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Generation and Interception of Bicyclo[3.2.1]oct-2-yne: An 
Experimental and Theoretical Mechanistic Study
T. E. Anderson,a Beauty K. Chabuka,b Igor V. Alabugin,*b Dasan M. Thamattoor,*a and David Lee 
Phillips*c

Bicyclo[3.2.1]oct-2-yne was generated from the Fritsch–
Buttenberg–Wiechell rearrangement of 2-norbornylidene carbene. 
The rearrangement preferentially involves migration of a tertiary 
carbon over a secondary carbon, a trend that contrasts with 
rearrangements of acyclic carbenes and which may be attributable 
to hyperconjugative effects promoted by the bridged structure of 
the carbene. 

Exocyclic alkylidene carbenes 1 provide appealing precursors to 
strained cycloalkynes 2 due to their tendency to undergo 1,2-
migratory shifts known as Fritsch–Buttenberg–Wiechell (FBW) 
rearrangements (Scheme 1).1 A number of cyclopentyne,2-3 
cylcohexyne,4-6 and polycyclic alkyne7-9 derivatives have been 
generated through FBW rearrangements of alkylidene 
carbenes. Strained carbocyclic and heterocyclic alkynes are of 
growing interest in organic synthesis due to their potential for 
providing access to complex molecular scaffolds.10

Scheme 1. Fritsch–Buttenberg–Wiechell (FBW) rearrangement 
of exocyclic alkylidene carbenes 1 cycloalkynes 2

Generation of cyclic alkynes via FBW rearrangements have 
primarily involved deprotonation of bromoethylene-
cycloalkanes7-9 or the lithiation of dibromomethylene-
cycloalkanes.11-15 These preparations require harsh reaction 
conditions that include high temperatures in the case of 
deprotonation, and low temperatures in the case of lithiation, 
that can influence the pathways of reactivity. There is moreover 
some ambiguity as to whether these reactions involve real 

carbenes, or metal-coordinated carbenoid intermediates.7,16-17 
These uncertainties make such approaches unsuitable for 
mechanistic investigations into FBW rearrangements.

Our laboratory has developed a photochemical approach to 
the generation of alkylidene carbenes that proceeds under mild 
conditions and ambient temperatures.5-6,18-20 Herein, we 
demonstrate the utility of this method for the generation of 
bicyclo[3.2.1]oct-2-yne (4) via the FBW rearrangement of 2-
norbornylidene carbene (3, Scheme 2). To our knowledge, the 
two previously reported preparations of 4 have involved the use 
of halogenated precursors, high temperatures, and strongly 
basic conditions.21-22 Furthermore, FBW rearrangement in 3 can 
proceed by two possible pathways, involving migration of the 
tertiary γ-carbon (via TSa) or the secondary γ-carbon (via TSb), 
both of which yield the same product 4. Thus, these two 
pathways cannot be distinguished under ordinary conditions. In 
this work, we demonstrate the use 13C-labelling experiments 
which permitted elucidation of the rearrangement mechanism, 
and revealed a preference for migration of the tertiary rather 
than secondary carbon.

Scheme 2 Photochemical generation of bicyclo[3.2.1]oct-2-yne 
(4) via the FBW rearrangement of 2-norbornylidene carbene (3)

Precursor 7 was synthesized, as shown in Scheme 3A, with 
the aim of photolytically generating 2-norbonylidene carbene 
(3), which would provide access to bicyclo[3.2.1]oct-2-yne (4) 
via FBW rearrangement. The presence of the methylene bridge 
in bicyclo[3.2.1]oct-2-yne (4) is predicted to inflict 23.8 kcal/mol 
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of strain energy relative to monocyclic cyclooctyne (Figure S1). 
The known dichlorocyclopropyl phenanthrene derivative 6 was 
first prepared by the cyclopropanation of phenanthrene with 
chloroform under basic conditions.23 Precursor 7 was then 
synthesized from norcamphor (5) and 6 by adapting a 
procedure previously reported by Takeda et al.24  Photolysis of 
7 in the presence of diene 8 resulted in the formation of adduct 
10, likely via decarbonylation of the initially formed Diels–Alder 
product 9,4-6 implicating the intermediacy of bicyclo[3.2.1]oct-
2-yne (4, Scheme 3B).

Scheme 3. (A) Synthesis of precursor 7. (B) Trapping of 
bicyclo[3.2.1]oct-2-yne (4), generated by photolysis of 7 and 
FBW rearrangement of 2-norbonylidene carbene (3) 

The pathway of FBW rearrangement in norbornylidene 
carbene 3 was investigated with the use of the 13C-labelled 
precursor 7* (Scheme 4). Precursor 7* was prepared similarly 
to its non-enriched analogue 7, but with a 13C-labelled 
dichlorocyclopropyl phenanthrene derivative 6* synthesized 
from 25% 13C-enriched chloroform (See Synthetic Procedures in 
Supporting Information). Photolytic generation of the 13C-
labelled alkylidene carbene 3* in the presence of diene 8 
yielded isotopomers 10a* and 10b* in a ratio of 79:21,25 
revealing a preference for migration of the tertiary γ-carbon (via 
TSa). The ratio of isotopomer products indicates a 0.72 kcal/mol 
difference in free energy between the transition state barriers 
of the two rearrangement pathways (ΔG‡

TSb– ΔG‡
TSa).26 The 

preference for migration of the tertiary carbon over the 
secondary carbon is the opposite of that previously reported for 
acyclic alkylidene carbenes,27-29 indicating that the geometric 
constraints imposed by the bicyclic structure of 3 likely play a 
significant role in influencing the pathway of FBW 
rearrangement.

