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Trichloroethylene (TRI) and perchloroethylene (PER) are
widely-produced in the chemical industry and used as sol-
vents, varnishes, degreasers, and dry cleaning chemicals
that involve complex process conditions. Data science and
network analysis are used in order to unveil relationships
between reactants, process conditions, and selectivities of
select products with the aim to improve production effi-
ciency. Data visualization and machine learning reveal the
sets of conditions that have positive and inverse relations
with TRI and PER selectivities, while transforming the data
into networks reveals which sets of experimental conditions
correlate with desired outcomes. Thus, it becomes possible
to tailor experimental conditions in order to increase desired
selectivities while avoiding production of undesirable selec-
tivities.

1 Introduction
Oxyhydrochlorination of ethylene (C2H4) and 1,2-dichloroethane
(1,2-DCE) is an industrially important process used to pro-
duce trichloroethylene and perchloroethylene1,2. In particular,
trichloroethylene (C2HCl3) and perchloroethylene (Cl2C=CCl2)
are chemicals that are in high demand within the chemical in-
dustry where trichloroethylene is widely used as a degreasing sol-
vent in major industrial areas and commonly used for applications
in printing ink, varnish, adhesives, and paint stripper while per-
chloroethylene is commonly used for dry cleaning and as a brake
cleaner.3–9
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Trichloroethylene (TRI) is produced from the following equa-
tion:
C2H4 + 3 HCl + 3/2 O2 → C2HCl3 and 4H2O

Perchloroethylene (PER) is produced from the following equa-
tion:
C2H4 + 4HCl + 2O2 → C2Cl4 + 4H2O

However, despite how simple the equations appear, these re-
actions involve complex process conditions. Furthermore, the re-
actions result in numerous chemical byproducts that are unde-
sireable. In particular, multiple reactions occur simultaneously
during chlorination and dehydrochlorination reactions as well
as during combustion reactions. Many intermediates such as
chloroalkanes and chloroalkenes are also produced during these
reactions, which impact the production of target products. Previ-
ous reports have investigated this through thermodynamic equi-
librium theory, but it still remains quite difficult to propose spe-
cific process conditions10,11. Despite the extensive implemen-
tation of various characterization techniques, the complexities
of oxyhydrochlorination of ethylene and 1,2-dichloroethane re-
mains a mystery.

Developments in green chemistry have garnered much atten-
tion in recent years, particularly due to rising concerns regarding
the negative impact the chemical industry has had on the envi-
ronment. There is a growing need to make chemical production
more efficient, to reduce toxins that are produced as reaction by-
products, and to improve the atom economy of synthesis meth-
ods, for example.12–15 However, it is very difficult to do so with-
out understanding how factors such as experimental conditions
and the impact of intermediate reactions have on the production
of target products. The number of factors that are involved in
these reactions vary greatly, and likely involve a level of mul-
tidimensionality that is beyond what individual researchers are
capable of. Fortunately, recent developments have made it pos-
sible for informatics to be considered a viable approach towards
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trichloroethylene CCl4 C2HCl5
C2Cl6 CO CO2
perchloroethylene C2H3Cl C2H2Cl2
1,1,2-C2H3Cl3 1,2-C2H4Cl2 C2H2Cl4

Table 1 Extracted data pertaining to the selectivity of various products.
Data extracted from literature 1,2.

Reactant Cross-section area Catalyst amount
Volume Length HCl/reactant Ratio
N2/reactant ratio O2/reactant ratio reaction temperature
pressure pressure-reactant pressure-HCl
pressure-N2 pressure-O2 total gas flow
linear speed residence time GHSV

Table 2 Extracted data pertaining to experimental conditions. Data ex-
tracted from literature 1,2.

analyzing the relationships between chemicals, experimental con-
ditions, and their resulting products and byproducts.

Catalysts informatics is a data driven field of research centered
on catalysts where various data science techniques are used to ex-
tract knowledge from multidimensional variables16–19. Machine
learning has gained much attention and is widely used to process
such complex data; however, due to machine learning’s black-
box nature, it is challenging to understand how such multidimen-
sional data is processed by the machine20,21. In such circum-
stances, catalysis network methods are developed where the rela-
tions in the data is visualized as a network22. Network analysis is
used in order to uncover any relations between experimental con-
ditions and products in order to help improve process conditions,
reduce undesireable byproducts, and increase production of tar-
get products. Here, machine learning analysis and network anal-
ysis are independently performed to unveil the relations between
chemical plant and experimental conditions and resulting selec-
tivities of select products of trichloroethylene and perchloroethy-
lene during oxyhydrochlorination. In particular, oxyhydrochlori-
nation of ethylene and 1,2-dichloroethane is chosen as the proto-
type reaction and data is collected from literature sources where
catalysts informatics is performed in order to unveil the complex-
ities of relations between process conditions and each chemical
product.

