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The merging of the electronic structure calculations and crossed beam experiments expose the reaction dynamics in the tin

(Sn, 3P;) — molecular oxygen (O,, X3Zg) system yielding tin monoxide (SnO, X'2*) along with ground state atomic oxygen O(3P).

The reaction can be initiated on the triplet and singlet surfaces via addition of tin to the oxygen atom leading to linear, bent,

and/or triangular reaction intermediates. On both the triplet and singlet surfaces, formation of the tin dioxide structure is

required prior to unimolecular decomposition to SnO(X'Z*) and O(3P). Intersystem crossing (ISC) plays a critical role in the

reaction mechanism and extensively interosculates singlet and triplet surfaces. The studied reaction follows a mechanism

parallel to that for the gas phase reaction of germanium and silicon with molecular oxygen, however, the presence of the

tin atom enhances and expands ISC via the “heavy atom effect”.

Introduction

Since the exploitation of the main group XIV element tin (Sn)
merged with the transition metal copper (Cu) in bronze alloys
more than 5,000 years ago,! the preparation and properties of
subvalent tin (Il) compounds together with their isovalent
carbon (C), silicon (Si), and germanium (Ge) counterparts have
intrigued the computational chemistry, physical inorganic, and
preparative synthetic communities from the perspectives of
electronic structure theory and chemical bonding.2 From carbon
to tin, the electronic structure of the dihydrides transforms
noticeably. Whereas for the lightest main group XIV element
carbon, the divalent hydride methylene (CH,, X3B,) has a triplet
electronic ground state and a singlet-triplet splitting to the a'A;
state of 36 to 38 kJ mol™,34 all higher homologues silylene
(SiH,), germylene (GeH,), and stannylene (SnH,) hold an X!A;
electronic ground state. The singlet-triplet splitting to the a3B;
state increases from 80-88 kJ mol™ in silylene (SiH,) 571! via
100-105 kJ mol™ in germylene (GeH,) 2 and 98-111 kJ mol™
1213jn stannylene (SnH,) as the period increases. This trend can
be rationalized in terms of discrete sizes of the valence orbitals
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of carbon, silicon, germanium, and tin; the enhanced size of the
valence orbitals of silicon, germanium, and tin compared to
carbon results in an ineffective hybridization of the s and p
orbitals in silicon, germanium, and tin; this is accompanied by
the stabilization of the singlet versus triplet state in silylene,
germylene, and stannylene. This finding correlates nicely with
the reduction of the H-E-H angles (E = C, Si, Ge, Sn) in the
electronic ground states, which are reduced from 129.8° (CH,,
X3B1) via 93.4° (SiH,, X*A;) to 92.3° (GeH,, X*A;) and 92.4° (SnH,
X'A,) 1415 The diminished reactivity of stannylene (SnH,) 16
compared to their isovalent methylene (CH,),'7"2! silylene
(SiH5),%224 and germylene (GeH,) analogues ?° culminated in the
preparative synthesis of subvalent tin (Il) compounds such
as Sn,[(MesSi),CH]?® and Sn[N(SiMe3z)1,.2”

