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A solid-state synthesis of blue-emitting lead halide nanoclusters
has been demonstrated for the first time. The solid-state grinding
synthesis provides a facile method to produce highly confined lead
bromide clusters under ambient conditions. Both CH3;NH;PbBr;
perovskite magic-sized clusters and lead halide molecular clusters
have been produced, as confirmed by comparing to those
synthesized using ligand-assisted reprecipitation method in terms
of electronic absorption, photoluminescence, and solid state
characterization.

Lead halide perovskites are of an ABX3 composition where the
A component is a monovalent cation like Cs* or CH3NH3* (MA*),
the B component is Pb?*, and the X component is a halide (Cl,
Br-, or I). Perovskite quantum dots (PQDs) have been subject to
deep study over the past several decades due to their attractive
properties, such as their size and composition dependent
absorption and emission through the visible range.' This
tunability is governed by the quantum confinement effect
(QCE), where, as a decreasing particle size approaches the Bohr
radius, it is associated with increasingly blue absorption and
emission.1'3®7 While PQDs with size larger than 4.0 nm have
been well studied, much less is known about more highly
quantum confined perovskite systems with smaller size.”2

One such system is the perovskite magic sized cluster (PMSC),
also with ABX3 composition, but with a size approaching 2.0
nm.?"10 This much smaller size results in a significant blue shift
of the optical absorption and emission bands to about 420 nm
compared to PQDs like MAPbBr; and CsPbBr; which have bands
around 500 nm. 11713 Similarly, ligand-assisted metal halide
molecular clusters (MHMCs) of PbBr,, which lack the perovskite
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A component, show first excitonic absorption around 400 nm
and a size around 1.5 nm.1014:15 These clusters exhibit several
novel properties compared to PQDs. For example, MHMCs have
recently been studied in terms of their ultrafast excited state
dynamics which indicate a shorter exciton lifetime compared to
PQDs.16 Also, when using achiral passivating ligands, both
PMSCs and MHMCs have been demonstrated to display circular
dichroism (CD) signal that PQDs do not, suggesting that these
novel clusters have intrinsically chiral properties.1”.18 These
studies indicate that the size of a nanocluster has a fundamental
impact on its properties.

To date, PMSCs and MHMCs have only been synthesized using
ligand assisted reprecipitation (LARP), making solid-state
characterization difficult, as samples from solution synthesis are
challenging to study as solids.210:15 Thig difficulty is due to the
nanoclusters small size making them difficult to isolate from a
colloid, and, if collected, their tendency to aggregate upon
drying.12 Thus, new and simpler synthetic methods are desired.

In this work, a solid-state grinding method was demonstrated
to remove the synthetic reliance on solvents and to allow for
greater ease of solid-state characterization. Although this work
primarily focuses on the synthesis and characterization of
MHMCs, the robustness of the proposed method was explored
through the synthesis of PMSCs. Successful synthesis of these
distinct, highly confined nanostructures in ambient conditions
and without solvent-assisted methods indicates greater
methodological diversity is possible than currently represented
in literature.

The MHMC synthesis proceeded by the addition of 0.200 mmol
(73.0 mg) of PbBr, and 2.00 mmol (183 pL) of butyric acid (BTA)
to an agate mortar where they were ground for five minutes.
Next, 2.00 mmol (198 uL) of butylamine (BTYA) was added and
ground for an additional five minutes, yielding a white product
with dark blue luminescence. The prepared product was then
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suspended in 5.00 mL of toluene followed by further dilution at
a rate of 1.00 mL product to 5.00 mL toluene, where the diluted
colloid was retained for optical characterization. MHMC
purification procedures and PMSC solid state syntheses are
available in ESI, along with the detailed LARP syntheses.
Generally, the LARP syntheses follow a standard methodology
using N, N-dimethylformamide (DMF) and toluene as solvent
and antisolvent respectively.>1014 |dentical molar amounts of
precursor and ligand were used as those listed in the solid
syntheses described above.

Figure 1 shows TEM images of representitive MHMCs

synthesized in the solid state. Figure 1a shows that the
nanocrystals, measured on average at about 2.1 nm, have size
on the same order as previous study, while Figure 1b shows a
higher resolution image with lattice spacing, measured at 0.260
nm.1>

Figure 1 TEM images of representative BTYA passivated MHMCs
in both an (a) wide view and (b) close view.

The consistency in size and lattice spacing when compared with
earlier work supports the MHMCs identification.

Several previous studies of MHMCs show a typical first excitonic
absorption band centered around 400 nm, representing a 100
nm blue shift as compared to lead bromide PQDs.lO'M'15 Thus,
UV-Vis and PL data can be reliably used to assess the formation
of MHMCs. In Figure 2a, solid-state MHMC first excitonic
absorption and emission features are shown with bands
peaked at 404 and 409 nm. To make a direct comparison to the
particles produced by the novel synthesis, LARP MHMCs were
synthesized. The peak positions of the solid-state MHMCs show
excellent agreement with the LARP MHMCs shown in Figure Sla
which also have first excitonic absorption and emission at 404
and 409 nm.

