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On Mixed Quantum/Classical Theory for Rotationally Inelastic
Scattering of Identical Collision Partners

D. Bostan, B. Mandal and D. Babikov*

Abstract: Mixed quantum/classical theory (MQCT) for the treatment of rotationally inelastic
transitions during collisions of two identical molecules, described either as indistinguishable or
distinguishable partners, is reviewed. The treatment of two molecules as indistinguishable includes
symmetrization of rotational wavefunctions, introduces exchange parity, and gives state-to-state
transition matrix elements different from those in the straightforward treatment of molecules as
distinguishable. Moreover, the treatment of collision partners as indistinguishable is eight times
faster. Numerical results, presented for H, + H,, CO + CO and H,0O + H,O systems, indicate good
agreement of MQCT calculations with full-quantum calculations from literature and show that an
a posteriori correction, applied after the treatment of collision partners as distinguishable,
generally produces good results that agree well with the rigorous treatment of collision partners as
indistinguishable. This correction for cross section includes either multiplication by 2, or
summation over physically indistinguishable processes, depending on the transition type. After
this correction, the results of two treatments agree within 5% for most but may reach 10-20% for
some transitions. At low collision energies dominated by scattering resonances these differences
can be larger, but they tend to decrease as collision energy is increased. It is also shown that if the
system 1is artificially forced to follow the same collision path in the indistinguishable and
distinguishable treatments, then all differences between the results of two treatments disappear.
This interesting finding gives new insight into the collision process and indicates that
indistinguishability of identical collision partners comes into play through the collision path itself,
rather than through matrix elements of inelastic transitions.

I. INTRODUCTION

Collisions of identical molecules play important roles in various environments in the
universe. Since H; is the most abundant molecule in space, the process of rotational energy transfer
in H, + H; collisions is of key importance for the modeling of star forming regions,! and therefore
it has been extensively studied using both theory?* and experiments.”"'° The second most abundant
molecule in space is CO.*** Describing the process of CO + CO collisions is important for the

modelling of cometary comas, in particular, for the comets that originate in the most distant and
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coldest parts of the Solar system (in the Oort Cloud)'! and for the interstellar comets that come
from the outside of Solar system.!?"'4 For the comets of Kuiper Belt (closer to Earth) the collisions
between water molecules, H,O + H,0, are expected to play important role in radiation transfer
under non-equilibrium conditions.!" The modelling of spacecraft entry into Martian atmosphere
requires the knowledge of CO, + CO, energy transfer cross sections,'>'¢ that are also important for
the atmospheres of many exoplanets. And of course, inelastic and dissociative N, + N, and O, +
O, collisions represent some of the most important processes in Earth’s atmosphere.!”!° In all

these and many other cases one must deal with identical collision partners.

When two identical molecules collide, the wavefunction of the overall system must satisfy
certain properties imposed by symmetry. Namely, the probability distribution should remain
unchanged if two identical molecules are swapped (exchanged). This property was incorporated
into quantum scattering theories by different authors, but in several alternative ways that lead to
several different versions of the final equation.>?? This issue created some confusion in the
literature concerning the inclusion of factor of 2 into the formula for state-to-state transition cross
sections.?>?* A user-ready inelastic scattering code, MOLSCAT,?>? has an option of treating two
colliding molecules as indistinguishable, still, some confusion remains and the debates about the
inclusion of the factor of 2 continue, up to this day.?’-?® But, besides the factor of 2, it also remains
unclear how important is the incorporation of collision partners exchange symmetry and what
effect it has onto computed state-to-state transition cross sections. Is it always necessary to include
the exchange symmetry of identical collision partners in the calculations, or can we neglect it at

least in certain cases?

One of the goals of this paper is to carry out the calculations of rotationally inelastic
scattering of identical molecules in two different ways: one treating collision partners rigorously
as indistinguishable with incorporation of exchange symmetry into the wavefunction of the
system, and the other without it, treating two collision partners as distinguishable. It is interesting
to find out how different the results of two approaches are, how this difference depends on collision
energy, and how it changes when we go from one molecule to another (here we consider H, + H,,
CO + CO, and H,0O + H,0O systems). For this, we use our recently developed mixed
quantum/classical theory,?3° which treats rigorously the rotational motion of two molecules using

time-dependent Schrodinger equation but employs Ehrenfest approximation to describe the
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relative translational motion of collision partners (their scattering) using mean-field trajectories.
This method is implemented in the code MQCT?3!'33 which permits to efficiently compute state-
to-state transition cross sections at different collision energies and for different molecular systems.
Another important goal of this paper is to ensure that the predictions of MQCT code are consistent

with results of full-quantum methods, including the aforementioned factor of 2.

II. THEORY

In this section we review those elements of the mixed quantum/classical theory of inelastic
scattering that are relevant to the property of indistinguishability of collision partners and make
difference in the cases of distinguishable and indistinguishable collision partners. This includes
rotational wavefunctions of molecular eigenstates, matrix elements for rotational state-to-state
transitions, and the formulae for calculations of state-to-state transition cross sections. MQCT
equations of motion remain the same in both cases and are not reviewed here for the purpose of
brevity (interested readers are encouraged to consult several recent papers).3*-37 For simplicity, the
theory is presented for a linear-rotor + linear-rotor case, appropriate for diatom + diatom systems
such as H, + H; and CO + CO. The most general case of asymmetric-top rotor + asymmetric-top

rotor (such as H,O + H,0) is mentioned where applicable.

II-A. Rotational wavefunctions

In MQCT the rotational motion of each molecule is described by active Euler rotations
relative to the molecule-molecule vector that connects centers-of-masses of two collision partners
and plays the role of the quantization axis (known as body-fixed reference frame).?® Then, A; =
(a1,B1,¥1) and Az = (a3,B2,y2) represent two sets of Euler angles that permit to describe rotations

of any two molecules. For linear rotors, only two Euler angles are needed, two quantum numbers

are used, and the rotational wavefunctions are known analytically (spherical harmonics): Yﬁ,}Ll

