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The size of soft colloids (microgels) is essential; however, control
over their size has typically been established empirically. Herein,
we report a linear-regression model that can predict microgel size
using a machine learning method, sparse modeling for small data,
which enables the determination of the synthesis conditions for
target-sized microgels.

Hydrogel nano/microparticles (nanogels/microgels) are
hydrophilic or amphiphilic colloids that are highly swollen by
water and are dispersed stably in aqueous solution.! Due to
their fascinating properties related to their softness and stimuli-
responsiveness, their use in various applications, including
controlled uptake/release of functional molecules,? particulate
stabilizers for interfaces,3 and soft colloidal
crystals/glasses/gels,* has been proposed.

Among the methods for producing microgels, aqueous free
radical precipitation polymerization is an excellent strategy for
forming microgels of uniform size under environmentally
friendly and cost-effective experimental conditions.'@> It is
widely accepted that the monomers for these polymers are
water soluble, but that upon growing, the polymers become
insoluble in water, which results in the formation of nuclei for
the growth of microgels; these nuclei then grow until they
acquire sufficient colloidal stability.22>¢ To date, tremendous
efforts have been devoted to revealing the detailed mechanism
of precipitation polymerization,a5b<6 which would allow the
size of simple microgels (e.g., a monomer and crosslinker)
obtained by precipitation polymerization to be controlled.”
However, copolymerization with various functional monomers
to add further functionality to simple microgels is usually
required, complicating the reaction and hence the prediction of
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the microgel size. In addition, various parameters including
polymerization temperature and stirring conditions affect the
size of the resultant microgel. Thus, in many cases, the microgel
size in precipitation polymerizations has been controlled using
a trial-and-error approach for each parameter based on
experience and intuition of professional researcher(s). If the size
of functional microgels could be predicted, the development of
applications that require precise control of the microgel size,
such as targeted drug delivery and the formation of colloidal
crystals composed of different microgels, would be accelerated.
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Fig. 1.
prediction of the microgel size developed in this study.

Schematic illustration of the machine-learning-assisted

Against this background, we found that machine learning (ML)
is an effective way to predict the size of microgels prepared by
aqueous free radical precipitation polymerization (Fig. 1). ML
has been widely applied to the optimization of processes and
the exploration of materials, such as controlled synthesis of
nanosheet materials and discovery of new organic active
energy-related applications.® However, in
conventional experimental approaches, it can be difficult to

materials for

collect a sufficiently large dataset to train and construct the
corresponding predictors. Our group has developed a technique,
which is called sparse modelling for small data (SpM-S), that
combines ML and chemical insight.?® This method provides
straightforward, interpretable, and generalizable models using
datasets that are small compared to other ML algorithms. Here,
SpM-S is applied to predict the size of microgels.
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Fig. 2. (a) Chemical structure of the microgels. (b—d) Representative (b) SEM
image, (c) time—correlation function of the scattering intensity, g2(t)-1, and
(d) calculated time-correlation function of the scattering electric field,
In[g1(7)], of selected microgels. All SEM images and time-correlation functions
for all microgels used in this study are summarized in Figs. S1 and S2.

In this study, four previously reported® and 66 newly

synthesized microgels were used to prepare the training dataset.

The polymerization conditions were varied randomly (Table S1).
The hydrodynamic diameter (Dy) determined by dynamic light
scattering (DLS) was employed as the size parameter for all 70
microgels (i.e., the objective variable; y1: deswollen microgels;
y2: swollen microgels), since it is difficult to measure the size of
microgels by means of microscopy techniques, given that the
microgels are highly deformed on the solid substrates (Table
S1).1! Prior to the DLS measurements, the size uniformity was
examined using scanning electron microscopy (SEM) in order to
confirm the validity of calculating Dy using the Stokes—Einstein
equation (Figs. 2(b—d) and S1-S3). The microgels were clearly
uniform in size with no secondary or individual particles,
indicating that the determined Dy values are reliable. The Dy
values in this study were measured at pH = 3, where the
carboxyl groups in the microgels are protonated.1%12 In many
cases, the obtained time-correlation functions were unreliable
for highly swollen microgels with a D, > 5 um, and thus, these
data were not used for this investigation (Table S1). All time-
correlation functions used for determining Dy are summarized
in Figs. 2(c,d) as well as S2 and S3.
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Fig. 3. Sparse modeling for small data (SpM-S) for the construction of
the prediction model. (a)(b) Weight diagrams representing the
coefficients of each x, in the constructed models in ascending order of
the smallest 100 CVE values: (a) y1 and (b) y2. (c)(d) Relationship
between the estimated and measured hydrodynamic diameters; (c) y1