To illustrate the spectral differences that occur due to the
structural differences between MHMCs and similarly blue-
emitting clusters, MAPbBr; PMSCs were also synthesized in the
solid state. Their first excitonic absorption and emission spectra
are shown in Figure 2b. The first excitonic absorption and
emission bands are peaked at 432 and 445 nm, respectively.
While red shifted in relation to the MHMC shown in Figure 2a,
the absorption and emission features are significantly bluer
than lead bromide PQDs which are typically peaked at 500 nm.
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Figure 2 UV-Vis electronic absorption and PL spectra of (a) solid-
state MHMCs with PL excitation at 365 nm, and (b) solid state
PMSCs with PL excitation at 400 nm.

The PMSC absorption and PL peak positions are in good
agreement with previously described PMSCs synthesized by
LARP using OA and OAm for passivation, with the slight
difference in peak position attributed to a subtle difference in
particle size.? Additionally, the PL band is narrow, with a full
width at half maximum (FWHM) of 20 nm. Similarly, the PL
peaks of the solid-state and LARP synthesized MHMCs have
FWHM measured at 15 and 12 nm, respectively, a feature which
is typical of MHMCs due to their narrow size distribution. Like
the PMSCs, agreement in peak position suggests that the
MHMCs synthesized by the solid-state method are likely of the
same species as the LARP MHMCs which have been subject to
previous optical and structural study in recent
literature.10:14,15

To compare the MHMC crystallinity against previous reports
and against the PbBr;, precursor, X-ray diffraction (XRD) was
carried out, shown in Figure 3. Here, the MHMCs have been
purified by redispersion in toluene with an additional aliquot of
BTYA at a rate of 0.6 mg crude product/mL toluene and diluted
at a rate of 20 uL/mL before drop casting. The XRD shows six
product peaks with a regular spacing of about 6.4°, consistent
with MHMCs synthesized in past work using LARP.

This journal is © The Royal Society of Chemistry 20xx
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Figure 3 XRD of BTYA-passivated MHMC powder.

This XRD spectrum was compared to that of the crude MHMC
product, shown in Figure S3. While purification steps were
carried out to determine whether good homogeneity and
product purity could be attained, any residual unreacted PbBr,
is not thought to impact the MHMC spectroscopy. XRD for the
PMSCs was carried out similarly to previous work, using paraffin
as a stabilizing matrix, shown in Figure S4. There, the features
observed are consistent with previous work on PMSCs.?

In addition to XRD, high-resolution Raman spectroscopy was
used to confirm the structural agreement between solid-state
and LARP MHMCs. Here, BTYA-passivated MHMCs without an
acidic passivating ligand were synthesized in the solid-state
grinding method presented above.!’> The Raman spectrum
shown in Figure 4 contains 6 major bands which are consistent
with previously reported BTYA-passivated MHMCs.1> The peaks
at 58, 74, 87, 104, 260, and 322 cm™ are thus assigned to
phonon modes summarized in Table S1.
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Figure 4 Raman spectrum of BTYA-passivated MHMCs
synthesized in the solid state.

The good agreement in the Raman features between the LARP-
synthesized MHMCs and the solid state synthesized MHMCs
here is further indication that these two sets of samples have
the same or similar composition and structure. Similarly, the
Raman spectrum of solid state synthesized PMSCs was taken
and is shown in Figure S5. The bands observed are consistent
with past PMSC work and show a clear difference when
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compared to the MHMC Raman shown in Figure 4, which allows
for distinction between the two nanoclusters.®1>

To gain a better understanding of MHMC behavior in terms of
their fluorescence lifetime, TRPL measurements of the MHMCs
were taken. The trace, probed 415 nm, is shown in Figure 5 in
blue and is fit to a two-component exponential decay fit.
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Figure 5 TRPL trace of BTYA-passivated MHMCs monitored at
415 nm (solid blue), and OA-OAm passivated PMSCs
monitored at 445 nm (open red) following excitation at 370
nm.

The MHMCs display a short overall lifetime, where the short and
long components are measured at 300 ps and 1.7 ns
respectively. This relatively short overall lifetime indicates a
likely defect-rich structure and is expected when considering
the low PLQY of 3% and compares well to the fluorescence
lifetime of past LARP MHMCs with similarly low PLQY.® This is
contrasted against the PMSCs, shown in Figure 5 in red, which
have a PLQY of 44%. They show a short component of 1.1 ns and
a long component of 4.5 ns, on the same order of magnitude as
previously reported PMSCs.1?

In summary, a novel solid-state synthesis of MHMCs has been
demonstrated. Good agreement has been found in the optical
absorption and emission features when compared to the more
typical LARP synthesis for both PMSCs and MHMCs. Similarly,
good agreement was observed in their Raman, XRD, and TRPL
spectra. This study demonstrates a simple alternative approach
to synthesizing highly confined nanoclusters in a solid state
form, which is of interest for many potential applications.
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