The mounting attention in the (in)organic tin (II) chemistry
and industrial applications of tin (II) oxide (SnO) in conjunction
with indium tin oxide (ITO) on touchscreens and thin film
transistors (TFT)282° revitalized widespread research in the
electronic structure and chemical bonding of binary oxides of
main group XIV elements. In gas-phase carbon monoxide (CO),
two T and one O-bond generate a carbon-oxygen triple
bond.30%31 Whereas carbon monoxide is a gas at 293 K, gas-
phase silicon monoxide (SiO), is unstable and disproportionates
to amorphous silicon and silicon dioxide (Si0,).3%33 In the
diatomic oxides, the bond lengths increase from carbon via
silicon and germanium to tin from 112.8 pm via 151.2 pm and
161.7 pm to 183.3 pm.3* The electronegativity difference
between the main group XIV element and oxygen rises from
1.00 in carbon monoxide (CO) to 1.78 in tin monoxide (SnO) on
the Pauling scale suggesting an enhanced ionic character in the
tin — oxygen bond compared to the carbon — oxygen bond. Also,
within main group XIV, the +Il oxidation state becomes
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increasingly stable as demonstrated by the stability of
commercially available tin(ll) and tin(IV) compounds such as
tin(ll) chloride and tin(IV) sulfide. Nevertheless, tin(IV) is still
considered to be more stable than tin(ll); as such, tin monoxide
(SnO) emerged as a reduction agent that can be oxidized easily
to tin dioxide (Sn0O,). 3> Chlorides and organic compounds such
as tin tetrachloride (SnCly), tetramethyltin ((CHs)4Sn), and
dimethyldichlorotin ((CHs),SnCl,) are used as precursors for the
gas-phase synthesis of tin dioxide. These precursors
decompose3-38 into atomic tin, which also makes studying the
reaction of tin plus molecular oxygen (O,) an indispensable step
to untangle the reaction mechanism during the synthesis of tin
dioxide. Previously, the kinetics of the reaction of atomic tin
with molecular oxygen was studied at high temperatures of
1300 to 2600 K using a shock tube equipped for atomic
resonance absorption spectroscopy (ARAS),3°40 in a fast-flow
reactor with laser-induced fluorescence (LIF) over the wide
temperature range 380 to 1840 K.%!, and by flash photolysis
absorption spectroscopy at 295K.#27%4 Studies demonstrate that
the reaction is spin-allowed the main products are tin monoxide
(SnO, X'z*) and atomic O(3P). Rate constants measurements
show that the reaction is relatively fast, with a slight positive
temperature dependence (Table 1). It must be mentioned, that
in 1978 4 reaction of atomic tin with molecular oxygen was
tried in a crossed molecular beam setup with the high-
temperature (1525 K) molten source for the tin beam. However,
the authors were unable to experimentally verify the reaction
energy, and the level of development of quantum chemical
calculations at the moment would not have allowed them to
elucidate the reaction mechanism of such an electron-rich
system.

However, whereas tin dioxide (SnO,) has been successfully
synthesized in the gas phase exploiting flame spray pyrolysis
and droplet combustion techniques,*® no route has been
developed to prepare divalent tin monoxide (SnO) in a directed
synthesis. Here, we report the gas-phase preparation of tin
monoxide (SnO, XZ*) through the bimolecular reaction of
ground state tin atoms (Sn; 3P;) with molecular oxygen (O,; X3%g
) utilizing the crossed molecular beams technique.*’*® An
elucidation of elementary reactions at the microscopic level in

Primary
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QIODDEF Wheel

Secondary Beam

Cold Shield /

Journal Name

tandem with electronic structure calculations affords
remarkable insights into the intimate reaction dynamics
through which highly reactive subvalent oxides like tin oxide
(SnO, X1Z*) can be generated via a single collision event be-
tween the atomic tin and a prototype oxidant (O,; X3Zg) under
single-collision conditions in the gas phase through non-
adiabatic reaction dynamics. This reaction is also of
fundamental importance to the reaction dynamics community
as a benchmark of triatomic systems involving the ‘heavy’ main
group XIV element tin, which has been elusive until now, and
the comparison with the isovalent Si — O, *° and Ge — 0, *°
systems explored previously.

Table 1. Experimentally measured rate constants for reaction of Sn(*P;) with O,

Secondary
Pulsed Valve

T t
Method* k, cm®* molecule™ s eMperatiire Source
range, K
Shok tube, 10980 x e'11.7 K/ mol/RT 1350-2600 | Ref.®
ARAS 1079412003 @ ILSELIMO/RT 19355 _ 9750 | Ref, %0
Fast-flow 1071229 (T/K)%7® x
reactor. LIF e_3_5 kJ mol~/RT 380-1840 Ref. 41
Flash 1.05+0.08 x 10711 Ref. 42
as
. Sn(3Py): 2.1+ 0.1x10° 1 Ref. 43
photolysis
. Sn(3Py): 3.5+ 0.4 x10°1* 295
absorption
Sn(3P,): 8.2+ 0.5 x 1071* Ref. 44
Sn(3P,): 4.91 4 0.3 x 1071

* — ARAS — atomic resonance absorption spectroscopy, LIF — laser-induced
fluorescence

Experimental and Computational
Experimental

The gas-phase reaction of atomic tin (Sn, 3P;) with molecular
oxygen (O, X32g) was carried out under single-collision
conditions using the crossed molecular beams machine.*”>1 The
experimental setup, data acquisition, and data processing are
described elsewhere in detail.#’~*° Briefly, the reactant atomic
tin (Sn, 3P;) was generated in situ in the primary source chamber
by laser ablation (3mJ, 266nm, 30 Hz; Quanta-Ray) from a
rotating tin rod (99.98% Sn, Alfa Aesar) and seeding the ablated
atoms in a pulsed argon beam (Ar, 99.9999%; Airgas) that was

b ' | Source |l

Detector

Source | )

