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Abstract
Many physical and chemical processes in the condensed phase environment exhibit non-Markovian 
quantum dynamics. As such simulations are challenging on classical computers, we developed a variational 
quantum algorithm that is capable of simulating non-Markovian dynamics on noisy intermediate-scale 
quantum (NISQ) devices. We used a quantum system linearly coupled to its harmonic bath as the model 
Hamiltonian. The non-Markovianity is captured by introducing auxiliary variables from the bath trajectories. 
With Monte Carlo sampling of the bath degrees of freedom, finite temperature dynamics is produced. We 
validated the algorithm on the simulator and demonstrated its performance on the IBM quantum device. 
The framework developed is naturally adapted to any anharmonic bath with non-linear coupling to the 
system, and is also well suited for simulating spin chain dynamics in a dissipative environment. 

I. Introduction
Simulating open quantum systems dynamics has received increasing attention due to its direct relevance to 
condensed phase chemistry,1 many-body physics,2 quantum biology3 as well as quantum error correction.4 
Recent advances have uncovered many interesting phenomena in open quantum systems such as non-
equilibrium phase transitions,5,6 entangled state preparation through reservoir engineering,7,8 and 
information backflow.9–11 For studying quantum dynamics in condensed phase chemical environment 
ranging from solutions12,13 to molecular aggregates,14–17 the stereotypical microscopic framework is the 
spin-boson model18,19 and its multistate extension.20,21 The corresponding charge and exciton dynamics 
often exhibit non-Markovian behavior. To put it in descriptive terms, non-Markovian dynamics refers to 
dynamics that remembers its past. Equivalently, the dynamical behavior of the past influences its trajectory 
of the present and the future. This memory effect is manifested in the form of a non-local memory kernel 
in the Feynman-Vernon’s influence functional22,19 and in the Nakajima-Zwanzig generalized master 
equation.23,24 On a technical level, the degree of non-Markovianity can be quantified by the complete 
positive divisibility criterion,25 or the negative damping rate of the generalized Lindblad equation,26 the two 
of which are equivalent. With the importance of non-Markovian quantum dynamics in chemical systems, 
several well-developed numerically accurate methods are available for carrying out such simulations.27–32 
However, the resource requirement on classical computers often grows exponentially with respect to the 
system size and the degree of non-Markovianity. The bottleneck is always the exponentially large Hilbert 
space the classical computer is trying to simulate. 

Quantum computers can curb the exponential scaling by using only a linear number of qubits. By utilizing 
the quantum mechanical effects of interference and entanglement, quantum computers can prepare states 
and evaluate functions in a manner that classical computers are not capable of.4,33 With clever algorithm 
design, quantum computers can outperform classical computers for solving certain problems, the 
culmination of which are the Shor’s factoring algorithm,34,35 which provides exponential speedup compared 
to the best know classical algorithm, and the Grover’s search36 that offers quadratic speedup for 
unstructured search. It is natural to think that a quantum computer is well suited for simulating quantum 
systems, and indeed, quantum chemistry and quantum dynamics simulations are considered to be the killer 
applications of near term quantum computers, especially for strongly correlated systems.37–39 

As first conjectured by Feynman40 and demonstrated by Lloyd,41 quantum computer simulations of quantum 
dynamics can achieve an advantage. A wealth of literature exist for Hamiltonian simulation algorithms,42–
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47 with Low and Chuang having realized the optimal query complexity48. For open quantum systems, many 
work has been focused on Markovian dynamics, ranging from theoretical construction of semigroup 
generators49–53 to simulating Lindblad dynamics on NISQ devices.54–58 On the other hand, the development 
of quantum algorithms for non-Markovian time evolution is still in its infancy. Notable works include the 
method of locally indivisible maps,59 the ensembles of Lindblad trajectories,60 the construction of 
superoperators from the generalized quantum master equation61 and the Feynman-Vernon influence 
functional,62 and the path-integral-based algorithm.63

In this work, we present a non-Markovian quantum algorithm with a NISQ-friendly focus, the time-
dependent variational algorithm (TDVA).64–66 In particularly, we work with the spin-boson model and use 
the ensemble averaged classical path (EACP)67–69 to capture the non-Markovian dynamics in a finite 
temperature bath. The organization of the paper is of the following. In section II, we briefly discuss the 
EACP approximation using Feynman’s path integral framework. In section III, we discuss its 
implementation in the TDVA setting. In section IV, we present results and discussions. In section V, we 
offer some concluding remarks. 