2 Data Collection and Methods
Data used for data analysis is manually extracted from litera-
ture1,2. In particular, 51 types of data relating to single com-
positions C2H4 or 1,2-DCE are extracted from the literature data
and consists of 32 data points pertaining to reactants, catalysts,
gas/reactant ratios, experimental conditions, and selectivities of
various products of the reaction. Extracted selectivities are listed
in Table 1. The extracted experimental conditions are also listed
in Table 2.

Reactants consist of ethylene (C2H4) or 1,2-dichloroethane
(1,2-DCE). Cross-section area refers to the area of the reactor.
Amount refers to the weight of catalyst found in the reactor while
Volume refers to the volume of catalysts in the reactor. Length

is height of catalysts in the reactor. HCl/reactant, N2/reactant,
and O2/reactant are the ratios of each gas against total reactant.
Reaction temperature is the temperature taken in the reaction.
Pressure is total pressure in the reactor while pressure-reactant,
pressure-HCl, pressure-N2, and pressure-O2 are the pressure of
the reactant and each gas. Total flow is the total gas flow in the
reactor while linear speed is the speed of gas in the reactor. Res-
idence time refers to the time required for gas to pass through
the catalyst in the reactor. GHSV represents the space velocity of
gases in the reactor.

Supervised machine learning and catalysis network methods
are used in this study. For supervised machine learning, random
forest regression as implemented in scikit-learn is used for inves-
tigating features importance23. The number of trees is set to 100.
Two separate random forest regressors are made where one sets
trichloroethylene selectivity as the target variable and the other
sets perchloroethylene selectivity the target variable.

In the case of network analysis, the data is preprocessed and
transformed into a network for further analysis using Gephi.22,24

Initial node placement is randomized upon importing the data
into Gephi. To determine the network structure, the ForceAtlas2
algorithm is used.25 When using the ForceAtlas 2 algorithm, the
following parameters were defined: tolerance (speed) = 0.6, ap-
proximation = 1.2, scaling = 60, gravity = 1.0, Prevent Overlap
= true, and edge weight influence = 1.

3 Results and Discussion

3.1 Data Analysis

Data science is used in order to analyse the relationships between
reactants, process conditions, and selectivities of trichloroethy-
lene, perchloroethylene, and other byproducts. In particular, data
visualization is first utilized, followed by machine learning in or-
der to uncover any relations or other information buried within
the data. Pearson correlation coefficient is calculated in order to
evaluate if there are any proportional and inverse proportional
relations in the data. A Pearson correlation coefficient map of
the collected data is presented in Figure 1. Figure 1 demonstrates
that the selectivity of trichloroethylene has a positive relation with
the reaction temperature. In the case of the selectivity of per-
chloroethylene, it has positive relation with the feed rate of HCl,
N2, and O2 gases. However, the selectivity of perchloroethylene
decreases with the increase of reactant pressure. On the other
hand, the selectivity of C2H2Cl2 decreases with the increase of
HCl, N2, and O2 gases, thus suggesting that the selectivity of per-
chloroethylene and C2H2Cl2 act in an opposite manner against
gas feeds. As a trend, one can see the selectivity of trichloroethy-
lene, CCl4, C2HCl5, C2Cl6, CO, and, CO2 have a positive relation
with the feed rate of HCl, N2, and O2 gases while the selectivity
of perchloroethylene, C2H3Cl, C2H2Cl2, 1,1,2-C2H3Cl3, C2H2Cl4
against the feed rate of HCl, N2, and O2 have an inverse relation
as seen on the correlation coefficient map where red and blue
represent proportional and inverse proportional relation, respec-
tively. Thus, one can understand which experimental conditions
and selectivities share correlations with each other and better un-
derstand how certain factors may influence the outcome of the
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Fig. 1 Pearson correlation coefficient map where red and blue represent proportional and inverse proportional relation, respectively.
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reaction.