Figure 1. Experimental setup. (a) Side view on the cross point; (b) Top-view of the experiment with the detector.
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released from a piezoelectric valve operating at 60 Hz and a
backing pressure of 4 atm (Figure 1a). All five most abundant
isotopes of tin 2 were detected in the beam with the signal
ratios matching their natural abundance (Table 2). The atomic
tin beam was skimmed and velocity selected using a four-slot
chopper wheel; this achieved a peak velocity v, = 631 £ 22 m s~
1 and speed ratio S = 8.5 + 0.6. Neat oxygen gas (550 Torr, O,,
99.998%; Matheson) was used as a precursor to produce the
‘reactant two’ supersonic molecular oxygen beam (60 Hz, v, =
776 £20m s, S=15.6 £ 1.0) in the secondary source chamber.
Both molecular beams intersected at an angle of 90° in the
scattering chamber at a mean collision energy of Ec =13+ 1 kJ
mol~t. The reactively scattered products were ionized by
electron ionization at 80eV (2mA) at the entrance of the
rotatable detector, filtered according to m/z by the QMS
(Extrel, QC 150; 1.2 MHz), and detected using a Daly-type
particle ion counter (Figure S1).>3 Angularly resolved time-of-
flight (TOF) spectra were recorded at discrete laboratory angles
in 2.5° steps (Figure 1b). Operating the laser at half frequency
of the pulsed valves and sufficient length of the recorded TOFs
allowed an instant background subtraction (“laser-on” minus
“laser-off”) during the TOF recording.

To gain information on the reaction dynamics, TOF spectra
and the laboratory angular distribution (LAD) were transformed
from the laboratory to the center-of-mass frame by a forward-
convolution routine.>*>> This approach uses initially a trial
angular flux T(6) and translational energy P(Et) distributions in
the center-of-mass (CM) frame to simulate the TOFs and LAD
(laboratory data). CM functions were iteratively varied until the
best fit of the TOF spectra and LAD was achieved. Together the
CM functions constitute the reactive differential cross sections
1(6, u) ~ P(u) x T(B), where u — the CM velocity, 8 — angle in the
CM system. The reactive differential cross sections can be
represented as a flux contour map that depicts the probability
of the products to scatter at the specific angle (6) with the
specific kinetic energy (u).

Table 2. Theoretical and experimental ratios of signal for different tin isotopes in the
received atomic tin beam in Argon

1ZOSn IIBSn 118sn 117sn llﬁsn
Abundance 32.6% 8.6% 24.2% 7.7% 14.5%
Theoretical
ratio of 1 0.26 0.75 0.24 0.44
signal*
Experimental
o 0.25 0.74 0.24 0.49
ratio in 1
+0.01 +0.01 +0.01 +0.01
beam

*- ratio to the most abundant isotope 2°Sn

Computational

Being a heavy atom with 50 electrons, tin requires
consideration of relativistic effects by using a relativistic
effective core potential (ECP).56>8 28 electrons at the
1522522p63523pb3d10 set of orbitals of Sn are described by means
of Stuttgart ECP28MDF 57 and therefore, the number of
electrons on the tin atom explicitly included in the

This journal is © The Royal Society of Chemistry 20xx
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computations is 22 at the 4s24p®5s524d'05p? set of orbitals,
making the total number of electrons for the SnO, system to be
38. The hybrid wB97X-D density functional theory>® with
Dunning’s augmented correlation-consistent triple-{ basis sets
aug-cc-pVTZ (for O) and aug-cc-pVTZ-PP (for Sn) 565760 in the
Gaussian 09 software package ®' was originally applied to
optimize geometries and to compute vibrational frequencies of
the intermediates and transition states on the SnO, PES. All the
structures were subsequently reoptimized in Molpro 2015 ©2
utilizing the multireference second-order perturbation theory
(CASPT2) method 6364 with the augmented quadruple- basis
sets aug-cc-pVQZ (for O) and aug-cc-pVQZ-PP (for Sn) >6:57.60 and
with full valence active space containing 16 electrons
distributed on 12 orbitals (5s25p? for tin and two sets of 2s22p*
for oxygen). The CASPT2 wavefunctions used initial orbitals
taken from full valence, multireference complete active space
self-consistent field (CASSCF) calculations %6 with the same
guadruple-T basis sets.>6>7.60 All calculations were carried out
within the C, point group, with the numbers of orbitals included
in the active space (‘occupied’) and those kept closed being 17A’
+ 6A” and 8A’ + 3A”, respectively, thus resulting in 12 active
orbitals (9A’ + 3A”). It should be noted that in the CASPT2
calculations 4s?4p®electrons of tin and 1s2 of each oxygen were
treated as a core (5A’+1A”) and not included in single and
double excitations, with only 4d1° (3A’ + 2A”) electrons of Sn
involved beyond the active space. Thus, 26 electrons of SnO,
participated in the dynamic electronic correlation calculations.