II. Ensemble averaged classical path (EACP) approximation
The Hamiltonian for a quantum system linearly coupled to its harmonic bath can be written in the following 
form:

𝐻 =
𝑝2

𝑠
2𝑚0

+ 𝑉0(𝑠) +
𝑗

𝑃2
𝑗

2𝑚𝑗
+

1
2𝑚𝑗𝜔2

𝑗 𝑥𝑗 ―
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𝑚𝑗𝜔2
𝑗

2

(1)

where 𝑠 and 𝑥𝑗 denote the system and bath coordinates, respectively, and 𝑐𝑗 denotes the system-bath 
coupling strength. The strength weighted density of modes defines the spectral density:

𝐽(𝜔) =
𝜋
2

𝑗

𝑐2
𝑗

𝑚𝑗𝜔𝑗
𝛿(𝜔 ― 𝜔𝑗)(2)

The bath’s influence on the system can be seen as having a time-dependent driving force, 
𝐻0 ―

𝑗
𝑐𝑗 𝑠𝑥𝑗(𝑡)(3)

where

𝑥𝑗(𝑡) = 𝑥0,𝑗 cos 𝜔𝑗 𝑡 +
𝑝0,𝑗

𝑚𝑗𝜔𝑗
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0
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The non-local memory kernel in the last part of equation (4), termed back-reaction70 (i.e., kicking back by 
the system), is partially responsible for the non-Markovian dynamics. The other important contributor is 
from the integration of the phase space variables 𝑥0,𝑗 and 𝑝0,𝑗 from the bath. The effects of these two 
contributions to the non-Markovianity are delineated by Makri using path integral formulation.67 Below we 
briefly summarize the main findings that have direct relevance to the current algorithm implementation. 

In the absence of the back-reaction, the reduced density matrix (RDM) expresses as

𝜌𝑠 𝑠+
𝑡 ,𝑠―

𝑡 = 𝒟𝑠+ 𝒟𝑠― ⟨𝑠+
0 │𝜌0(0)│𝑠―

0 ⟩ exp
𝑖
ℏ (𝑆[𝑠+] ― 𝑆[𝑠―]) 𝑄[𝑠+,𝑠―](5)

where 
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𝑄[𝑠+,𝑠―] = exp
𝑖
ℏ
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describes the influence of the bath on the system’s dynamics. The 𝑠+ and 𝑠― denote the forward and 
backward path, respectively, and Δ𝑠 = 𝑠+ ― 𝑠―. 𝑆[𝑠+] and 𝑆[𝑠―] are the action integrals of the free system, 
with ⟨𝑠+

0 │𝜌0(0)│𝑠―
0 ⟩ the initial state. The integral ∫ 𝒟𝑠 sums over all possible paths. Equation (5-6) is 

time-local in that the propagation of the RDM can be done iteratively with time. 
 
Integrating over the Wigner distribution, 

𝑊(𝒙0,𝒑0) = (ℏ𝜋)―1
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𝑄[𝑠+,𝑠―] turns into

𝑄[𝑠+,𝑠―] = exp ―
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Immediately from equation (8), the non-Markovian effect is manifested in the double time integration. 
Therefore, tracing out the bath degrees of freedom introduces non-Markovianity. On the other hand, we can 
employ the reverse by introducing additional degrees of freedom to remove the non-Markovian effect. 