Machine learning is performed to evaluate the importance of
variables presented in the dataset. In particular, random forest
regression is used to evaluate the feature importances. Here,
two random forest regression models are created where the target
variable is set to trichloroethylene and perchloroethylene selectiv-
ities, respectively. Calculated features importances for each case
is represented in Figure 2. Figure 2 (a) shows that reaction tem-
perature has a major impact on the selectivity of trichloroethy-
lene, thus following the trends seen in the pearson correlation
coefficient map shown in Figure 1. Figure 2 (b) shows that pres-
sure of the reactant has a major impact on the selectivity of per-
chloroethylene, which is also observed in Figure 1. Thus, pearson
correlation coefficient and machine learning unveil the key fac-
tors responsible for the selectivity. However, the relation involves
various products and relation between those products and pro-
cess conditions are complex matters, therefore, network analysis
is implemented.

3.2 Network Analysis

Catalysis network analysis is employed in order to understand
the complex relations between process conditions and product
selectivities. Networks have been previously used to visualize the
relationships between catalyst composition, experimental condi-
tions, and resulting yields, where the resulting information was
then used to successfully design high-yield catalysts more effi-
ciently22. In this instance, networks are used in order to visualize
the relationships between various experimental conditions and
the resulting selectivities of a select number of products.

In order to analyse the multidimensional data in further de-
tail, literature experimental data is transformed into a network
using Gephi and the ForceAtlas2 algorithm.24,25 Data preprocess-
ing is carried out to prepare graph edges and nodes for net-
work construction. In order to determine ideal trade-offs for
high PER+TRI selectivity and low PER/TRI selectivity and un-
derstand the experimental conditions that correlate with them.
The categories of experimental data collected from previous stud-
ies are listed in Table 3 and were chosen in order to determine
ideal trade-offs for high PER+TRI selectivity and low PER/TRI
selectivity and understand the experimental conditions that cor-
relate with them. Experimental data points have been rounded
for ease of visualization. Nodes represent reactants, catalysts,
gas/reactant ratios, experimental conditions, and selectivities of
various products. Edges denote that the connected nodes share a
relationship within the experimental data. Edge weights are as-
signed a value of 1. Note that nodes are represented as circles
within the network and edges are represented as the lines that
connect nodes together. Node color and size are adjusted for visu-
alization purposes. Node colors are defined as the following: light
blue (reactant), army green (reaction tube ID, inner diameter of
reaction tube), sea green (catalyst amount, catalyst volume, cat-
alyst length), purple (HCl/reactant, N2/reactant, O2/reactant),
salmon pink (pressure, pressure-reactant, pressure-HCl, pressure-
N2, pressure-O2), grey (total gas flow rate), moss green (linear
velocity), mustard green (residence time), red (GHSV), and yel-

Reactant Reactant Tube ID
Reaction Tube Inner Diameter Catalyst Amount
Catalyst Volume Catalyst Length
HCl/Reactant N2/Reactant
O2/Reactant Reaction Temperature
Pressure Pressure-Reactant
Pressure-HCl Pressure-N2
Pressure-O2 Total Gas Flow
Linear Velocity Residence Time
GHSV Selectivity: TRI
Selectivity: PER Selectivity:C2H3Cl
Selectivity: C2H2Cl2’s Selectivity: 1,2-C2H4Cl2
Selectivity: CCl4 Selectivity: 1,1,2-C2H3Cl3
Selectivity: C2H2Cl4’s Selectivity: C2HCl5
Selectivity: C2Cl6 Selectivity: CO+CO2
Selectivity: PER+TRI Selectivity: PER/TRI

Table 3 Experimental data categories used for network modeling. Data
is collected from previous reports. 1,2

low (all nodes relating to total selectivities).
Once preprocessed, the data is then transformed into an indi-

rect graph using the Force Atlas 2 algorithm25. The constructed
network is illustrated in Figure 3 and can also been seen in fur-
ther detail in Figures 4 through 7. The network consists of 455
nodes and 12,597 edges composing of data ranging from cata-
lyst information, process conditions, and resulting selectivities of
various compounds.

From the network visualized in Figure 3, one can see that
various experimental conditions and various selectivities have
stronger correlations towards reactants C2H4 and 1,2-DCE based
on their node placement. Additionally, it also becomes possi-
ble to visually understand which sets of experimental conditions,
catalysts and catalyst-related properties correlate with particular
ranges of PER and TRI based on how closely the nodes for exper-
imental conditions, catalysts and catalyst-related properties are
found in regards to particular ranges of PER and TRI. In this
case, conditions for two outcomes are of interest and optimal
scenarios are investigated where PER+TRI selectivity is high and
PER/TRI selectivity is low simultaneously. The first investigation
involves determining the best conditions for high TRI selectivity
and low PER and CO+CO2 selectivities. The second investigation
involves determining the best conditions for high TRI+PER and
low PER/TRI. By focusing on these sets of conditions, the effect
of experimental conditions upon the selectivities of various prod-
ucts should become easier to understand. Regions showing these
conditions are marked in Figure 8 and Figure 9.