The minimal energy structures on the seams of crossing
(MSX) between singlet (*A’) and triplet (3A” or 3A”) states and
between two different triplet states (13A’-23A’ or 3A’-3A”) were
located using Molpro 2015 using two alternative approaches.
First, the CASSCF(16,12) method with the Karlsruhe segmented
contracted, split-valence triple-{ def2-TZVPPD basis set
containing two sets of polarization functions and a set of diffuse
function 768 was employed for the conical intersection
optimization followed by CASPT2(16,12)/aug-cc-pVQZ-(PP)
single-point calculations for the MSX energy refinement. Where
the direct MSX optimization was unsuccessful, we utilized
CASSCF(16,12)/aug-cc-pVQZ-(PP) (PP relates only to Sn) and
CASPT2(16,12)/aug-cc-pVQZ-(PP) single-point computations to
carry out two-dimensional potential energy scans separately for
each state in relevant regions of the PES. Such regions were
identified based on the constructed potential energy diagram
for the electronic states involved.

Furthermore, the energies of the reactants and products
were calculated both at the coupled clusters ©°
CCSD(T)/CBS//wB97X-D/aug-cc-pVTZ-(PP) level with the
complete basis set (CBS) extrapolation from the values obtained
with the aug-cc-pVQZ-(PP) and aug-cc-pVTZ-(PP) basis sets for
isolated Sn, O, SnO, and O and at the CASPT2(16,12)/aug-cc-
pVQZ-(PP)/wB97X-D/aug-cc-pVTZ-(PP) level considering the
reactants Sn + O, and the products SnO + O as supermolecules,
with two fragments positioned sufficiently far from one another
so that their interaction is negligible. The two theoretical
methods used have resulted in practically the same reaction
energy. Finally, potential energy  scans at  the
CASPT2(16,12)/aug-cc-pvVQZ-(PP) level of theory were

J. Name., 2013, 00, 1-3 | 3
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implemented to explore the entrance O, addition channel for
the formation of an initial triplet intermediate and the exit O
elimination channel on the triplet PES and to verify barrierless
connections between the SnO, intermediates with
reactants/products.

Results and Discussion
Laboratory frame

The ratios of the natural isotope abundances of tin 116Sn, 117Sn,
1185, 119G, 120Sn, 12250 gand 124Sn are 14.5, 7.7, 24.2, 8.6, 32.6,
4.6 and 5.8%, respectively. Therefore, the reactive scattering
signal for tin monoxide (SnO) was initially monitored in the
range of m/z 132 — 141. The ratio of the collected signal of tin
monoxide at the center-of-mass angle nicely matches the
prediction from the natural abundance of tin isotopes (Figure
2). Non-zero signals at m/z = 137 and 139 arise from the
presence of 180 isotopes.

These raw data alone demonstrate a single reaction channel
via the emission of atomic oxygen (16 amu) and formation of tin
monoxide (116Sn160*, m/z = 132; 117Sn1%0*, m/z = 133; 1185n16Q*,
m/z = 134; 119Sn160*, m/z = 135; 120Sn160*, m/z = 136; 1225n160*,
m/z = 138; 124S5n160%, m/z = 140) in the reaction of atomic tin
with molecular oxygen. The corresponding TOF spectra were
collected at the best signal-to-noise ratio at m/z = 136 (Figure
3) and were then normalized to the signal at CM angle to obtain
the laboratory angular distribution (LAD). More than 2.5 x 10°
TOF spectra were recorded between 8.75° < © < 58.75° with the
tin beam defined as © = 0° direction. The LAD is rather wide,
starts at 53.75°, and extends beyond the range of the rotating
detector at small angles (less than 8.75°). The TOF spectra are
broad from at least 700 to 1500 us and peak between 750 and
900 pus. These findings propose that the tin monoxide products
were formed via indirect scattering dynamics through complex
formation involving SnO, intermediates. 477071