(B1,21) and Y{,le(ﬁz,az) for molecules “1” and “2”. Then, the rotational wavefunctions of the
overall molecule-molecule system are given by the following expression:38
+j1

amy = ) O Yo (B1@2) Yo, (Bots) (M)

my=—j;
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Here Cj:'lr,nml,jz,mz are Clebsh-Gordon coupling coefficients, j is the overall angular momentum
quantum number (sometimes called j, in the literature) varied through the range |j; — j,| <j <
Jj1 + j2, and m is projection of j onto the body-fixed quantization axis varied through the range — j
<m < +j. Overall, this gives (2j; +1)(2j, +1) quantum states of the molecule-molecule
system for any chosen values of j; and j, of the individual molecules, that determine what we will
call a “channel” (j{j,). Note that m, =m — m, is used in Eq. (1) since only in these cases the
values of Clebsh-Gordon coefficients are different from zero. Wavefunctions of Eq. (1) are used
in the case of distinguishable collision partners, and will be labelled below as | j1j2jm)a, a,, Which
emphasizes that molecules “1”” and “2”, described by the sets of Euler angles A; and A, are placed
in quantum states j; and j,, respectively.
We can also consider an alternative, energetically equivalent set of states given by:3®
+j1
| ju2JM)z, &, = Z C;;T,nml,jz,m—ml Y}r.)il(ﬂZ)O{Z) Yﬁ—ml(ﬁ 1,01) )
my=—j1

where molecules “2” and “1” described by the sets of Euler angles A, and A;, are placed in
quantum states j; and j,, respectively (in this order). Tildes are used to emphasize that this
configuration is obtained by swapping molecules “1” and “2”. In the case of indistinguishable

collision partners, the two choices, Egs. (1) and (2), are equally possible and two sets of

symmetrized wavefunctions can be obtained by superpositions:3®

| juzimdan, £ |J1j20m)a &
PR .m i — 2431 3
| jij2jm) 2505, ) (3a)

Besides the usual quantum numbers, these states are labeled by positive or negative exchange

parity (+) that corresponds to the sign in the numerator of Eq. (3a). §;,;, is the usual Kronecker

symbol that turns to one if two quantum states are identical but is zero other vice. It is possible to

show that this expression can be rewritten in the following form:32

jajm)t = ljjziman, £ pliziimia,a, Gb)
J1J2] 2040,

Note that in this formula the order of angles A, and A, is the same in both terms, but j; and j, are
swapped in the second term, which is a shortened notation that means that we use quantum state
Jj» for molecule 1, whereas quantum state j; is used for molecule 2. Importantly, the factor p which

appears in front of the second term corresponds to the inversion parity of the rotational state of the
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molecule-molecule system as a whole (the overall inversion parity). For a system of two linear-
top rotors, p = ( —1)/. For a system of two asymmetric-top rotors (as H,O + H,O) the expression
is more complicated:** p = (—1)/( —1)*1**2¢,&,, where K, and Kk, correspond to the para/ortho
character (0 or 1) of the two states, while £, and &, correspond to their inversion parities ( + 1).
It should be stressed that in the case when two molecules are in the same state, j; = j,
(which we will call a “pair” state, following Ref. 2%) the value of + p can only be positive, because
the negative value will annihilate the wavefunction. So, in the case of pair states only positive
exchange parity ( + ) is possible with positive inversion parity p = 1 (for even j states) and only
negative exchange parity ( — ) is possible with negative inversion parity p = —1 (for odd j states

within a channel).

It should also be noted that since the definition of the overall inversion parity p includes
(—1)/, and since the value of j is not fixed for a given channel (j,j,) but is varied through the
range |j1 — j2| <j <j1 +j2, we will have states with both positive and negative values of p
within the manifold of rotational states produced by the choice of (j,j;). Those states with even
values of total j will have p = 1, but those with odd values of total j will have p = —1. The only
exception is the trivial situation when, say, j; = 0, and therefore only one value of j is possible, j =
J2, in which case only one value of inversion parity is possible (that depends on whether the value

of j, is even or odd).

I1-B. State-to-state transition matrix elements

In the case of distinguishable collision partners the wavefunctions of Eq. (1) are used to
compute matrix elements of potential coupling for state-to-state transitions, as follows:
(/"lj’zj’m | V(R,A1,A2) | Jij2 jm), where prime is used to indicate quantum numbers of the final
states, while V(R, A1,A;) represents the potential energy surface of the system, with R being the
molecule-molecule distance. The potential coupling matrix is diagonal in m, but the values of
matrix elements depend on the order of states of distinguishable collision partners. Namely, in

general, the matrix element given above is different from the matrix elements where the (initial or

final) states of two molecules are swapped, such as (j’lj’zj’m|V(R,A1,A2)| jzjljm) or

(inm | VRALAL) | j1jajm).
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In the case of indistinguishable collision partners the wavefunctions of Eq. (3) are used to

compute matrix elements:

+
(iam|VRALAL) | j1jzjm)

(jsim | V(RALAL) | jrjaim) 4)
1 + p X(dﬂéj'mIV(R'A1,A2)I]'z]'l]'mg
T p xXUyym|V(RALAR) | j1j2jm
\/2(1 +9 1112)2(1 + 61112) + pp’ X (/'zjij"m | V(R,A1,A2) |fzflm)

Here p and p’ represent the inversion parity (defined above) for the initial and final states of a two-
molecule system. The four terms correspond to all possible combinations of swaps of the initial
and final states and describe four physically indistinguishable transitions: (j1j2)= (j1j2), (j2j1)
= (J1J2), G1j2)— (j2j1) and (joj1)— (j2j1) but, the symmetry of interaction potential permits to

simplify this expression, as follows:

+
(jsim | v(aLA,) |jﬂzjm)

((I;l]"z]"m || V(A1) ||jljzjm)) (5)
+ poar oy V A ,A PR
J(1+ 5, )1 +35, ) L TPV ™ (AuA2) | j2j1jm

Here we adopted the form where a swap in the initial states is used, with one final state. This
formula is implemented in the MQCT code. An equivalent expression where only the final state

quantum numbers are swapped can also be employed.

It should be noted that only transitions between states within the same exchange parity are
allowed (the parity changing transitions are forbidden). Therefore, the calculation of two matrix
elements for indistinguishable collision partners, those two in Eq. (5) for transitions between
positive and negative exchange parity states (&), requires the same numerical effort as calculations
of two matrix elements for transitions (jij,)— (j9j>2) and (jpji)— (j1j>) in the case of
distinguishable collision partners. But, if the two molecules are treated as distinguishable (as if
they would be entirely different, say CO + H,), we would also have to compute two more matrix
elements, those for transitions (j1j)— (j>j1) and (jj1)— (j>j1) since they represent physically
different processes with different potential couplings. This is easy to understand if we pick up a

set of arbitrary quantum numbers for, say CO + H,, and try to swap them: for example (0,2)—(4,6)
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, (2,0)—(4,6), (0,2)—(6,4) and (2,0)—(6,4). One can immediately see that neither of these
transitions are equivalent. Therefore, the calculation of matrix elements for indistinguishable
collision partners is a factor of two cheaper, compared to the case of distinguishable molecules.
This is true for non-pair <> non-pair, and for pair <> non-pair transitions. The only case when the
numerical effort for computing matrix elements is the same in distinguishable and
indistinguishable approaches corresponds to pair < pair transitions such as (2,2)— (4,4), when
only one matrix element is needed in either case, but these transitions are relatively rare compared

to the other two types of transitions.