When the back-reaction is included, an additional term, 𝑅[𝑠+,𝑠―], is introduced that further augments the 
system dynamics, 

𝑅[𝑠+,𝑠―] = exp
𝑖
ℏ

𝑗

𝑐2
𝑗

𝑚𝑗𝜔𝑗

𝑡

0
𝑑𝑡′

𝑡′

0
𝑑𝑡′′ Δ𝑠(𝑡′)Δ𝑠(𝑡′′)sin 𝜔𝑗 (𝑡′ ― 𝑡′′) (9)

where Δ𝑠 = 1
2(𝑠+ + 𝑠―). Together, 𝑄 and 𝑅 form the Feynman-Vernon influence functional22

𝐼𝐹[𝑠+,𝑠―] = 𝑄[𝑠+,𝑠―] × 𝑅[𝑠+,𝑠―](10)
 

A notable difference between 𝑄 and 𝑅 is that 𝑄 has a temperature dependent term, coth 1
2

ℏ𝜔𝑗𝛽 , whereas  
𝑅 does not. By making the analogy with light matter interaction, Makri pointed out67 that 𝑄 is related to the 
simulated emission and absorption of phonons, and 𝑅 the spontaneous emission. Immediately following 
that observation, the zero-point energy effect of this spontaneous emission has diminished effect at high 
temperature or for low frequency bath. Therefore, with the back-reaction properly omitted, 

𝑥𝑗(𝑡)≅𝑥0,𝑗 cos 𝜔𝑗 𝑡 + 𝑝0,𝑗

𝑚𝑗𝜔𝑗
sin 𝜔𝑗 𝑡(11). 

With
𝐻(𝑡) = 𝐻0 ―

𝑗
𝑐𝑗 𝑠𝑥𝑗(𝑡)(12)

now local in time, the dynamics can be solved by Markovian propagation with a time-dependent 
Hamiltonian,

𝑖ℏ
∂
∂𝑡 |𝜓(𝑡)⟩ = 𝐻(𝑡)|𝜓(𝑡)⟩(13)
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Finally, to achieve the thermal effect, integration over the position and momentum from equation (7) is 
performed. In practice, Monte Carlo sampling71 is used for efficient integration of the multidimensional 
Wigner distribution. The resulting RDM is the ensemble average of the individual RDM originating from 
a specific 𝒙0 and 𝒑0. Since the omitting of the back-reaction is analogous to the treating the light as classical, 
this approach is termed ensemble averaged classical path (EACP).67–69 It is worth noting that although the 
back-reaction (the zero-point energy effect) is omitted, the zero-point energy contribution is not completely 
removed. The Wigner distribution provides the static zero-point energy effect, whereas the back-reaction 
offers the dynamical one. Another appealing aspect of this approach is that it is not limited to the harmonic 
bath linearly coupled to the system; the framework can be equally adapted to non-linear coupling and 
anharmonic environment, provided its initial Wigner distribution is available.72 

III. Time-dependent variational algorithm (TDVA)
Three conventional variational principles exit for time-dependent problems, and the McLachlan’s 
variational principle is proved to be numerically stable for the variational quantum algorithm.73 The 
McLachlan’s variational principle uses the minimization strategy as the following, 

𝛿‖ 𝑑
𝑑𝑡 + 𝑖𝐻 |𝜓(𝜽)⟩‖ = (14)

where the wavefunction 𝜓 is determined by a set of parameters 𝜽.

In the hybrid quantum-classical algorithm, the quantum computer calculates the following73,74 

𝐴𝑖,𝑗 =
∂⟨𝜓(𝜽)|

∂𝜃𝑖

∂|𝜓(𝜽)⟩
∂𝜃𝑗

(15)

𝐶𝑖 =
∂⟨𝜓(𝜽)|

∂𝜃𝑖
𝐻|𝜓(𝜽)⟩(16)

The update of the parameters 𝜽 is conducted on the classical computer with the following differential 
equation, 

𝑗
𝐴𝑅

𝑖,𝑗𝜃𝑗 = 𝐶𝐼
𝑖(17)

where 𝑅 and 𝐼 in the superscript refer the real and the imaginary part, respectively. The real and imaginary 
part of equation (15) and (16) can be extracted by the modified Hadamard test and the circuit construction 
follows the work of Y. Li and S. Benjamin74. The exemplar circuits and their compiled version are shown 
in the Appendix. In this work, we use RK4 to solve equation (17). 