and (d) ya.

and conditions,

solution

Then, ten experimental parameters
including concentration, stirring speed,
temperature, were set as the explanatory variables (x,) based

and

on our chemical insight (Table 1). Here, N-isopropyl acrylamide
(denoted as NIPAmM, xi1/mM) crosslinker  N,N’-
methylenebis(acrylamide) (BIS, x2/mM) were chosen as the

and

chemical constituents of the microgels (Fig. 2(a)). In order to
add functionality to the microgels, acrylic acid (AAc, xs/mM) was
selected as a model comonomer (Fig. 2(a)). Additionally, other
explanatory variables that we thought would be likely to affect
the microgel size, based on our empirical experience, were
chosen (x,: n = 4-10) (Table 1): total monomer concentration
used for the polymerization (xo/mM), concentration of the
anionic surfactant sodium dodecyl sulfate (SDS) (xs/mM),
(NaCl)  (xe/mM),
concentration of the water-soluble anionic initiator potassium
persulfate (KPS) (x7/mM), amount of water (xs/mL), stirring
speed (xo/rpm), and polymerization temperature T (x10/°C).
Next, the descriptors of the size of the deswollen (y1) and
swollen (y2) microgels were extracted using SpM-S (Fig. 3). The
detailed procedure was described in ESI. The potential
descriptors were visualized in the weight diagram of the

concentration of sodium chloride

exhaustive search for linear regression (ES-LiR) (Fig. 3(a,b)).?
Here, multiple linear-regression models were prepared for all
possible combinations of x, (n = 1-10) to study the contribution
of each x, exhaustively, for a total of 210-1 (= 1023) patterns.
After sorting the models in ascending order of cross-validation
error (CVE), the coefficients of each x, were visualized using a
color scale in the weight diagram. Positive and negative
colors,
respectively (Fig. 3(a,b)). The more densely filled bars represent

coefficients are depicted using warm and cool

Xn that are used in the models more frequently. In the present
work, we selected the descriptors three steps. The potential
descriptors were visually extracted from the weight diagram
based on the intensity and density of the horizontal color bars
(Fig. 3a,b). Then, the selection was carried out based on our

This journal is © The Royal Society of Chemistry 20xx
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chemical insight. The descriptors were finally fixed based on the
prediction accuracy with adding and removing a couple of x,.

The detailed processes of the variable selection for y; and y»
were described in ESI (Figs. S4 and S5). The prediction model
fory: was constructed using these six descriptors (Eq. 1); the
root-mean-squared error (RMSE) was 118 nm (Fig. 3c). In Eq. 1,
each x, was converted to the normalized frequency distribution
(mean 0, standard deviation 1). The weight of each descriptor is
represented by the coefficients.

¥1=-91.7x5+57 .4x6-2.3x7-7.4x10+33.1x1+38.1x9+356.2
... (Eq. 1)

The y; predictor was constructed using these six descriptors
(Eq. 2) with a RMSE of 745 nm (Fig. 3d).

y, = —17.2x5 — 341.1x5 + 435.7x¢ — 252.3x7 —
96.1x,9 — 189.6x3 + 1107.4 .. (Eq.2)

The descriptors in the models are partially consistent with
our experience and chemical insight as experimental scientists.
The anionic surfactant SDS (xs) is known to decrease the size of
both the deswollen and swollen microgels (y1and y,) during the
aqueous precipitation polymerization of pNIPAm-based
microgels.’213 In contrast, the size (y1 and y») increases with
increasing ionic strength (here, the concentration of NaCl (xg))
during polymerization.14 These findings are described by Eq. 1
and 2, which provide interpretable quantitative models that are
consistent with previous considerations. Although the
contribution of each individual factor has been studied
previously, an overall quantitative model that considers a
combination of these factors has not yet been achieved.