The other source of different numerical cost in distinguishable and indistinguishable
treatments comes from a set of states included (and the number of matrix elements used) in the
actual calculations of molecule-molecule collision. Namely, if the collision partners are treated as
distinguishable then all states need to be included in the basis set expansion of rotational
wavefunction, and all transitions considered at the same time. In the example of CO + H,
considered above, this would include all four states: (0,2), (2,0), (4,6) and (6,4) with all possible
state-to-state transition matrix elements. In the case of indistinguishable partners we have to run
two separate calculations of molecule-molecule collision: one with only positive exchange parity
states in the basis (i.e., symmetrized (0,2)* and (4,6)" with their corresponding transition matrix
element) and the other with only negative exchange parity states in the basis (symmetrized (0,2)™
and (4,6)~ and their corresponding transition matrix element). This property leads to a significant
reduction of numerical cost during the calculations of collision. Although two runs are needed in
the case of indistinguishable molecules, the cost of each such run is much cheaper than in the case
of distinguishable molecules, because it scales polynomially with respect to the size of rotational
basis set. For example, it was found that the cost of AT-MQCT calculations (where AT stands for
adiabatic trajectory approximation)®!'-3? scales about quadratically with respect to the basis set size.
Therefore, reducing the basis set size by two, and running two independent calculations is overall

cheaper, by about a factor of two.

I1-C. State-to-state transition cross sections
We outline the case of distinguishable molecules first. In MQCT, as in many other time-
dependent methods, the collision starts with the wavefunction set up to represent a chosen initial

state of the system | j;j,jm) and the evolution of probability amplitudes a(t) for various final
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states | jj5j'm’) is computed during the course of collision, for various values of the molecule-
molecule orbital angular momentum # that correlates with collision impact parameter and is varied

from zero to some ¥, (Which is a convergence parameter). At the final moment of time, these

probability amplitudes are used to compute opacity functions for all final channels (j7j5) as

follows:
JitJ% )
p® Z z a® | (6)
Jujzim=iijs Qi jjrm
J=li—jxl m'=

The double sum in Eq. (6) covers all degenerate final states within the final channel, namely, all j’
states possible for a chosen pair of (j}j5), and all m’ states within these values of j'. Using these
opacity functions, cross sections can be computed in a straightforward way as a sum over ¢ (i.e.,

over impact parameters):

gmax
_ T @ (7)
Oj1jaim—jriz = 2uU Z @+ 1) P111 2Jm=jijz

Here U is the kinetic energy of collision and u is the molecule-molecule reduced mass. However,
in order to permit a more detailed and direct comparison with full-quantum methods, in the MQCT

code we first compute partial cross sections labeled by the total angular momentum J:

J+j
Juzim=jijz o 2uU 25 + 1 _Jd2im=ji2
=/l
and then sum them over J:

]max
o .= ¢ ©)
J2jm=J1j2 JUsz—Uuz

Jj=0

We showed analytically,*® and checked by many calculations that the result of Eq. (7) is equivalent
to that of Egs. (8-9). For the elastic scattering channel, a special procedure is adopted that includes

the scattering phase §(£):4

max

2
) i5(2 (10)
O jajmoiify = Z (2¢+1) [1 \/P ujaimeagy € )]

which will not be emphasized here. Finally, the cross section is averaged over all degenerate states

j and m possible within the initial channel (j;j,):
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Jitj2 +Jj

1
Gt = Z(, (1)
J1j2—J1>2 (2]'1 + 1)(2]'2 + 1) =2 = Ju2Jm—=j1j>

Since MQCT trajectories are identical for positive and negative values of m, the code propagates

trajectories for non-negative values of m only, and then computes the second sum in Eq. (11)

through a reduced range as

+ +J
2
Tjvjaim=iriz = L1 + 8,4 Jui2m=i
m=—j m=0 m

The denominator of Eq. (11) is computed in MQCT code as (jmax + jmin + 1) Gmax — Jmin + 1),
where j.x = j1 +j2 and jin = |j1 — j2|- Finally, the Billing scaling factor (U/E) is applied to
rescale cross section,*! as described in detail elsewhere.*243 Equations similar to (6)-(11) and a
discrete sampling of angular momenta for classical calculations have been derived and discussed
previously for atom-diatom collisions.**

The expressions given above are used in the regular MQCT calculations, when the
trajectories are sampled and propagated for all values of j, m and €. Another option in the MQCT
code is to sample N trajectories randomly, in which case an expression for Monte-Carlo cross

section can be obtained from Egs. (6, 7, 11):

N
T { +1 .
o, = max Z w®(2¢ + 1)P? (12)
i=1

Jua=ivz T U N Ju2jm=jijz

Here the sum is over randomly sampled trajectories (few hundred is typically enough) and w(® is
the weight of each trajectory, used to count the number of random hits that produce the same
trajectory. Again, only the trajectories with non-negative values of m are sampled, but the
contribution of negative values is taken into account by making the “bins” for positive m twice

larger than that for m = 0, which gives larger values of their sampling weights w(®,

I1-D. Cross sections for indistinguishable collision partners
Considering the fact that for identical collision partners there are two exchange parities that
determine whether the transition is allowed or not, cross section should be calculated using two

terms responsible for two exchange parities:20.22
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— it - —
O: . : L. =WTal . . L., tw o, . .
J1j2Jm=j1j2 J1j2Jm—j1]> J1j2Jm=j1j2

(13)
Here the first term corresponds to transitions within positive exchange parity states while the
second term represents transitions between states with negative exchange parity. The factors wt
and w~ are statistical weights calculated using nuclear spin I of the molecule: wt
={+1)/2I+1),w =1/(2] + 1).22 Note that for para-H,, CO and para-H,0 considered in
this work the total nuclear spin /= 0, and therefore we have wt =1 and w™ = 0.