IV. Results and discussions 
In the following, we use spin-boson model to test the algorithm. The Hamiltonian in the EACP limit can be 
written as

𝐻(𝑡) = ℏΩ𝜎𝑥 ―  
𝑗

𝑐𝑗 𝑥𝑗(𝑡) 𝜎𝑧(18)

with 
𝑥𝑗(𝑡) = 𝑥0,𝑗 cos 𝜔𝑗 𝑡 +

𝑝0,𝑗

𝑚𝑗𝜔𝑗
sin 𝜔𝑗 𝑡(19)
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We choose the bath to have the Ohmic spectral density

𝐽(𝜔) =
𝜋
2 ℏ𝜉𝜔𝑒―𝜔 𝜔𝑐(20)

where dimensionless 𝜉 is the Kondo parameter that determines the strength of the system-bath coupling, 
and 𝜔𝑐 is the cutoff frequency. We use 60 oscillators of different frequencies in the numerical calculation, 
following the discretization procedure given by Walters et al.75 We have used the atomic units so that ℏ=1. 

For a two-level system which requires one qubit, there exits an exact ansatz for the unitary operation that 
employs the ZXZ decomposition4 

𝑈(𝜽) = 𝑒𝑖𝜃1𝑅𝑧(𝜃2)𝑅𝑥(𝜃3)𝑅𝑧(𝜃4)(21)

The wavefunction then can be parameterized as,

|𝜓(𝜽)⟩ = 𝑈(𝜽)|0⟩(22)

With this ansatz, the matrix 𝐴 and the vector 𝐶 in equation (17) can be computed, and the exemplar circuits 
compiled by Qiskit76 are shown in the appendix. It is worth mentioning that instead of propagating the 
vectorized density matrix, we are propagating the wavefunction. As a consequence, it automatically saves 
half of the qubits and the circuits are expected to be short. The dissipative effect is through the average of 
the bath initial conditions. 

Figure 1 shows the population dynamics simulated on the QASM simulator76 for a particular set of initial 
conditions (𝒙0, 𝒑0) drawn from the Wigner distribution (equation 7). In this simulation, we use the 
parameters Ω = 1, 𝜉 = 2, 𝜔𝑐 = 1.5, and the inverse temperature 𝛽 = 1. Each data point is obtained with 
50,000 shots. The quantum algorithm result matches well with the classical benchmark result (“EACP 1IC” 
in the plot). The classical computing result is obtained by directly solving equation (13). It should be pointed 
out that the data in figure 1 are without the Monte Carlo averaging. 

 Ω𝑡

Figure 1. Population dynamics simulated on the simulator for a symmetric two-level system, with one bath 
initial condition and system initially populated in the reactant state. “P1” and “P2” label the population 
dynamics of the reactant and product, respectively. Parameter: Ω = 1, 𝜉 = 2, 𝜔𝑐 = 1.5, 𝛽 = 1. Each data 
point is obtained with 50,000 shots.
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We noted the slight difference between the classical computing result (“EACP 1IC” in the plot) and the 
quantum simulator result, and verified that the error in the variational quantum algorithm is only coming 
from the shot error, not the numerically instability of solving the differential equation (17) (as the matrix 𝐴 
can be singular at some time point).  We plotted the error scales using box plot77 for different number of 
shots, ranging from 100 to 1,000,000. For each element in matrix 𝐴 and vector 𝐶, the statistics are taken 
from 1,000 timesteps in evolving equation (17) with quantum circuits. The results are shown in Figure 2 
(a)–(c). The horizontal orange bar indicates the median, the box encompasses 50% of the data points, and 
the boundary of the whisker encloses 99% of the data. It is evident that the error is solely the result of the 
sampling error of the measurements, and therefore confirms the algorithm’s robustness in its numerical 
convergence. 
  