From Figure 8, one can see that out of the two reactants, ex-
periments conducted using C2H4 tend to result in selectivities
that match either one of the two optimal ranges for PER+TRI
and PER/TRI selectivities. In particular, there are two regions
where both PER+TRI selectivity is high and PER/TRI selectivity
is low simultaneously. In Figure 8, for example, closer analysis re-
veals that experimental conditions such as reaction temperatures
402◦C and 433◦C or pressure of 0.09 correlate to high PER+TRI
and low PER/TRI selectivities. Figure 8 also illustrates that factors
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Fig. 2 Features importance for (a)trichloroethylene selectivity and (b)perchloroethylene selectivity by random forest regression. Note that "Crosssec-
tion_area" represents cross-section area and "Total_flow" represents total flow.
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Fig. 3 The full network composed of experimental data as listed in Table 3. A higher resolution of this network can be found in the Supporting
Information.
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Fig. 4 A more-detailed view of the upper left portion of the network illustrated in Figure 3.
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Fig. 5 A more-detailed view of the upper right portion of the network illustrated in Figure 3.
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Fig. 6 A more-detailed view of the lower left portion of the network illustrated in Figure 3.

Journal Name, [year], [vol.],1–14 | 9

Page 9 of 15 Catalysis Science & Technology



Fig. 7 A more-detailed view of the lower right portion of the network illustrated in Figure 3.
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such as catalyst length 5.77 and catalyst amount of 150 also as-
sociate with high PER+TRI and low PER/TRI selectivities. Mean-
while, with the case of 1,2-DCE, it becomes clearer that while low
PER/TRI selectivities occur, the selectivity of PER+TRI is also low.
Thus, it becomes possible to tweak experimental conditions and
catalysts in order to more efficiently produce high PER+TRI and
low PER/TRI selectivities.

By isolating regions that result in both high PER+TRI selec-
tivity and low PER/TRI selectivity simultaneously, as illustrated
in Figure 9, the sets of process conditions that associated with
these outcomes become clearer. To start, reaction temperatures
that result in these levels of selectivities are found to be 431◦C,
432◦C, and 433◦C; while 402◦C also falls in this range, tem-
peratures 401◦C and 399◦C are found in areas that reflect high
PER/TRI ratios, suggesting that the 431-433◦C range is ideal.
Gas/reactant ratios that associate with high PER+TRI selectivity
and low PER/TRI selectivity simultaneously are also made clearer.
In particular, HCl/reactant ratios of 3 and 4 are found to correlate
with both high PER+TRI selectivity and low PER/TRI selectiv-
ity conditions simultaneously. Other gas/reactant ratios such as
N2/reactant ratio of 7 or O2/reactant ratio of 2 may also lead to
simultaneous high PER+TRI selectivity and low PER/TRI selectiv-
ity conditions, though may not be as effective given their proxim-
ity to areas with higher PER/TRI selectivities. Various pressures
can also be optimized; as seen in Figure 8, HCl pressure 0.03,
N2 pressure 0.05, and reactant pressure 0.008 correlate to ar-
eas of high PER+TRI selectivity and low PER/TRI selectivities,
becoming good candidates for adjustments in plant conditions
when attempting to optimize experimental conditions. Other ar-
eas that could benefit from adjustments and fine-tuning include
catalyst-related conditions. For instance, for cases where C2H4

are used as the reactant, researchers may wish to set the cat-
alyst amount to 150 and the length of the catalyst to 5.77 to
optimize high PER+TRI selectivity and low PER/TRI selectivity
conditions. It should be noted, however, that gas/reactant ra-
tios correspond to the ratio of individual partial pressures of each
gas type, making it necessary to consider consistency when using
the network to improve experiment conditions. For instance, in
cases where the HCl/reactant ratio is 3 and 4, consistency is main-
tained when HCl pressure is 0.03 and reactant pressure 0.008
due to the HCl/reactant ratio equaling 3.75. Meanwhile, in cases
where the N2/reactant ratio is 7, for example, N2 pressure of 0.05
and reactant pressure of 0.008 would not be consistent as the
N2/reactant ratio equals 6.25. Instead, the network suggests that
a N2/reactant ratio of 6 may result in high PER+TRI selectivity
but also high PER/TRI selectivity. Thus, we can see what factors
can be adjusted in order to improve high PER+TRI selectivity and
low PER/TRI selectivity conditions.