It should also be noted that in the full-quantum calculations for identical collision partners
the value of orbital angular momentum ¢ affects matrix elements,?*?? introducing an additional
factor ( —1)? into the second term of the quantum analogue of Eq. (5). Due to this, the coupling
between states of given exchange parity is introduced either only by even or only by odd values of
£ (depending on the value of inversion parity p of the state). This effect does not occur in the
MQCT matrix elements, because here the scattering process is treated classically, but it can easily

be taken into account during the calculation of MQCT cross sections, as follows. After the first

run, done with positive exchange parity states, with matrix elements

(j’lj’zj’m|V(R,A1,A2) | jljzjm)+ and for all values of #, two cross sections are computed:

Hev) - and g4 using only trajectories with even and only trajectories with odd values
Juizim=jij? Jij2jm=j1j>
of ¢, respectively. After the second run, done with negative exchange parity states, with matrix

elements (]1]2]177. | V(R,A1,A2) | jljzjm)_ and for all values of £, two more cross sections are

_ +(odd . . . : .
computed: o, (evm) " and gtD , again, using only trajectories with even and only
Jijzjm=j1j? Jijzjm=j1j%

trajectories with odd values of £, respectively. These four cross sections can be combined into:

+ +(odd
ot =gl g gtedd (14a)
Juizim=j1j% Juzim=jiz T ju2im=ji
and
— —(odd —(evn
o7, . =g, 0 e (14b)
Jiizim=j1j% Juzim=jiz T ju2im=jij3

that can be substituted into Eq. (13). In the code, these contributions are simply accumulated over

the two runs for indistinguishable collision partners using appropriate statistical weights, as

follows:
oo =wre Y g 09D
J1j2jm=J1)2 J1j2jm—j> Jij2jm=j1> (15)
—_ —(evn +(odd
+wg, & + wtg 4D
J1j2jm=j1j5 J1j2jm—=j1j5

10

Page 10 of 34



Page 11 of 34

Physical Chemistry Chemical Physics

It is easy to check that this method gives the desired result. It is also important to note that if one
of the weights w* or w™ is equal to zero, then we need only one half of trajectories, which offers
another factor of two advantage for the treatment of identical collision partners as
indistinguishable. For example, for all molecular systems considered here w— = 0, which means
that there is no need to propagate trajectories with odd values of £ for the initial states of positive
exchange parity, and no need to propagate trajectories with even values of £ for the initial states
of negative exchange parity (because their contributions would anyway be multiplied by w— = 0).

In the Monte Carlo calculations for indistinguishable collision partners the same idea is
implemented by random sampling of exchange parity ( + ) simultaneously with random sampling
of the quantum numbers j, m and ¢, and introducing statistical weight into Eq. (12) for cross

section:

N
T #max+12 (i ® 1
= + (D (16)
Onente T ouu TN LY CL )

i=

The value of wt here is either w* or w—, depending on the combination of initial state’s exchange

parity ( + ) and the value of ¢ for a given randomly generated trajectory, as summarized in Table

1.

Table 1: The dependence of statistical weight w on initial conditions in Monte-Carlo MQCT

calculations.
O??;ﬁ?;iiﬁ:r(iti Orbital angular Statistical weight
) - momentum, ¢ for Eq. (16)
+ Even wt
+ Odd w—
- Even w—
- Odd wt

Finally, in the case of indistinguishable collision partners, the cross section computed using
regular sampling of trajectories, Eq. (15), or the Monte-Carlo cross section computed using

random sampling, Eq. (16), either must be multiplied by a factor of (1 +§;,;,)(1 + 6, ;.) that

originates in the quantum treatment of scattering.?* This factor, properly included in the latest

11
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update of the MQCT code, leaves unchanged the values of cross sections for non-pair <> non-pair
transitions, while the values of cross sections for pair «» non-pair transitions are doubled, and the

values of cross sections for pair < pair transitions are multiplied by four.

II-E. Differences and similarities between the two methods

Table 2 summarizes all differences between theories for distinguishable and
indistinguishable collision partners and explains how one can use a conceptually simpler
distinguishable approach in the case of identical collision partners to approximately match the
results of rigorous but more involved method (where the collision partners are treated as
indistinguishable). Here M, is a shortened notation for matrix element of n—n’ transition, where

n represents a set of quantum numbers for the initial state |j;j,jm), n’' corresponds to the final

state (j'j5j'm|, while 71 is a set of swapped quantum numbers |j,jjm).

In the simplest case of pair — pair transition, given in the first row of Table 2, only one
matrix element is computed in the case of distinguishable molecules, and exactly the same matrix
element is obtained from Eq. (5) in the case of indistinguishable molecules. Recall that in this case

only one exchange parity is possible (only “ 4+ or only “ — ”, depending on inversion parity p,
that in turn depends on the value of j). The factor (1 + 6, ]-2)(1 +6; j’z) = 4 is applied, but since

only one exchange parity is possible, the trajectories are propagated for one half values of £ (only
even or only odd, depending on exchange parity). Therefore, the last column of Table 2 indicates
that, in order to match the results of indistinguishable approach, the cross section obtained from

the distinguishable calculations must be multiplied by 2.

Next row in Table 2 deals with pair — non-pair transition, in which case, again, two matrix
elements in the numerator of Eq. (5) are equivalent, therefore, only one parity is present in the
calculations for indistinguishable partners. If two identical molecules are treated as
distinguishable, the two corresponding matrix elements are equal (as indicated in fifth column of
Table 2) and give the same cross sections. The total cross section can be computed as a sum of
these (see the last column of Table 2). For example, if two identical molecules are treated as
distinguishable, then cross sections for transitions (2,2)—(4,6) and (2,2)—(6,4) will be the same

and should be added together to obtain cross section comparable to that of the indistinguishable

12
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treatment (or, equivalently, one of them should be multiplied by 2). This analysis implies that
transition probability, and the resultant cross section, are determined by the square of transition

matrix element.

Table 2: Comparison of matrix elements and cross sections for identical molecules treated as

distinguishable and indistinguishable collision partners.

Transitions Indistinguishable Distinguishable
) . M, X2 é 1
Pair to Pair nn2 , one exchange parity =fa§f°r Jof? One M,,,, Oy X 2
: M, X2 8, Tn ¥ O
Pair tO. —___ one exchange parity actor 2 of £ My = Mz " -
Non-Pair V2 =2 2 (or 0,y X 2)
-Pai M, X2 Oppy X 2
NonPPg Ir to —_—  one exchange parity (S_facztor % of £ My = My "
air V2 = (or Oppy + Tiy)
. Mt=M,, +pM;, Ofact.
Non-Pair to n " actor all £ M, # M Onn + Oy
Non-Pair two exchange parities =1

Similar, for non-pair — pair transition, described in the third row of Table 2, only one
exchange parity exists (that of the final state), two matrix elements and two cross sections are
equivalent (e.g., those for transitions (4,6)—(2,2) and (6,4)—(2,2) in the example discussed
above) and an approximation to the total cross section can be obtained as one of them multiplied
by 2 (or as a sum of two cross sections), as indicated in the last column of Table 2. Note that since
only one exchange parity is allowed, the number of trajectories is reduced by a half, keeping only

even or only odd values of ¢ (depending on j").