Center-of-Mass Frame

To further illuminate the underlying reaction mechanism(s)
accompanied by the potential involvement of intersystem
crossing (ISC), excited state surfaces, and non-adiabatic
reaction dynamics, a transformation of the laboratory data
from the laboratory reference frame into the center-of-mass
reference frame is accomplished using single channel fit of the
laboratory data and reaction (1):

1205n(3pj) + 1602(X3zg_) 9 1205n16o(X12+) + 160(3P)_ (1)

The best-fit CM functions are depicted in Figures 4a and b. The
error ranges of the P(E;) and T(8) functions are determined
within the 1o limits of the corresponding laboratory angular
distribution and beam parameters (beam spreads and beam
velocities) while maintaining a good fit of the laboratory TOF
spectra and LAD. The translational energy flux distribution P(E+)
(Figure 4a) contains valuable information about reaction
dynamics and thermodynamics. The derived P(Ey) distributions
exhibit a maximum translational energy release (Enay) of 76 £ 12

4| J. Name., 2012, 00, 1-3
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Figure 2. The ratio of the signal for the reaction of atomic tin with molecular
oxygen at the center-of-mass angle at different m/z. The blue bars are the
experimental results, red — predicted ratio according to the natural isotope
abundance of tin.
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Figure 3. (a) Laboratory angular distribution (b) and time-of-flight (TOF) spectra
recorded at m/z = 136 for the reaction of the tin atom with molecular oxygen at a
collision energy of 13 + 1 kJ mol. The circles represent the experimental data and
the solid lines are the best fits, the green atom is tin, red atoms are oxygen.
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Figure 4. (a) Center-of-mass translational energy P(E;), (b) angular T(B) flux
distributions, and (c) flux contour map for the reaction of the tin atoms with
molecular oxygen. The solid lines represent the best fit, while the shaded areas
indicate the error limits. For T(8), the direction of the tin beam is defined as 0° and
of the oxygen as 180°. The green atom is tin, red atoms are oxygen.

kJ mol=. Energy conservation dictates that for those molecules
born without internal excitation, E,a is the sum of the collision
energy (Ec) and the reaction energy. Taking into account the
collision energy of 13 + 1 kJ mol™3, the reaction energy was

determined to be exoergic by 63 *+ 13 kJ mol™. Thermodynamic
analysis of our experimental results proves the observation of
reaction (1) with stated electronic and spin-orbit levels. In the
case of the presence of only the Sn(3Py) in the beam reaction
energy would be —24 kJ mol™, while reaction energy calculated
for the Sn(3P,) provides a close match (=65 kJ mol™) with the
experimental data. Sn(3Pg) and Sn(3P,) are also present in the
beam but masked in the lower energy section of the CM
translational energy distribution (Figure 4a). Production of
higher energetic species SnO(a33*) or O(*D) drives the reaction
endoergic to +20872 or +166 kJ mol™, respectively. These
reactions are closed under our experimental conditions with E,
= 13 + 1 kI mol™l. The average translational energy of the

This journal is © The Royal Society of Chemistry 20xx
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products was derived to be 28 + 5 k) mol?, suggesting that 38 +
12% of the total available energy is channeled into the
translational degrees of freedom of the products, which usually
implies that the reaction mechanism proceeds through the
formation of a covalently bound intermediate.*”7%71 The
center-of-mass angular distribution T(8) can provide additional
information about the reaction dynamics (Figure 4b). The ‘flat’
T(B) reveals that products after a collision are scattered in all
directions with equal probability (isotropic scattering). The
forward-backward symmetry and intensity distribution also
propose indirect scattering dynamics via long-lived (longer than
their rotational periods) SnO, complex(es).”® Foresaid findings
are also enclosed in the flux contour map (Figure 4c), which
depicts an overall image of the reaction scattering process.

