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The size of soft colloids (microgels) is essential; however, control 

over their size has typically been established empirically. Herein, 

we report a linear-regression model that can predict microgel size 

using a machine learning method, sparse modeling for small data, 

which enables the determination of the synthesis conditions for 

target-sized microgels. 

Hydrogel nano/microparticles (nanogels/microgels) are 

hydrophilic or amphiphilic colloids that are highly swollen by 

water and are dispersed stably in aqueous solution.1 Due to 

their fascinating properties related to their softness and stimuli-

responsiveness, their use in various applications, including 

controlled uptake/release of functional molecules,2 particulate 

stabilizers for interfaces,3 and soft colloidal 

crystals/glasses/gels,4 has been proposed. 

 Among the methods for producing microgels, aqueous free 

radical precipitation polymerization is an excellent strategy for 

forming microgels of uniform size under environmentally 

friendly and cost-effective experimental conditions.1a,5 It is 

widely accepted that the monomers for these polymers are 

water soluble, but that upon growing, the polymers become 

insoluble in water, which results in the formation of nuclei for 

the growth of microgels; these nuclei then grow until they 

acquire sufficient colloidal stability.2a,5c To date, tremendous 

efforts have been devoted to revealing the detailed mechanism 

of precipitation polymerization,1a,5bc,6 which would allow the 

size of simple microgels (e.g., a monomer and crosslinker) 

obtained by precipitation polymerization to be controlled.7 

However, copolymerization with various functional monomers 

to add further functionality to simple microgels is usually 

required, complicating the reaction and hence the prediction of 

the microgel size. In addition, various parameters including 

polymerization temperature and stirring conditions affect the 

size of the resultant microgel. Thus, in many cases, the microgel 

size in precipitation polymerizations has been controlled using 

a trial-and-error approach for each parameter based on 

experience and intuition of professional researcher(s). If the size 

of functional microgels could be predicted, the development of 

applications that require precise control of the microgel size, 

such as targeted drug delivery and the formation of colloidal 

crystals composed of different microgels, would be accelerated.  

Fig. 1. Schematic illustration of the machine-learning-assisted 

prediction of the microgel size developed in this study. 

 

Against this background, we found that machine learning (ML) 

is an effective way to predict the size of microgels prepared by 

aqueous free radical precipitation polymerization (Fig. 1). ML 

has been widely applied to the optimization of processes and 

the exploration of materials, such as controlled synthesis of 

nanosheet materials and discovery of new organic active 

materials for energy-related applications.8 However, in 

conventional experimental approaches, it can be difficult to 

collect a sufficiently large dataset to train and construct the 

corresponding predictors. Our group has developed a technique, 

which is called sparse modelling for small data (SpM-S), that 

combines ML and chemical insight.9 This method provides 

straightforward, interpretable, and generalizable models using 

datasets that are small compared to other ML algorithms. Here, 

SpM-S is applied to predict the size of microgels. 
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Table 1. List of explanatory variables (xn: n = 1–10) 

n / - Explanatory variables, xn Unit 

1 N-isopropyl acrylamide (NIPAm) concentration mM 

2 N,N′-methylenebis(acrylamide) (BIS) concentration mM 

3 acrylic acid (AAc) concentration mM 

4 monomer concentration mM 

5 
anionic surfactant (sodium dodecyl sulfate (SDS)) 

concentration 
mM 

6 
inorganic salt (sodium chloride (NaCl)) 

concentration 
mM 

7 
aqueous anionic initiator (potassium persulfate 

(KPS)) concentration 
mM 

8 water mL 

9 stirring speed rpm 

10 T °C 

 
Fig. 2. (a) Chemical structure of the microgels. (b–d) Representative (b) SEM 

image, (c) time–correlation function of the scattering intensity, g2(τ)−1, and 

(d) calculated time-correlation function of the scattering electric field, 

ln[g1(τ)], of selected microgels. All SEM images and time-correlation functions 

for all microgels used in this study are summarized in Figs. S1 and S2. 

In this study, four previously reported10 and 66 newly 

synthesized microgels were used to prepare the training dataset. 

The polymerization conditions were varied randomly (Table S1). 