Furthermore, although a systematic investigation of the
effect of the KPS concentration (x7) has not yet been reported,
based on Eg. 1 and 2, it is plausible that increasing the
concentration of the water-soluble initiator KPS during the
polymerization decreases yi1 and y,. Regarding the
polymerization temperature (xi10), it has been reported that
temperature-programmed syntheses in which the precipitation
polymerization was started at a low temperature (ca. 40 °C) and
then ramped up to ca. 70 °C drastically increased the size of the
resulting microgels.”’<15 Different from the temperature-
programmed method, in the precipitation polymerization, the
polymerization temperature was kept constant, and increasing
the polymerization temperature (x10) decreased y;and y;.

Finally, the preparation conditions for functional microgels
with a desired size were predicted using the developed
prediction model. As it is mainly microgels in the swollen state
that play a crucial role, a swollen-microgel size (y2) of 500 nm
was targeted. For the prediction experiments, we fixed the
values of several of the polymerization conditions (x,), i.e., the
concentration of AAc (x3 = 4.5 mM) and BIS (x, =0.75 mM, 1.50
mM, or 9.00 mM). Appropriate values for the other parameters
that are included in Eg. 2 under these conditions were
calculated. For the parameters that are not included in Eq. 2,
representative values were chosen based on our experience as
professional researchers: x4 = 150 mM, xg = 100 mL, and xg = 250
rpm. The resultant microgels all showed a size of ca. 500 nm in
the swollen state regardless of the degree of crosslinking (the

This journal is © The Royal Society of Chemistry 20xx
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measured actual size of targeted microgels y': y,' = 500 nm at x;
=0.75mM, y,' =511 nm at x = 1.50 mM, and y,’' =512 nm at x;
=9.00 mM) (Table 2, Fig. S6). The cross validation was carried
out with the addition of these new data to the original training
dataset (Fig. S7). These results demonstrate that the developed
prediction method is highly reliable.

Table 2. Polymerization conditions and resulting size of the microgels

BIS Target
concentration Other parameters included in Eq. 2 y2=500
nm
X5 Xe X7 B
X2 X1 / / / X10 y2
/ mM / mM mM mM mM /°C / nm
0.75 14475 0.50 3.37 70 500
1.50 14400 045 3.38 70 511
9.00 163.50 0.10 2.91 80 512

It should be noted that Eg. 1 and Eq. 2 have the potential to
be further developed by adding datasets including different
parameters, such as other functional comonomers, which are
crucial for the development of novel microgels for new
applications.1216 Based on our previous reports,®17 it is also
likely that in addition to size, other important properties (or
functions) of microgels, such as e.g., softness, can be predicted.
Thus, our results represent an important first step toward a
reliable method to predict microgel characteristics, which is
crucial for accelerating the development of microgel science
and technology.

Conclusions

The size of microgels prepared by aqueous free radical
precipitation polymerization has been predicted using SpM-S
method to construct a prediction model using parameters that
were chosen based on the authors’ experience. The size of
microgels in both the deswollen and swollen state was
quantitatively described by the prediction model, and the
model was used successfully to determine the experimental
conditions for synthesizing complicated microgels of a target
size (here: 500 nm). Our findings showcase the utility of the
development of machine learning with small datasets for
controlling the size of colloidal particles, which is important for
achieving desired functionality in applications where the size is
crucial, such as drug-delivery systems and colloidal assemblies
with more complex ordering. In addition, SpM-S can be applied
to the other small data if we can prepare the similar dataset
based on the experimental results as shown in Table S1.%2
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