Reaction Mechanism

Now we combine our experimental results with electronic
structure calculations to unlock the underlying chemical
dynamics and reaction mechanism(s) of atomic tin oxidation in
the gas phase. For the Sn(3P) - 0,(X3%) reaction, both
reactants are in their triplet electronic ground states; since the
accessible products are tin monoxide (SnO, X!2*) and atomic
oxygen O(!D/3P), close scrutiny has to be attributed to the
triplet and singlet SnO, surfaces. Here, the computations
identified three singlet (i1, i4, and i8) and five triplet (i2, i3, i5,
i6, i7) SN0, intermediates, six transition states (tsl-ts6), five
singlet-triplet seams of crossings (MSX1la, MSX1b, MSX2,
MSX7, and MSX8), and eight triplet-triplet seams of crossings
(MSX3 — MSX6, MSX9 — MSX12).

The singlet surface (Figure 5, red) can be accessed via two
barrierless entrance channels: end-on addition with the
formation of a linear (SnOO, i4, C..,, 15*) or side-on addition
leading to a triangular (SnO,, i1, C,,, 'A;) intermediate. The
triangular intermediate i1 can undergo either Sn—O bond
rupture to i4 via a high barrier of 201 k) mol= or O-O bond
cleavage via a 99 kJ mol= barrier to the linear tin dioxide
structure i8 (OSnO, De.p, 12;). Both i4 and i8 only have an only
spin-allowed exit channel without a transition state to tin
monoxide SnO(X!2*) plus O(!D) with a total reaction
endothermicity of 121-166 kJ mol™! (depending on the initial
state of the Sn atom). On the triplet surface (Figure 5, blue), the
reaction can be initiated via the addition of ground-state tin to
one of the oxygen atoms of molecular oxygen leading to the
bent triplet intermediates i3 (£SnOO = 103°, C,, 3A”) or i5
(£Sn00=121°, C,, 3A’) via tiny barriers of 1 or 3 kJmol?,
respectively. Intermediates i5 and i3 can isomerize via
migration of the terminal oxygen atom to the tin atom accessing
a bent tin dioxide structures i6 (£OSnO = 101°, C,,, 3B,) and i7
(£0Sn0 = 68°, C,,, 3B,), respectively. Both i6 and i7 undergo a
barrierless, unimolecular decomposition to tin monoxide (SnO,
Cev, X12*) and ground state atomic oxygen (O(3P)).

Both ISC take place at the energies lower than that of the
products making these exit channels practically barrierless in
the reverse direction. Interestingly, the bent MSX11 structure
occurs early on the decomposition pathway of il lying 123
kJ mol! below the products, with the breaking Sn-O bond

J. Name., 2013, 00, 1-3 | 5
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Figure 5. Potential ener%y surface (PES) of the reaction of atomic tin (Sn, 3P;) with oxygen (O,, Xazg) . The italic numbers colored red, blue, black, and pink give the
energies at the CASPT2(16,12)/aug-cc-pVQZ-(PP) (PP relates to Sn) level of theory with ZPE at the wB97X-D/aug-cc-pVTZ-(PP) level of theory. The reaction energies of
the products are calculated using CCSD(T)/CBS(aug-cc-pV(T+Q)Z-(PP)//wB97X-D/aug-cc-pVTZ-(PP). The geometries of MSXs are either optimized at the
CASSCF(16,12)/def2-TZVPPD level of theory, with their single-point energies recalculated at the CASPT2(16,12)/aug-cc-pVQZ-(PP) level of theory, or located using two-
dimensional scans of the PES at the CASPT2(16,12)/aug-cc-pVQZ-(PP) level of theory. The energies are shown in k) mol=. For structures with C,,, D‘ff" Ignd (_ZI(,Q‘asymmetry,I

red. Detailed structura

electronic terms are given both for their highest point group and for C. The tin atoms are colored green, and the oxygen atoms are colore

parameters of the intermediates, transition states, and MSX are given in Figure S2 in ESI.