The hydrodynamic diameter (Dh) determined by dynamic light 

scattering (DLS) was employed as the size parameter for all 70 

microgels (i.e., the objective variable; y1: deswollen microgels; 

y2: swollen microgels), since it is difficult to measure the size of 

microgels by means of microscopy techniques, given that the 

microgels are highly deformed on the solid substrates (Table 

S1).11 Prior to the DLS measurements, the size uniformity was 

examined using scanning electron microscopy (SEM) in order to 

confirm the validity of calculating Dh using the Stokes–Einstein 

equation (Figs. 2(b–d) and S1–S3). The microgels were clearly 

uniform in size with no secondary or individual particles, 

indicating that the determined Dh values are reliable. The Dh 

values in this study were measured at pH = 3, where the 

carboxyl groups in the microgels are protonated.10,12 In many 

cases, the obtained time-correlation functions were unreliable 

for highly swollen microgels with a Dh > 5 μm, and thus, these 

data were not used for this investigation (Table S1). All time-

correlation functions used for determining Dh are summarized 

in Figs. 2(c,d) as well as S2 and S3. 

 
Fig. 3. Sparse modeling for small data (SpM-S) for the construction of 

the prediction model. (a)(b) Weight diagrams representing the 

coefficients of each xn in the constructed models in ascending order of 

the smallest 100 CVE values: (a) y1 and (b) y2. (c)(d) Relationship 

between the estimated and measured hydrodynamic diameters; (c) y1 

and (d) y2.  

Then, ten experimental parameters and conditions, 

including concentration, stirring speed, and solution 

temperature, were set as the explanatory variables (xn) based 

on our chemical insight (Table 1). Here, N-isopropyl acrylamide 

(denoted as NIPAm, x1/mM) and crosslinker N,N’-

methylenebis(acrylamide) (BIS, x2/mM) were chosen as the 

chemical constituents of the microgels (Fig. 2(a)). In order to 

add functionality to the microgels, acrylic acid (AAc, x3/mM) was 

selected as a model comonomer (Fig. 2(a)). Additionally, other 

explanatory variables that we thought would be likely to affect 

the microgel size, based on our empirical experience, were 

chosen (xn: n = 4–10) (Table 1): total monomer concentration 

used for the polymerization (x4/mM), concentration of the 

anionic surfactant sodium dodecyl sulfate (SDS) (x5/mM), 

concentration of sodium chloride (NaCl) (x6/mM), 

concentration of the water-soluble anionic initiator potassium 

persulfate (KPS) (x7/mM), amount of water (x8/mL), stirring 

speed (x9/rpm), and polymerization temperature T (x10/°C). 

 Next, the descriptors of the size of the deswollen (y1) and 

swollen (y2) microgels were extracted using SpM-S (Fig. 3). The 

detailed procedure was described in ESI. The potential 

descriptors were visualized in the weight diagram of the 

exhaustive search for linear regression (ES-LiR) (Fig. 3(a,b)).9 

Here, multiple linear-regression models were prepared for all 

possible combinations of xn (n = 1–10) to study the contribution 

of each xn exhaustively, for a total of 210−1 (= 1023) patterns. 

After sorting the models in ascending order of cross-validation 

error (CVE), the coefficients of each xn were visualized using a 

color scale in the weight diagram. Positive and negative 

coefficients are depicted using warm and cool colors, 

respectively (Fig. 3(a,b)).  The more densely filled bars represent 

xn that are used in the models more frequently. In the present 

work, we selected the descriptors three steps. The potential 

descriptors were visually extracted from the weight diagram 

based on the intensity and density of the horizontal color bars 

(Fig. 3a,b). Then, the selection was carried out based on our 
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chemical insight. The descriptors were finally fixed based on the 

prediction accuracy with adding and removing a couple of xn. 

      The detailed processes of the variable selection for y1 and y2 

were described in ESI (Figs. S4 and S5).  The prediction model 

fory1 was constructed using these six descriptors (Eq. 1); the 

root-mean-squared error (RMSE) was 118 nm (Fig. 3c). In Eq. 1, 

each xn was converted to the normalized frequency distribution 

(mean 0, standard deviation 1). The weight of each descriptor is 

represented by the coefficients. 
 
𝒚1=−𝟗𝟏.𝟕𝒙𝟓+𝟓𝟕.𝟒𝒙𝟔−𝟐.𝟑𝒙𝟕−𝟕.𝟒𝒙𝟏𝟎+𝟑𝟑.𝟏𝒙𝟏+𝟑𝟖.𝟏𝒙𝟗+𝟑𝟓𝟔.𝟐 

 … (Eq. 1) 
 

The y2 predictor was constructed using these six descriptors 

(Eq. 2) with a RMSE of 745 nm (Fig. 3d). 
 
𝒚𝟐 = −𝟏𝟕. 𝟐𝒙𝟐 − 𝟑𝟒𝟏. 𝟏𝒙𝟓 + 𝟒𝟑𝟓. 𝟕𝒙𝟔 − 𝟐𝟓𝟐. 𝟑𝒙𝟕 −

𝟗𝟔. 𝟏𝒙𝟏𝟎 − 𝟏𝟖𝟗. 𝟔𝒙𝟑 + 𝟏𝟏𝟎𝟕. 𝟒  … (Eq. 2) 
 

The descriptors in the models are partially consistent with 

our experience and chemical insight as experimental scientists. 