Only in the case of non-pair — non-pair transition described in the last row of Table 2, two
exchange parities exist for each state in the indistinguishable treatment and two matrix elements
are different in the distinguishable treatment leading to two different cross sections (e.g., for

transitions (0,2)—(4,6) and (0,2)—(6,4) in our example). These must be added together to

13
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obtain approximation to the total cross section of the indistinguishable case (see last column of

Table 2).

Overall, from the last column of Table 2 it follows that, all cross sections obtained from
the treatment of collision partners as distinguishable are roughly twice smaller (compared to those
obtained from the rigorous treatment of identical collision partners) and therefore they need to be
either multiplied by 2 or summed over physically indistinguishable transitions. A similar strategy
was used in the recent paper on CO + CO collisions.?® This simple prescription neglects quantum
interference effects but is expected to be reasonably accurate in the limit of high collision energies.

This hypothesis is tested by calculations in the next section.

II1. RESULTS OF CALCULATIONS

In order to check that our equations and the code are correct, we, first of all, carried out
calculations for a simple well-studied system H, + H,. For this case, state-to-state transition cross
sections are available from calculations carried out by three different groups, computed using
different codes, and different variations of a full-quantum scattering approach.2>¢ Importantly,
those three sets of results are in good agreement with each other and therefore represent a reliable
benchmark. In all cases the two H, molecules were treated as indistinguishable. In Fig. 1 we
compare cross sections for transitions (0,0)—(2,0), (2,2), (4,0), (4,2) and (4,4) in H, + H,
system, as a function of collision energy, obtained from our MQCT calculations to that from Lee
et al? Solid green lines were obtained in a direct way, using the ground state (0,0) as the initial
state in MQCT calculations, while dashed red lines were obtained “in reverse”, running five
calculations with the initial states (2,0), (2,2), (4,0), (4,2) and (4,4), taking cross sections for
their quenching onto the ground state (0,0), and then using the principle of microscopic
reversibility to obtain the excitation cross sections.3#243 Therefore, Fig. 1 covers ten state-to-state
transition processes among which four are pair — pair, three are pair — non-pair and three are non-

pair — pair. We see a reasonably good agreement in all cases. The differences between MQCT
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Figure 1: Inelastic cross sections for transitions from ground state (0,0) to five lowest excited
states in H, + H, system. Black solid lines correspond to full quantum data from Lee et al.?
Green solid line is CC-MQCT results obtained from direct calculations, while red dashed lines
are results obtained in “reverse” using microscopic reversibility.

and full-quantum calculations are small, much smaller than would be introduced by a missing
factor of 2, indicating that all symmetry related factors were taken into account correctly.

In Fig. 2 some of these transitions are shown in the low energy range, where the results of
Gatti et al’ and Lin and Guo® are also available. We note that all four calculations were done using
the same potential energy surface, but three full quantum calculations were done using slightly
different methods. Namely, Lee et al used a time independent coupled-channel (CC) method, Gatti

et al used a time dependent wave-packet method, while Lin and Guo used a time dependent method
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with Coriolis coupling neglected (CS wave-packet). The agreement between MQCT results and
the results of three full-quantum methods for H, + H; is good without any empirical adjustments.
Some differences at higher energies are likely to be due to different basis sizes. This level of
accuracy is typical to the MQCT method. A similar level of agreement was found in our recent

calculations for CO + CO,* treated there as distinguishable collision partners in both MQCT and

full-quantum calculations.?®

inelastic cross section (10'1scm2)

Figure 2: Inelastic cross sections for transitions from ground state (0,0) to three lowest excited
states in H, + H, system. Black solid lines correspond to full quantum data from Lee et al,?
black dashed lines are the results of Gatti et al’ and black dotted lines are those of Lin and Guo.°
Green solid lines are CC-MQCT results obtained from direct calculations, while red dashed
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lines are results obtained in “reverse” using microscopic reversibility.

In Fig. 3 we compare the results of two MQCT calculations, one in which the two H;
molecules were treated as indistinguishable (same as in Figs. 1 and 2) and the other where the two
H, molecules were treated as distinguishable, using a simplified approach outlined in Table 2
above. Two upper frames of Fig. 3 give examples of pair — pair transitions, two frames in the

middle of Fig. 3 are examples of pair — non-pair transitions, and two frames at the bottom are non-
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pair — non-pair transitions. We see that the differences are very small, hard to identify on the scale
of Fig. 3. It is important to note that the collision energy here is quite large (2 eV ~ 16,130 cm™!),
considering a relatively weak interaction of hydrogen molecules (~ 25 cm! in the attractive well).
This explains why the identical molecule exchange symmetry, being a weak quantum effect, plays

very little role in these calculations.
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Figure 3: Inelastic cross sections for H, + H; system obtained by CC-MQCT calculations. Solid
red lines correspond to the treatment of collision partners as distinguishable, while dashed blue
lines are results of rigorous treatment of identical collision partners as indistinguishable.

To make small differences between the results of distinguishable and indistinguishable
treatments easier to see in the figures, we computed the ratio of cross sections obtained from the

two treatments (indistinguishable over distinguishable) and plotted this ratio as a function of
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collision energy. Using the prescription of the last column in Table 2, we included in the factor of
two (or summation over indistinguishable channels) as appropriate, to ensure that in the high
energy limit this ratio approaches one. All results for H, + Hp, CO + CO and H,O + H,O are
presented in Figs. S1, S2 and S3 of Supplemental Information and the readers are encouraged to
inspect these data. For H, + H, we found that the differences between distinguishable and
indistinguishable treatments are negligibly small for pair <> pair transitions, are within few percent
for non-pair <> non-pair transitions and are somewhat larger for pair «<» non-pair transitions al low
collision energies, but even in that case the difference is relatively small, within 7% of cross section
values (see Fig. S1). Moreover, as collision energy is raised to £ ~ 16,130 cm™! this difference
monotonically decreases to ~ 3%.

