical Co. Ltd., lithium (LiNO3,
99%), cesium (CsNO3, 99%) and cerium (III) (Ce(NO3)3·6H2O,
special grade) nitrates from Wako Pure Chemical Corporation
and europium (III) nitrate (Eu(NO3)3·5H2O, 99.9%) from Sigma
Aldrich are used as impregnation precursors for the tested cata-
lysts. All reagents are used without further purification.

2.4 Experimental Methodology

La2O3-supported catalysts are prepared based on a modified im-
pregnation methodology previously reported by Nishimura et
al41. The tested catalysts are prepared by impregnating La2O3

with water-soluble metallic nitrate precursors in the combina-
tions presented on Table 1. In each instance, 2 g of La2O3 are
dispersed in 100 mL of water and kept under continuous stirring.
In parallel, 0.2 mmol of each metallic nitrate precursor are each
separately dissolved in 50 mL of water and the solutions subse-
quently added to the La2O3 dispersion in increasing order of the
precursors’ metallic element atomic number, which is the same
left-to-right order the elements are listed on Table 1. For exam-
ple, in the case of Cat1, the order of addition is first Y(NO3)3,
then CsNO3. The resulting mixture is then allowed to age for 14
h without stirring at room temperature. The stirring is restarted

Table 1 Catalyst supported metal (M1, M2, M3)/La2O3 combinations
tested for OCM performance.

Label M1 M2 M3
Cat1 Y Cs None
Cat2 Cs Ce None
Cat3 Li K Eu
Cat4 K Y Cs

after this period and water is evaporated at 70 °C. The remaining
powder is then collected and dried at 120 °C for 2 h. Lastly, the
material is then ground in a mortar, calcined at 700 °C for 3 h and
ground again before testing.

Catalyst performance is tested in a steel fixed-bet tubular reac-
tor (L = 262 mm, ID = 7.05 mm, SUS316L) from MECAFARM
CO., LTD.. The catalyst powder (100 mg) is placed between two
layers of quartz wool (5 mg each), with the catalyst layer located
97 mm from the top, and 165 mm from the bottom of the tube.
The reactor temperature is monitored using a K-type thermocou-
ple, with the tip placed near the outer reactor wall of the cata-
lyst bed location. Prior to each measurement run, the system is
purged at 300 °C for 30 min. under N2 gas at a flow of 30 SCCM to
flush out all environmental gases that may interfere with the mea-
surement. The system is then cooled to room temperature under
the same flow conditions to start the catalyst performance mea-
surements. The performance is studied at 450–700 °C at 50 °C
intervals under a CH4/O2/N2 flow at 18/9/3 SCCM, respectively.
The reactor mixture is analyzed after an exposition time of 8 min
for each temperature using a Shimadzu GC-2014 chromatograph
equipped with a SHINCARBON ST 50/80 mesh column (3 mm x
2 m, He carrier). Gas conversion and product yield are estimated
using N2 as an internal standard. Reagent R conversions for O2

and CH4 are calculated in accordance to Equation (1). Product P
yield for CO, CO2, C2H4 and C2H6 is calculated in accordance to
Equation (2), where n = 1 for CO and CO2, and n = 2 for C2H4

and C2H6. Lastly, C2 yield and selectivity are calculated according
to Equations (3) and (4), respectively.

RConv =
(RIn/N2In)− (ROut/N2Out)

(RIn/N2In)
∗100 (1)

PYield =
n(POut/N2Out)

(CH4In/N2In)
∗100 (2)

C2yield =C2H4Yield +C2H6Yield (3)

C2selectivity =
C2yield

CH4Conv
∗100 (4)

3 Results and Discussion
The data set is composed of 429 data points pertaining to 34
La2O3-supported OCM catalysts tested across 500-850 °C. The el-
ements supported on La2O3 are presented on Figure 1 and belong
to groups 1, 2, 4 and 5 of the Periodic Table, along with four Lan-
thanide group elements. Since the feed gas and the impregnated
elements’ composition are constant, the objective of the regres-
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Fig. 1 Frequency count of the individual La2O3-supported metallic ele-
ments in the catalysts within the training data.

sion model is to predict C2 yield as a function of supported metals’
combination (M1, M2, M3) and reaction temperature.