        
                                           (a)                                                                                   (b)

                                                                                         (c)

Figure 2. Shot noise comparisons for different number of shots for non-zero elements in 𝐴 and 𝐶. (a) 
shots = 100, (b) shots = 10,000, (c) shots = 1,000,000

In Figure 3, we present the simulation results on the ibmq_quito device, with the same parameters as in 
Figure 1. The trends show quantitative agreement. The deviation mainly comes from the real device noise. 
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                                                                                     Ω𝑡
Figure 3. Population dynamics on ibm_quito device for a symmetric two-level system, with one bath initial 
condition and system initially populated in the reactant state. Parameters: Ω = 1, 𝜉 = 2, 𝜔𝑐 = 1.5, 𝛽 = 1. 
Each data point is obtained with 50,000 shots.

To incorporate the full thermal bath effect, Monte Carlo integration of the bath degrees of freedom needs 
to be performed. We conduct the analysis on the number of Monte Carlo points necessary for sampling the 
Wigner distribution (equation 7) to get the converged results. The findings are shown in Figure 4. It turns 
out the number of points needed is on the order of 103 to 104. Therefore, it is quite promising that with the 
number of qubits currently available on NISQ devices, this variational quantum algorithm can be 
implemented in a parallel computing fashion, with each set of qubits evolving along specific Monte Carlo 
points and then performing the ensemble average.   
           

     Ω𝑡
Figure 4. Monte Carlo convergence, with parameters Ω = 1, 𝜖 = 0, 𝜉 = 1.2, 𝜔𝑐 = 2.5, 𝛽 = 0.2.

To test the above idea on the performance of the current quantum device, we conducted the simulations of 
the dynamics under the full dissipative bath (60 oscillators; 10,000 initial conditions) with the real-time 
noise profile from ibm_brisbane. The system bath parameters in these simulations are taken from reference 
57. In Figure 5 (a) and (b), five curves are on display. As a reference, we include the “QuAPI” curve, which 
produces the numerically exact result using quasi-adiabatic propagator path integral method78,79 with the 
back-reaction fully accounted for. The “EACP” curve omits the harmonic back-reaction. These two 
comparisons confirm the validity of using EACP as a good approximation to the exact non-Markovian 
quantum dynamics. The “TDVA” curve results from numerically solving equation (17). The “Simulator” 
simulates the variational algorithm by compiling equation (15) – (16) into quantum circuits and obtaining 
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the measurement result. The “Noisy Simulator” simulates the variational algorithm with the real-time noise 
profile from the quantum device ibm_brisbane. Each point on the “Simulator” and “Noisy Simulator” is 
obtained with 50,000 shots. 

                 
                                        Ω𝑡                                                                               Ω𝑡
                                        (a)                                                                               (b)    
Figure 5. Population dynamics simulated for a symmetric two-level system, with 10,000 bath initial 
condition and system initially populated in the reactant state. Parameters for (a) Ω = 1, 𝜖 = 0, 𝜉 = 1.2, 𝜔𝑐
= 2.5, 𝛽 = 0.2, and (b) Ω = 1, 𝜖 = 0, 𝜉 = 0.3, 𝜔𝑐 = 5, 𝛽 = 5. Each data point on the “Simulator” and the 
“Noisy Simulator” curve is obtained with 50,000 shots. 