For CO + CO and H,O + H,O the behavior is overall similar to that for H, + H,, but several
important differences are worth mentioning. First of all, the dipole-dipole interactions in these
systems lead to deeper potential energy wells, capable of supporting multiple scattering resonances
at low collision energies. The positions of these resonances are slightly different in the cases of
indistinguishable and distinguishable treatments, which results in much larger (accidental)
differences between the two and leads to non-monotonic behavior of the ratio. This is observed
near collision energy E ~ 100 cm™! in the case of CO + CO (Fig. S2) and up to £ ~ 500 cm! in the
case of H,O + H,O (Fig. S3). In this paper we will not focus on low energy resonant features, since
the range of MQCT applications is at higher energies where the relative motion of collision
partners can be described classically. Importantly, we found that as the collision energy is
increased above resonances, the ratio of cross sections obtained by indistinguishable and
distinguishable treatments approaches unity for both CO + CO and H,O + H,O systems, just like
in the case of H, + H,. A typical example is given in Fig. 4, where we present some of our results
for CO + CO system including 12 different pair « pair transitions in the upper frame, 45 different
pair & non-pair transitions in the middle frame, and 27 different non-pair <> non-pair transitions
in the lower frame. The states of CO molecule up to j = 4 are included.

In Fig. 4 we see that for pair < pair transitions (upper frame) the differences between
indistinguishable and distinguishable treatments of CO + CO are very small for all energies above
the scattering resonances. For pair < non-pair and non-pair < non-pair transitions the differences
between indistinguishable and distinguishable treatments of CO + CO are visible, but remain

relatively small, within 5% for the majority of considered transitions and they tend to decrease as
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collision energy is raised. There are, however, several transitions where the differences up to 14%
were observed (indicated in Fig. 4 by red labels). The origin of these differences was investigated

in detail and is presented in the next section.
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Figure 4: Ratios of inelastic cross sections for CO + CO obtained by treating collision partners
either as indistinguishable or distinguishable in CC-MQCT calculations at different collision
energies. Top frame displays data for pair < pair transition, middle frame for pair < non-pair
and lower frame for non-pair < non-pair transitions. Transitions are grouped by their initial
states (j1j,) and each initial state is assigned a certain color of symbols: blue for (00), orange
for (11), dark green for (22), light blue for (10), violet for (20), and light green for (21). A
complete list of included transitions is given in Table S3 of Supplemental Information. Several
transitions with large deviations of the ratio from unity are labelled. Some of them are further
explored in Fig. 5.
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IV. DISCUSSION

The results presented in Figs. 3-4 above, and in Figs. S1-S3 of the Supplemental
Information indicate that, overall, the treatments of identical collision partners as distinguishable
or indistinguishable lead to very similar results (besides the factor of 2 that can easily be taken into
account a posteriori). The differences between the two methods can be larger in the low-energy
regime dominated by scattering resonances, but at higher energies the differences are typically
within 5% and tend to decrease with increasing collision energy. Some transitions show larger
deviations, and we used these cases to trace the origin of differences. We investigated several of
these transitions and present three examples here. The first is (20)—(00) transition in CO + CO
that belongs to non-pair — pair type and exhibits 14% difference between indistinguishable and
distinguishable treatments when the collision energy is 1500 cm-!. For this process in Fig. 5 we
plotted partial cross sections (as a function of orbital angular momentum quantum number )
obtained using the two treatments of CO + CO partners. Three frames of the figure correspond to
three (jm) components of the initial state indicated as superscript: (j1j)Y™ = (20)20, (20)21,
(20)22. The factor of 2, or summation over physically indistinguishable transitions, has already
been applied prior to plotting Fig. 5, to correct the results of distinguishable treatment. From Fig.
5 we clearly see that for large values of impact parameter, £ > 150, the two treatments give nearly
identical results. For the intermediate range of impact parameter, 100 > ¢ > 150, the
dependencies of partial cross section look very similar for the indistinguishable and distinguishable
treatments and show all the same features of the transition but appear slightly shifted one with
respect to another. For even smaller impact parameters, £ < 100, this shift increases and eventually
leads to a different behavior of cross sections near £ ~ 50. In this range, partial cross sections for
the (20)2° component of the initial state (upper frame of Fig. 5) are quite different in the two

methods, producing the aforementioned difference of 14% in the total cross section.

The second example is (20)—(30) transition in CO + CO that belongs to non-pair — non-
pair type and exhibits 6% difference between indistinguishable and distinguishable treatments
when the collision energy is 1500 cm!. For this process we plotted partial cross sections in Fig. 6.
Again, we clearly see that for £ > 150 the two treatments give nearly identical results but appear
shifted one with respect to another for smaller impact parameters. The major difference comes
from £ ~ 50 and mostly from the (20)?° component of the initial state (upper frame of Fig. 6),

which explains the difference of total cross sections in the two methods.
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Finally, in Fig. 7 we plotted the results for (111099)—(211211) transition in H,O + H,0O

system at collision energy 1000 cm-!. For this transition of non-pair — pair type the difference of
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total cross sections obtained by the two treatments is more significant, about 20%. Again, we
clearly see that this difference comes mostly from partial cross sections with smaller impact

parameters, £ < 100, and the results of two treatments appear shifted one with respect to another.

(111099)*° = (211244)

3 | [ndistinguishable
Distinguishable

Partial cross sections (A?)

(111000)11 = (211244)

Partial cross sections (A?)

0 50 100 150 200
£

Figure 7: Comparison of partial cross-sections for transition (111099)—(211211) of non-pair —
pair type, obtained using two treatments of H,O + H,O partners: indistinguishable (blue lines) and
distinguishable (red lines) at collision energy 1000 cm'!. Two frames correspond to two jm
components of the initial state, labelled as (1110¢0)/™ in the figure. CC-MQCT method is used.

From these three examples, and several other transitions we investigated in detail in H, +
H,, CO + CO and H,0 + H,0 systems, we came up with two conclusions. First, it becomes clear
that indistinguishable and distinguishable treatments of collision partners explore the same
landscape of interaction, but in slightly different ways, which manifests as a shift of partial cross
section dependencies (transition probabilities) with respect to the orbital angular momentum ¢ (or
collision impact parameter). The contributions of trajectories with large values of £ are essentially
the same in the two treatments, which makes the overall results very similar. Importantly, the
differences between the two treatments originate in the trajectories with small values of ¢ that
correspond to small impact parameters, strong encounters and significant deflections of collision

partners.
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Still, concerning those MQCT trajectories where the results of indistinguishable and
distinguishable treatments are different (at small values of £), we would like to understand what
exactly makes them different. In Fig. 8 we plotted the off-diagonal (inelastic) and diagonal (elastic)
matrix elements for indistinguishable and distinguishable treatments of (20)—(30) transition in
CO + CO investigated in Fig. 6 above. First consider the behavior of the off-diagonal matrix