lengthened to 2.140 A. Alternatively, the linear MSX12
structure is late, only 26 kJ mol lower than the products and
with breaking Sn—0 bond of 2.430 A. The other exit MSX10 on
the pathway from i4 to the SnO(X'Z*) + O(3P) products resides
82 kJmol? above the products making this channel non-
competitive. Singlet-triplet crossings also connect il with i2
(MSX1a and MSX1b occurring in the close vicinity of i2), i1/i4
with i5 (MSX2 in the vicinity of singlet ts3), and i8 with i6 and i1
with i7 (MSX7 and MSX8, respectively, both located in the
vicinity of singlet ts6). The other MSXs are responsible for
internal conversion (IC) processes between different triplet
PESs. For instance, MSX3 and MSX4 lead from i2 to i3 and i5,
respectively, and reside lower in energy than i3 and i5. MSX5,
MSX6, and MSX9 play the role of barriers for the
interconversion of i3 to i5, i2 to i6, and i6 to i7, respectively.
Considering the energetics of the transition states, MSX, and
products, we can conclude that the most favorable reaction
pathways include spin-allowed and adiabatic Sn(3P;) + O,(X3Zg)
> ts1 > i3 > ts5 > i7 > SnO(XZ*) + O(3P), spin-allowed non-
adiabatic Sn(3P;) + 0,(X3Zg) > i1 > MSX1b > i2 > MSX3 - i3
- ts5 = i7 > SNO(XIZ*) + O(3P), SN(3P;) + 0,(X3Zg) > ts2 - i5
- MSX5 = i3 - ts5 - i7 — SNO(X1Z*) + O(3P), Sn(3P)) + 0,(X3Z5
) > i1 = ts6 - MSX8 - i7 > SnO(X'Z*) + O(3P), and Sn(3P)) +
0,(X3%7) > i1 > ts6 > MSX7 > i6 - SnO(X!Z*) + O(3P), and
spin-forbidden non-adiabatic Sn(3P;) + 0,(X325) - i1 - MSX11
- SnO(X'Z*) + O(3P) and Sn(3P)) + Ox(X3Zg) - i1 - ts6 -> i8 >
MSX12 - SnO(X'Z*) + O(3P). The competition between these
channels can only be theoretically evaluated through cost-

6 | J. Name., 2012, 00, 1-3

forbidden non-adiabatic ab initio molecular

simulations involving multiple triplet and singlet PESs.

dynamics

Conclusions

In conclusion, a merging of the electronic structure calculations
and crossed beam experiments expose the reaction dynamics in
the tin (Sn, 3P;) — molecular oxygen (O,, X3%;) system forming
tin monoxide (SnO, X!z*) along with atomic oxygen O(3P) in its
electronic ground state. The reaction can be initiated on the
singlet or triplet surfaces via additions of tin to the oxygen atom
leading to linear, bent, or triangular structures. On both
surfaces formation of tin dioxide structure is required prior to
unimolecular decomposition to SnO(X'Z*) and O(3P) on the
triplet surface and SnO(X'2*) with O(1D) on singlet PES. ISC and
IC play important roles in this system and extensively
interosculate singlet and triplet surfaces via singlet-triplet
(Figure 5) and triplet-triplet (Figure ©5) intersections,
respectively, via 13 minima on the seams of crossings (MSX).
Thus, the starting channel on the triplet surface that leads to
the barrier-free formation of triangular intermediate i2 (SnO,,
Cyv, A1) will be a cul-de-sac pathway in case of the absence of
IC. What is interesting, a more thermodynamically competitive
singlet surface without ISC channels has exit channels only to
thermodynamically unfavorable SnO(X!Z*) and O(!D), which is
not feasible under our collision energy of 13 kJ mol. However,
ISC offers direct barrier-free exit channels to SnO(X'Z*) and
O(3P) products from i1 and i8 and the influence of the singlet
surface on our experimental results cannot be excluded. The ISC

This journal is © The Royal Society of Chemistry 20xx
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is likely supported by the “heavy atom effect” of tin because the
inclusion of heavy atoms in the molecular structure enhances
the spin-orbit coupling between singlet and triplet states.”477
In general, studied reactions of atomic oxidation for elements
from XIV group (E=Si, Ge, Sn): 4950
E(P;) + 05(X32g) —> EO(X'2*) + O(°P/'D); (2)

follows a similar mechanism, with a singlet surface having exit
channels only to EO(X!2*) + O(!D) and triplet to EO(X'2*) + O(3P)
without ISC. Within the Si->Ge—>Sn series with increasing
atomic radius: (i) enthalpy of reaction channels to EO(X'2*) +
O('D) and to EO(X'2*) + O(3P) increases with equal steps around
~ 140 kJ mol=* for each channel: -303 > -170 - —24 kJ mol~
and —107 - +20 - +166 kJ mol™, respectively; (ii) ISC effects
enhances and expands.
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