To gain further insight about the ensemble averaging effect on the errors induced by the device noise, we 
performed simulations of population dynamics with only one bath initial condition. The representative 
results are shown in Figure 6 (a)–(d) and Figure 7 (a)–(d), with each graph being the dynamics from a 
randomly chosen initial condition. The parameters are the same as those in Figure 5. With only one initial 
condition, the dynamics is highly oscillatory, as the Poincaré recursion time is small. The average from all 
possible initial conditions produces “EACP 10,000 IC” result, plotted as a reference. The “TDVA”, 
“Simulator” and “Noisy Simulator” results are plotted for comparison with each other. It is very apparent 
from the results of the “Noisy Simulator” that the device noise has different effects on different initial 
conditions, some diverging greatly and some bounding the accurate result to some degree, with no 
consistent pattern. However, when averaging them together as shown in Figure 5, it eliminates much of the 
randomness and the noise seems to corrupt the data with a consistent hysteresis effect. This drift in principle 
can be efficiently accounted for with a simple noise model. Since each of these one-initial-condition 
dynamical simulations, equivalent to a Hamiltonian simulation, suffers from stochastic noise, whereas the 
statistically averaged dynamics “diversifies” away much of the random noise, it points to the advantage of 
using NISQ devices for simulating open quantum systems with the ensemble average approach. 

          
                                    Ω𝑡                                                                                Ω𝑡
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(a)                                                                               (b)

          
                                      Ω𝑡                                                                                  Ω𝑡
                                      (c)                                                                                  (d)

Figure 6 (a)–(d). Population dynamics simulated for a symmetric two-level system, with one bath initial 
condition and system initially populated in the reactant state. The parameters are Ω = 1, 𝜖 = 0, 𝜉 = 1.2, 𝜔𝑐
= 2.5, 𝛽 = 0.2. 

            
                                      Ω𝑡                                                                                    Ω𝑡
                                      (a)                                                                                    (b)

             
                                      Ω𝑡                                                                                    Ω𝑡
                                      (c)                                                                                    (d)
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Figure 7 (a)–(d). Population dynamics simulated for a symmetric two-level system, with one bath initial 
condition and system initially populated in the reactant state. The parameters are Ω = 1, 𝜖 = 0, 𝜉 = 0.3, 𝜔𝑐
= 5, 𝛽 = 5. 

V. Conclusions
We presented a time-dependent variational quantum algorithm based on the ensemble averaged classical 
path (EACP) scheme that captures much of the non-Markovian effect in quantum dynamics at finite 
temperature. It can become increasingly accurate as temperature increases or as the system strongly couples 
to the low frequency modes of the bath. We have demonstrated its feasibility on NISQ devices for the spin-
boson model. Compared to other methods of simulating non-Markovian quantum dynamics on quantum 
computers, 59–63 this variational-EACP approach takes advantage of the strength of the both sides: sampling 
Monte Carlo points on the classical computer and evaluating the wavefunction overlap on the quantum 
machine. The Monte Carlo sampling of the thermal distribution can be performed efficiently on a classical 
computer with linear computational cost regarding the number of Monte Carlo points. The wavefunction 
evaluation, although exponential in scaling with respect to the system size on a classical computer, can be 
handled with linear number of qubits on a quantum computer. Since in practice, the number of Monte Carlo 
points needed is mild, it points to the possibility that the EACP algorithm can be implemented parallelly on 
the current NISQ devices. Furthermore, the noise effect on the dynamics is more benign compared to the 
Hamiltonian simulation, suggesting that open quantum dynamics simulations on NISQ devices with the 
ensemble average approach might be more immune to the device noise. The algorithm can be naturally 
extended to anharmonic bath and non-linear system-bath coupling, and it scales linearly with the 
propagation time. For its generalization to multi-site problems, such as spin chain dissipative dynamics,80,81 
a good ansatz for the time-evolution operator 65,66 is crucial for avoiding exponential time compilation and 
measurement overhead. Adaptive variational quantum circuit seems to be particularly promising for finding 
compact circuits.82–84 
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Appendix
The following shows exemplar circuit for matrix A and vector C. 

Figure A.1. A13 circuit.
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Figure A.2. Compiled A13 circuit.

Figure A.3. C2 circuit.

Figure A.4. Compiled C2 circuit.
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