Meanwhile, from the network it is also possible to understand
which conditions may be better to avoid. To start, of the two
reactants, 1,2-DCE is more likely to result in undesireable lev-
els of PER+TRI and PER/TRI selectivities. A closer look at the
network reveals that reactions involving 1,2-DCE result in low
PER/TRI selectivities, a desired condition, yet also results in low
PER+TRI selectivity. For instance, when considering gas/reactant
ratios that result in high PER+TRI selectivity and low PER/TRI

selectivity simultaneously, it may be better to avoid the following
ratios: HCl/reactant ratio 1, HCl/reactant ratio of 2, N2/reactant
ratio of 3, N2/reactant ratio 4, and O2/reactant ratio 1. Reaction
temperatures of 400◦C, 430◦C, and 452◦C are also temperatures
that should likely be avoided when attempting to avoid unde-
sireable levels of PER+TRI and PER/TRI selectivities. It should
be noted that there may be some cases where temperatures with
a single-degree difference may result in very different locations
in the network. The measured temperature values are found to
correlate with experiments that had different selectivities which
are therefore reflected in node placement within the network. In
these cases, it is recommended to also consider pairing those tem-
peratures with neighboring experimental condition nodes to help
improve the experiment design outcome. Thus, by transforming
experimental data into networks, it also becomes possible to bet-
ter understand particular experiment set-ups or conditions that
should be avoided in order to avoid a poor outcome.

4 Conclusion
The relations between reactants, experimental conditions, and
selectivities of TRI, PER, and other select products are clarified
through the utilization of data science and network analysis.
Through applications of data visualization and machine learning,
it became clear that certain groups of factors have positive im-
pacts on TRI and PER productions while other factors have an
inverse impact on their selectivities. Previous reports have shown
that the yield of trichloroethylene can be improved by optimiz-
ing certain reaction conditions. In this analysis using the net-
work method, the same trend for the specific reaction conditions
reported in the literature were not only obtained, but also suc-
ceeded in finding the optimal conditions for other reaction condi-
tions. It was found that not only is PER+TRI selectivity high and
PER/TRI selectivity low (i.e., trichloroethylene yield is increased),
but also HCl/reactant, O2/reactant, and reaction temperature are
high (i.e., trichloroethylene yield is decreased). In addition, opti-
mal experimental conditions for factors such as N2/reactant, cat-
alyst length, HCl pressure, N2 pressure, and reactant pressure are
successfully uncovered. By transforming the data into a network,
it also becomes possible to see how particular properties associate
with various outcomes, making it possible to pinpoint which sets
of experimental conditions may be favorable to high PER+TRI
selectivity and low PER/TRI selectivity simultaneously while also
highlighting sets of conditions that may be best to avoid during
experimental set-up. Thus, through the adoption of data science
and network analysis, it becomes possible to tailor experimental
conditions to influence the selectivities of desireable products in
an efficient manner while also reducing the production of unde-
sirable products.
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Fig. 8 Select areas of interest of the network illustrated in Figure 3.
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Fig. 9 Areas with high PER+TRI and low PER/TRI, as marked in Figure 8.

Journal Name, [year], [vol.],1–14 | 13

Page 13 of 15 Catalysis Science & Technology



AGC Inc. for their support.

Notes and references

1 Arcoya, A.; Cortés, A.; Seoane, X. L. Tri-and Perchloroethy-
lene. 1. Fluid Catalystic Oxyhydrochlorination of Ethylene.
Industrial & Engineering Chemistry Product Research and De-
velopment 1980, 19, 77–82.

2 Arcoya, A.; Cortés, A.; Seoane, X. L. Tri-and Per-
chloroethylene. 2. Fluid Catalytic Oxyhydrochlorination of
Dichloroethane. Industrial & Engineering Chemistry Product
Research and Development 1980, 19, 82–86.

3 Smith, G. Trichloroethylene: a review. British journal of indus-
trial medicine 1966, 23, 249.

4 Doherty, R. E. A history of the production and use of car-
bon tetrachloride, tetrachloroethylene, trichloroethylene and
1, 1, 1-trichloroethane in the United States: part 1—historical
background; carbon tetrachloride and tetrachloroethylene.
Environmental forensics 2000, 1, 69–81.