The anionic surfactant SDS (x5) is known to decrease the size of 

both the deswollen and swollen microgels (y1 and y2) during the 

aqueous precipitation polymerization of pNIPAm-based 

microgels.7a,13 In contrast, the size (y1 and y2) increases with 

increasing ionic strength (here, the concentration of NaCl (x6)) 

during polymerization.14 These findings are described by Eq. 1 

and 2, which provide interpretable quantitative models that are 

consistent with previous considerations. Although the 

contribution of each individual factor has been studied 

previously, an overall quantitative model that considers a 

combination of these factors has not yet been achieved. 

Furthermore, although a systematic investigation of the 

effect of the KPS concentration (x7) has not yet been reported, 

based on Eq. 1 and 2, it is plausible that increasing the 

concentration of the water-soluble initiator KPS during the 

polymerization decreases y1 and y2. Regarding the 

polymerization temperature (x10), it has been reported that 

temperature-programmed syntheses in which the precipitation 

polymerization was started at a low temperature (ca. 40 °C) and 

then ramped up to ca. 70 °C drastically increased the size of the 

resulting microgels.7bc,15 Different from the temperature-

programmed method, in the precipitation polymerization, the 

polymerization temperature was kept constant, and increasing 

the polymerization temperature (x10) decreased y1 and y2. 

Finally, the preparation conditions for functional microgels 

with a desired size were predicted using the developed 

prediction model. As it is mainly microgels in the swollen state 

that play a crucial role, a swollen-microgel size (y2) of 500 nm 

was targeted. For the prediction experiments, we fixed the 

values of several of the polymerization conditions (xn), i.e., the 

concentration of AAc (x3 = 4.5 mM) and BIS (x2 = 0.75 mM, 1.50 

mM, or 9.00 mM). Appropriate values for the other parameters 

that are included in Eq. 2 under these conditions were 

calculated. For the parameters that are not included in Eq. 2, 

representative values were chosen based on our experience as 

professional researchers: x4 = 150 mM, x8 = 100 mL, and x9 = 250 

rpm. The resultant microgels all showed a size of ca. 500 nm in 

the swollen state regardless of the degree of crosslinking (the 

measured actual size of targeted microgels y′: y2′ = 500 nm at x2 

= 0.75 mM, y2′ = 511 nm at x2 = 1.50 mM, and y2′ = 512 nm at x2 

= 9.00 mM) (Table 2, Fig. S6). The cross validation was carried 

out with the addition of these new data to the original training 

dataset (Fig. S7). These results demonstrate that the developed 

prediction method is highly reliable.  
 
Table 2. Polymerization conditions and resulting size of the microgels  

BIS 
concentration 

Other parameters included in Eq. 2 
Target 
y2 = 500 

nm 

x2 
/ mM 

x1 
/ mM 

x5 

/ 
mM 

x6 

/ 
mM 

x7 

/ 
mM 

x10 
/ °C 

y2′ 
/ nm 

0.75 144.75 0.50 0 3.37 70 500 

1.50 144.00 0.45 0 3.38 70 511 

9.00 163.50 0.10 0 2.91 80 512 
 
 It should be noted that Eq. 1 and Eq. 2 have the potential to 

be further developed by adding datasets including different 

parameters, such as other functional comonomers, which are 

crucial for the development of novel microgels for new 

applications.12,16 Based on our previous reports,9,17 it is also 

likely that in addition to size, other important properties (or 

functions) of microgels, such as e.g., softness, can be predicted. 

Thus, our results represent an important first step toward a 

reliable method to predict microgel characteristics, which is 

crucial for accelerating the development of microgel science 

and technology. 

Conclusions 

The size of microgels prepared by aqueous free radical 

precipitation polymerization has been predicted using SpM-S 

method to construct a prediction model using parameters that 

were chosen based on the authors’ experience. The size of 

microgels in both the deswollen and swollen state was 

quantitatively described by the prediction model, and the 

model was used successfully to determine the experimental 

conditions for synthesizing complicated microgels of a target 

size (here: 500 nm). Our findings showcase the utility of the 

development of machine learning with small datasets for 

controlling the size of colloidal particles, which is important for 

achieving desired functionality in applications where the size is 

crucial, such as drug-delivery systems and colloidal assemblies 

with more complex ordering. In addition, SpM-S can be applied 

to the other small data if we can prepare the similar dataset 

based on the experimental results as shown in Table S1.9a 
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