An SVR model is employed to predict C2 yield as a func-
tion of catalyst composition and reaction temperature. Catalyst
composition-related base features are calculated in accordance to
Equation 5, where the features D are the aritmethic mean of 58
reference values Di of each of the supported metallic elements i
present in the La2O3 catalyst. Said reference values for the in-
cluded elements are compiled in the XenonPy library42 and a
brief description for them is included in the Supporting Informa-
tion as Table S1. Arithmetic mean values are considered in this
case due to all catalysts containing supported metals present in
equimolar amounts respective to each other. For example, a cal-
culated atomic radius feature of a catalyst impregnated with Sr
and Ce would be represented as the average of the atomic radii
of Sr and Ce. Lastly, multiple analogues of the compositional base
features are engineered by calculating the square, cubic, square
root, exponential, and natural logarithm values along with their
reciprocals to incorporate different feature scales that may adjust
better to predict C2 yield. After this step, the total number of fea-
ture increases from 59 to 639, as reaction temperature analogues
are not engineered.

D =
∑

n
i=1 Di

n
(5)

Feature selection is carried out through the MonteCat algorithm
algorithm previously reported43, where a regression model’s
cross validation r2 score is sought to be maximized through se-
quential randomized feature additions and removals across many
iterations. In case a randomized feature inclusion or removal low-
ers the model’s cross validation score, the implementation of this
action is decided based on a computed probability P value as
depicted in Equation 6 from a Boltzmann distribution that de-
pends on the score’s evolution ∆r2 and a fixed MC Temperature
T parameter value that regulates the leniency of implementing
score-reducing actions. The algorithm is implemented for 104

iterations using {5,10,20,50,100,200,500,1000,2000} values for
the MC Temperature parameter. As a final note, it is pointed out

Table 2 Extracted supported metal combinations with the highest pre-
dicted C2 yield at 650 °C.

M1 M2 M3 Pred. C2y (%)
Y Cs - 15.90
K Ba - 15.90
Cs Ce - 15.77
Ba Th - 15.68
Ba Pr - 15.66
Li K Eu 16.03
K Y Cs 15.89
K Cs Ce 15.86
Y Cs Ba 15.84
K Cs Tm 15.82

that this MonteCat Temperature parameter has no relation to the
experimental reaction Temperature that takes part as one of the
features in the regression model. A detailed workflow is included
in the Supporting Information as Figures S1 and S2.

P(∆r2) = e

∆r2

kBT (6)

The results of the feature selection procedure are presented on
Figure 2. Twenty five runs with different fixed random seed val-
ues are carried out for each depicted temperature value, and after
the completion of each run, the highest observed score through-
out the run is identified along with the feature subset at that
point. A cross-validation score greater than 0.9 is consistently
observed throughout all experiments (a), and a subset containing
15 features is extracted to be used in the prediction model (b),
with the best test r2 score of 0.9403 (c).

From this point, this subset is used to carry out a Sequential
Feature Elimination (SFE) procedure to remove features that do
not help increase the model’s predictive accuracy. The results are
presented on Figure 3, where it can be observed that having only
5 features allows the SVR model to reach a test r2 score > 0.9.
The features selected for the regression model are analogues of
the atomic weight, covalent radius, number of valence electrons
on the s shell, Van der Waals radius and the reaction temperature.

An inverse prediction at 650 °C contemplating all binary and
ternary combinations from Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd,
Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu,
Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg, which belong to blocks s, d
and f of the Periodic Table is carried out. This results in 22,101
supported metal combinations whose C2 yield is predicted at 650
°C using the constructed SVR model. Table 2 presents the re-
sults for the five highest binary and ternary combinations from
which the best two performing binary and ternary combinations
are selected, prepared and tested experimentally. On an addi-
tional note, K/Ba is not tested due to that pair already being in-
cluded in the training data.