elements (upper frame of Fig. 8). In the treatment of collision partners as distinguishable they
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Figure 8: Upper frame: Off-diagonal matrix elements for (20)—(30) transition in CO + CO
described as indistinguishable (blue lines) or distinguishable (red lines) collision partners. Two
red curves are combined to obtain two blue curves according to Eq. (5). Lower frame: Diagonal
matrix elements for the same initial state described as indistinguishable (blue lines) or
distinguishable (red and green lines) collision partners. Red and green curves are combined to
obtain two blue curves according to Eq. (5).
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describe (20)—(30) and (02)—(30) transitions, red curves in Fig. 8. In the treatment of collision
partners as indistinguishable they describe (20)*—(30)" and (20)™—(30)~ transitions, blue
curves in Fig. 8. One can see that, as a function of R, all four off-diagonal matrix elements behave
quite differently, and it is very tempting to say that these differences are responsible for small
differences between inelastic cross sections obtained by indistinguishable and distinguishable
treatments. However, one must realize that different rotational basis sets in the indistinguishable
and distinguishable treatments (of the same physical system of identical collision partners) are
mathematically equivalent and although the off-diagonal matrix elements look very different in
those two treatments, we found that they would produce exactly the same inelastic transitions if
the system were carried through the same path during the collision process (as we will demonstrate
further below by a numerical experiment illustrated by Figs. 9 and 10). The treatment of identical
collision partners as indistinguishable gives us, merely, a more convenient and economic basis set

for the description of inelastic transitions, but the two basis sets are, actually, equivalent.

Now let’s look at the behavior of the diagonal matrix elements (lower frame of Fig. 8). For
the treatment of collision partners as distinguishable they describe (20)—(20) and (02)—(02)
processes (red) that overlap in the figure, while for the treatment of collision partners as
indistinguishable they describe (20)*—(20)* and (20)~—(20)~ transitions (blue). Once again,
we see that, as a function of R, these diagonal matrix elements behave quite differently. This is
explained by the fact that in the indistinguishable case the matrix elements (20)¥—(20)* are
computed using Eq. (5) as constructive and destructive superpositions of matrix elements for
transitions (20)—(20) and (02)—(20), out of which the former is a true elastic process with large
probability, while the latter is actually an inelastic process with smaller probability (green curve
in Fig. 8). Note, however, that this transition, corresponding to an inelastic scattering process, is
also present as an off-diagonal element in the distinguishable particle treatment. This explains why
the matrix elements for (20)*—(20)* and (20)~—(20)~ are different one from another and are
different from the original (20)—(20) matrix element, that in turn is identical to (02)—(02)

matrix element.

We found that differences between the two treatments come exclusively from differences
in the diagonal matrix elements, that govern the evolution of system along the mean-field

trajectories that are nearly elastic (since inelastic transition probabilities are usually small). These
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trajectories are somewhat different in indistinguishable and distinguishable treatments, which
manifest as the “shifts” of partial cross sections in the range of small impact parameters (seen in
Figs. 5, 6 and 7 for £ < 150) and leads up to 20% differences of the total cross sections (seen in
Fig. 4 and Figs. S1-S3). This explanation makes sense on a qualitative level, because the largest
differences between the two treatments are observed at small impact parameters, when the

trajectories penetrate deeper into the interaction region and the effect is expected to be larger.

To offer a rigorous quantitative proof of this explanation, we carried out an additional
computational experiment using a simplified version of MQCT method called AT-MQCT, where
AT stands for adiabatic trajectory. In this method,?!* the classical and quantum degrees of
freedom are decoupled. The classical trajectories are propagated first (typically with smaller basis
set, or even using only one initial state in the basis, which gives the name “adiabatic™) and the
trajectory information is saved to a file. Next, the quantum equations of motion are propagated
(with large basis set) using information about trajectory saved during the previous run. This
approximation permits to run MQCT calculations much faster,3!-3° but this is not the goal here.
Here it is important that we can save the trajectory information during MQCT calculations when
the two collision partners are treated as distinguishable, and then, during the second run, employ
the state-to-state transition matrix either from the indistinguishable treatment, or from the
distinguishable treatment. In the course of this experiment, both indistinguishable and
distinguishable calculations are carried through exactly the same collision path, but with different
rotational basis sets and different state-to-state transition matrices, either indistinguishable or
distinguishable. The goal of this experiment is not just to break more accurate indistinguishable
calculations by forcing them to evolve along the path obtained from less accurate distinguishable
calculations but is rather to observe what happens if distinguishable and indistinguishable
calculations (with their different states, basis sets, and state-to-state transition matrixes) are both

propagated along the same one path.

Note that although inelastic transitions during the scattering process are determined by off-
diagonal matrix elements, the scattering path itself is determined mainly by the diagonal matrix
element of the initial quantum state, simply because inelastic transition probabilities are typically
small and the MQCT trajectories are very close to those of an elastic scattering process. Therefore,

this computational experiment permits to identify the origin of differences between the
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indistinguishable and distinguishable treatments. Is it in the inelastic transition probabilities (oft-

diagonal elements of the matrix) or in the scattering paths (diagonal matrix elements)?
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Figure 9: Same as Fig. 5 but now obtained  Figure 10: Same as Fig. 6 but now obtained
using AT-MQCT method at collision energy  using AT-MQCT method at collision energy
2000 cm!. Results of the common trajectory ~ 2000 cm!. Results of the common trajectory
“experiment” (see text) are plotted as green  “‘experiment” (see text) are plotted as green
dashed lines. dashed lines.

The results are presented in Figs. 9 and 10 for the same transitions that were presented in
Figs. 5 and 6. As before, red and blue curves correspond to distinguishable and indistinguishable

treatments, respectively, but now using AT-MQCT version of our method. The results are very

similar to those presented in Figs. 5 and 6. The dashed green curves, new in Figs. 8 and 9, represent
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the result of the common trajectory experiment, where the indistinguishable treatment uses
trajectory info from the distinguishable treatment. One can see that in this case the results of
distinguishable treatment coincide almost exactly with those of indistinguishable treatment, except
tiny numerical differences not visible in the figures. It is almost striking to see that the employment
of the common trajectory information, basically, turns blue curves in Figs. 9 and 10 into the red

ones (strictly speaking into dashed green curves, that are almost identical to the red ones).