5 Moore, D. R.; Walker, S.; Ansari, R. Canadian water qual-
ity guidelines for trichloroethylene; Inland Waters Directorate,
1991.

6 Linak, E.; Leder, A.; Yoshida, Y. C2 chlorinated solvents.
Chemical economics handbook 1992, 632–3000.

7 Wolf, K.; Morris, M. Spotting Chemicals: Alternatives to Per-
chloroethylene and Trichloroethylene in the Textile Cleaning
Industry. Institute for Research and Technical Assistance: Los
Angeles, CA, USA 2007,

8 Tubich, G.; Davis, I.; Bloomfield, B., et al. Occupational health
studies of the shell-molding process. Arch. Indust. Health
1960, 21, 424–44.

9 Combey, W., et al. Dry Cleaning and Health. Public Health In-
spector 1965, 73, 306–11.

10 Sutherland, I. W.; Hamilton, N. G.; Dudman, C. C.;
Jones, P.; Lennon, D.; Winfield, J. M. Chlorination and de-
hydrochlorination reactions relevant to the manufacture of
trichloroethene and tetrachloroethene: Part 1. Reaction path-
ways. Applied Catalysis A: General 2011, 399, 1–11.

11 Sutherland, I. W.; Hamilton, N. G.; Dudman, C. C.; Jones, P.;
Lennon, D.; Winfield, J. M. Chlorination reactions relevant
to the manufacture of trichloroethene and tetrachloroethene;
Part 2: Effects of chlorine supply. Applied Catalysis A: General
2014, 471, 149–156.

12 Clark, J. H. Green chemistry: challenges and opportunities.
Green chemistry 1999, 1, 1–8.

13 Anastas, P. T.; Warner, J. C. Green chemistry: theory and prac-
tice; Oxford university press, 2000.

14 Anastas, P.; Eghbali, N. Green chemistry: principles and prac-
tice. Chemical Society Reviews 2010, 39, 301–312.

15 Abraham, M. A.; Nguyen, N. “Green engineering: Defining
the principles”—resdts from the sandestin conference. Envi-
ronmental Progress 2003, 22, 233–236.

16 Medford, A. J.; Kunz, M. R.; Ewing, S. M.; Borders, T.;
Fushimi, R. Extracting knowledge from data through catalysis
informatics. Acs Catalysis 2018, 8, 7403–7429.

17 Takahashi, K.; Takahashi, L.; Miyazato, I.; Fujima, J.;
Tanaka, Y.; Uno, T.; Satoh, H.; Ohno, K.; Nishida, M.; Hi-
rai, K., et al. The rise of catalyst informatics: towards catalyst
genomics. ChemCatChem 2019, 11, 1146–1152.

18 Takahashi, K.; Ohyama, J.; Nishimura, S.; Fujima, J.; Taka-
hashi, L.; Uno, T.; Taniike, T. Catalysts informatics: paradigm
shift towards data-driven catalyst design. Chemical Communi-
cations 2023, 59, 2222–2238.

19 Taniike, T.; Takahashi, K. The value of negative results in
data-driven catalysis research. Nature Catalysis 2023, 6, 108–
111.

20 Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.;
Walsh, A. Machine learning for molecular and materials sci-
ence. Nature 2018, 559, 547–555.

21 Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Taki-
gawa, I.; Shimizu, K.-i. Machine learning for catalysis infor-
matics: recent applications and prospects. Acs Catalysis 2019,
10, 2260–2297.

22 Takahashi, L.; Nguyen, T. N.; Nakanowatari, S.; Fujiwara, A.;
Taniike, T.; Takahashi, K. Constructing catalyst knowledge
networks from catalyst big data in oxidative coupling of
methane for designing catalysts. Chemical Science 2021, 12,
12546–12555.

23 Pedregosa, F. et al. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 2011, 12, 2825–2830.

24 Bastian, M.; Heymann, S.; Jacomy, M. Gephi: an open source
software for exploring and manipulating networks. Proceed-
ings of the international AAAI conference on web and social
media. 2009; pp 361–362.

25 Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAt-
las2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PloS one 2014,
9, e98679.

14 | 1–14Journal Name, [year], [vol.],

Page 14 of 15Catalysis Science & Technology



The data supporting this article have been included as part of the Supplementary Information.

Page 15 of 15 Catalysis Science & Technology