The average results for three measurements for Cat1-4 are pre-
sented on Figure 4, where a Blank (the reaction carried out with-
out catalyst inside) and La2O3 without supported metals are in-
cluded as reference. The behavior observed without catalytic ma-
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A)

B)

C)

Fig. 2 MonteCat process-extracted feature subsets’ performance with a
SVR (C = 10, γ = 0.01) model across various Temperature parameter val-
ues (a), score-feature number behavior with the best-performing subset
highlighted in red (b) and parity plot of the feature subset with the highest
observed score (c).
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Fig. 3 Backward Feature Elimination procedure results applied upon the
MonteCat-extracted feature subset derived from the highest observed
cross validation r2 score. The vertical guide line represents the spot
where the features stopped being removed, leaving the final model with
5 only features.

terial is a steady increase in O2 and CH4 conversion, which could
be attributable to CH4 oxidation taking place in gas phase and
along the reactor walls44,45. While the CH4 conversion increases
steadily, there is an abrupt increase in O2 conversion between
650-700 °C also observed in CH4 and CO2 conversions. Starting
at 650 °C, C2H6 is detected, which indicates that oxidative cou-
pling starts around this temperature range with low C2 selectivity
(< 5%). When pure La2O3 is tested instead, O2 and CH4 conver-
sions increase at lower temperatures due to La2O3 contributing to
CH4 oxidation10,11,46. In the same manner, CO2 yield is greater
than the one observed in the absence of catalyst and C2H4 and
C2H6 are both produced starting at 600 °C, although the highest
observed C2 yield (at 650 °C) reached 1.5 % with a C2 selectivity
of 11%.

This behavior is enhanced with the presence of supported met-
als. Both Cat1 and Cat2 display similar O2 and CH4 conversion
output, but Cat1 reaches a 100 % O2 conversion at 600 °C, while
Cat2 does so at 650 °C. Both catalysts reach their maximum C2

yield at 650 °C at values around 6 % and 3.7 % with selectivities
of 31.8 % and 20.5 % for Cat1 and Cat2, respectively. The ternary
catalysts Cat3 and Cat4 display different behavior from their bi-
nary counterparts. Cat3 displayed generally lower or equal O2

conversion compared to the Blank across the entire temperature
range, while Cat4 behaved in a similar manner to the Blank, with
the only noteworthy difference is a larger O2 conversion at 650 °C.
For both ternary catalysts, the peak activity is observed at 700 °C,
with Cat3 showing higher C2 yield and selectivity (4.9 % and 23.4
%, respectively) than Cat4 (2.6 % and 13.6 %, respectively). In-
terestingly, Cat3 is the only material that exhibited equal or lower
reagent conversions compared to the results observed in the ab-
sence of catalyst. Measurements at temperatures higher than 700
°C are not included, as only COx products are detected possibly
due to the SUS316 reactor becoming catalytically-active.

The catalytic activity of the tested materials can be better ob-
served on Figure 5 by comparing C2 selectivity versus CH4 con-
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Fig. 4 Observed experimental reagent gas conversions (O2 and CH4), product gases’ yields (CO, CO2, C2H4 and C2H6) and calculated C2 yields and
selectivities at the bottom for each tested catalyst respective to the reaction temperatures. The depicted values represent an average across three
runs, with error bars depicting the standard deviation of the measurements.
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Fig. 5 Observed OCM activity of the prepared catalysts at 650 and 700
°C.

version. At temperatures below 600 °C, no C2 products are de-
tected even though there is CH4 conversion, resulting in a direct
conversion into CO2. The binary catalysts indeed display both, a
higher CH4 conversion with higher C2 selectivities at lower tem-
peratures. Nevertheless, OCM activity decreases at 700 °C for
La2O3 and Cat1-2, while Cat3-4 show higher activity at this tem-
perature, with Cat3 achieving slightly lower C2 selectivity than
Cat1 at roughly the same CH4 conversion.

4 Conclusion
This study presents a Machine Learning-assisted methodology to
uncover low temperature OCM catalysts. Feature design and se-
lection, catalyst prediction and experimental testing are all car-
ried out, resulting in four impregnated metal combinations that
boost La2O3 OCM activity in the 650-700 °C range. The best
performance is observed on (Y, Cs)/La2O3 with a C2 selectiv-
ity at 32% with 18% CH4 conversion at 650 °C. This methodol-
ogy presents an effective first approach at constructing regression
models solely from catalyst composition and reaction conditions.
New and efficient combinations of metals can then be character-
ized further to establish structure-property relationships that can
then be used to elucidate reaction mechanisms.

5 Supporting Information
Further details on the base features and the feature engineering
and selection steps are included as Supporting Information.
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