One can also look at this computational experiment under a slightly different angle, by
asking a question: If one goes from a less accurate distinguishable treatment to more accurate
indistinguishable treatment, would it be sufficient to keep the same trajectories of molecule-
molecule scattering and only replace the state-to-state-transition matrix with a symmetrized one
(as correctly implemented in the indistinguishable treatment) hoping that it will give us different
(and correct) inelastic transitions. We showed that this computational experiment does not change
the results of distinguishable treatment at all! The indistinguishable treatment implemented in this
way would only use a (mathematically) different basis set for solution of the same (physical)
problem, which would lead to the same final result. The result different from the distinguishable
treatment is obtained only when the indistinguishable treatment is applied self-consistently
including its specific trajectories governed mainly by the diagonal matrix elements of the

symmetrized basis set.

In principle, one could imagine a slightly different computational experiment, in which
trajectories from the indistinguishable treatment are used to drive transitions in the distinguishable
treatment, hoping that this trick would make the approximate distinguishable treatment more
accurate. However, one should recall that in the indistinguishable treatment we should propagate
two trajectories for each initial channel, one for the positive parity initial state, such as (20)*, and
another for the negative parity initial state, such as (20)~. These trajectories are different, and it
is not clear which of them should be taken. One could probably take an average (of some sort) of
the two trajectories, but this would make this computational experiment “contaminated” and the

results would be difficult to interpret, we think.

This numerical experiment gives a solid support to the explanation of differences found
between the treatments of identical collision partners as indistinguishable or distinguishable. These

differences, typically small, come from differences in the diagonal matrix elements, normally
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thought to affect the elastic scattering process only. However, small changes of the scattering path
permit to access different parts of the interaction landscape, especially for the trajectories with
small values of impact parameter (small values of orbital angular momentum ¢) that penetrate
deeper into the repulsive area. This, in turn, leads to slightly different inelastic transitions in the
cases of indistinguishable and distinguishable treatments. Symmetrization of molecular
wavefunctions, and the following modification of diagonal and off-diagonal matrix elements, is
responsible for this effect, but it proceeds mostly through the diagonal matrix elements, which is
a somewhat unexpected phenomenon. If, artificially, the trajectories are forced to follow the same
scattering path, which can be achieved using AT-MQCT version of the method, then exactly the
same inelastic transitions are observed in the indistinguishable and distinguishable treatments

(besides the well-known factor of 2).

V. CONCLUSIONS

In this paper we outlined the details of mixed quantum/classical theory, MQCT, for the
treatment of rotationally inelastic transitions during collisions of two identical molecules,
described either as indistinguishable or distinguishable partners. A physically correct treatment of
the two molecules as indistinguishable includes symmetrization of rotational wavefunctions and
introduces exchange parity, which gives state-to-state transition matrix elements different from
those in the straightforward treatment of molecules as distinguishable. Not only this
symmetrization is physically grounded and, strictly speaking is required for the correct description
of the collision process, it also carries several advantages from the practical perspective. The
calculation of symmetrized matrix elements in the indistinguishable case requires smaller
numerical effort and gives numerical advantage close to the factor of two. Next, the calculations
of molecule + molecule collision process (here the propagation of MQCT trajectories) is also faster
in the case of indistinguishable treatment due to smaller size of state-to-state transition matrixes
involved, which gives another advantage close to the factor of two. These two sources of savings
are general and should make the treatment of indistinguishable collision partners faster by a factor
close to four for any system of two identical molecules. Moreover, for some molecules where the
nuclear spin weight of one of exchange parities is zero (which is the case for H, + H,, CO + CO

and H,O + H,O systems considered here), another acceleration by a factor of two is possible,
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because only the trajectories with even or only with odd values of £ are required for each exchange
parity. In these cases, the numerical advantage of treating the identical molecules as
indistinguishable is quite substantial, close to the factor of eight. These advantages will be

implemented in the next release of MQCT suite of codes.*¢

Still, many calculations in the literature, including our own recent calculations for CO +
CO and H,O + H,0,%47 were carried out treating the two molecules as distinguishable and
applying an a posteriori correction. Sometimes this is done for historical reasons (to compare with
results of an earlier work that was done in this way), and sometimes because the symmetrization
of wavefunctions was not included in some codes. Therefore, we carefully compared the theory
and results of indistinguishable and distinguishable treatments within MQCT framework and came
up with reasonably rigorous justification of this a posteriori correction summarized in the last
column of Table 2. It says that for pair «» pair transitions cross sections obtained from the
distinguishable treatment need to be multiplied by 2, while for non-pair <> non-pair transitions
they need to be summed over physically indistinguishable transitions. For pair <> non-pair
transitions one can either apply a factor of 2, or equivalently a summation over indistinguishable

transitions. This is an approximation, of course, that neglects the effect of quantum interference.

However, the calculations carried out for H, + H,, CO + CO and H,O + H,0O systems using
different methods within MQCT framework, presented in the Supplemental Information, indicate
that this is a very good approximation for energies above scattering resonances (those appear to be
very sensitive to small details, such as symmetrization of wave functions). At higher energies the
results of indistinguishable and distinguishable treatments are practically the same for all pair <
pair transitions, and are very similar for other types of transitions, with differences typically within
5%. Only a few individual transitions showed larger differences, within 10-20%. Also, we saw

that as energy is increased, these differences monotonically decrease.

A detailed analysis of these differences showed that they originate in the diagonal elements
of state-to-state transition matrix, normally thought of as something responsible for the elastic
scattering processes only. However, we found that the diagonal matrix elements are slightly
different in the treatments of identical collision partners as indistinguishable or distinguishable,
which drives trajectories through slightly different paths in the two treatments which in turn

produces slightly different cross sections for inelastic state-to-state transitions. We demonstrated
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that if the differences of diagonal matrix elements are neglected, by artificially dragging the system
through the same path in the indistinguishable and distinguishable treatments, then all differences

between the results of two treatments disappear and they become entirely equivalent.

In the future the results of this work will permit us to run more efficiently the calculations
of inelastic state-to-state transition cross sections to populate databases of rate coefficients for
astrochemical modeling of energy transfer in CO + CO and H,O + H,O collisions, that were treated
as collisions of distinguishable partners in the past. Not only the speed up by almost an order of
magnitude is possible in these cases, but the treatment of identical collision partners as
indistinguishable is also expected to be more accurate, particularly at lower collision energies,
compared to the employment of an approximate a posteriori correction applied to the results of
the treatment where the two partners are treated as distinguishable (i.e., factor of 2 and/or by

summation over physically indistinguishable processes).
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The code for MQCT calculations of molecule + molecule rotationally inelastic collisions can be
found at https://github.com/MarquetteQuantum/MQCT.
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