Scheme 4. FBW rearrangement of 13C-labelled 2-norbonylidene 
carbene (3*). An asterisk (*) denotes a 13C-enriched carbon 

Calculations performed at the CCSD(T)/def2-TZVPP//M06-
2X/def2-TZVP30-33 level of theory are in close agreement with 
the experimental data.34 Bicyclo[3.2.1]oct-2-yne (4) is predicted 
to be more thermodynamically stable than the corresponding 
alkylidene carbene 3 by 10.57 kcal/mol (Figure 1). FBW 
rearrangement involving the migration of the tertiary carbon is 
likewise favored, with a transition state TSa that is predicted to 
be 0.72 kcal/mol lower in energy than that of the competing 
migratory pathway, TSb, in which a secondary carbon 
undergoes migration. 

Figure 1. Potential energy surface for the FBW rearrangement 
of 2-norbonylidene carbene (3) to bicyclo[3.2.1]oct-2-yne (4), 
computed at CCSD(T)/CPCM(benzene)/def2-TZVPP//M06-
2X/CPCM(benzene)def2-TZVP

Preference for the migratory pathway involving TSa appears 
to result from the geometric constraints within the cyclic 
structure of 2-norbonylidene carbene (3). The endocyclic sp2 
carbon within carbene 3 exhibits bond angles that are distorted 
compared to those of the analogous alkene 11 (Figure 2), with 
a C1–C2–C3 bond angle, which includes the migrating bond of the 
major pathway, contracted by almost 13° and a C1–C2–C4 bond 
angle, which includes the migrating bond in the minor 
rearrangement pathway, enlarged by 12°. This distortion results 
in a structure that more closely resembles the major transition 
state TSa, situating the tertiary carbon C3 closer to the 
migratory terminus at carbon C1, while distancing C4 from C1. 
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Figure 2. Distortion of the alkylidenecarbene bond angle in 2-
norbonylidene carbene (3) compared to the alkene bond angle 
in 2-methylenebicyclo[2.2.1]heptane (11)

The bond angle distortion around the endocyclic sp2 carbon 
in carbene 3 likely arises from hyperconjugative interactions 
involving the divalent exocyclic sp carbon. Similar distortions in 
alkylidene carbenes with aryl substituents are believed to arise 
from donation of electron density into the empty p orbital at 
the divalent carbon site (π  p and σ  p).35 NBO calculations 
for 2-norbonylidene carbene (3), show a strong stabilizing 
hyperconjugative interaction (24.7 kcal/mol) between the C2–
C3 bond and the vacant p orbital on the alkylidene carbene 
center C1 (σC–C  p, Figure 3A).  By contrast, the stabilizing 
interaction between the C2–C4 bond and empty p orbital is 
much weaker (4.4 kcal/mol). The contribution of 
homohyperconjugation involving the C3–hydrogen bond and 
the p orbital on C1 (σC–H  p, Figure 3B),36 analogous to agostic 
interactions in organometallic Schrock carbenoids,37 is weak (< 
0.5 kcal/mol) in the carbene but become significant in TSa (16.8 
kcal/mol) and the product alkyne (6.5 kcal/mol) (see Supporting 
Information). This interaction is stronger with the C3–hydrogen 
bond of the bridgehead carbon, which is constricted to be 
roughly in plane with the vinylidene group (θC1C2C3Η3, 17°, 
Figure 3C), compared to the C4–hydrogen bonds (θC1C2C4Η1, 58° 
and θC1C2C4Η2, 62°, Figure 3C). The favorable interaction may 
explain why the vinylidene group is distorted towards the 
tertiary carbon C3 rather than the secondary carbon C4, and why 
the migratory trend differs from that observed in acyclic 
alkylidene carbenes.27-29

Figure 3. Possible (A) hyperconjugative and (B) 
homohyperconjugative interactions in 2-norbornyl-idene 
carbene (3). (C) The ground-state geometry of 3, calculated at 
CCSD(T)/def2-TZVPP//M06-2X/def2-TZVP 

In summary, we have provided a new and mild route to 
bicyclo[3.2.1]oct-2-yne (4) through the FBW rearrangement of 
photochemically generated 2-norbornylidene carbene (3). 
Previous efforts to access this strained polycyclic alkyne have 
required halogenated precursors in conjunction with high-
temperatures and high basicity,21-22 conditions which can 
complicate mechanistic interpretation of reactivity,7,16-17,21-22 

and which limit the range of reagents that can be used to trap 
the unstable, transient alkyne. The approach employed herein 
unambiguously generates the free alkylidenecarbene 3, 
allowing for elucidation of the specific pathways of FBW 
rearrangement with the use of the 13C-labelled precursor 7*. 
The experimental and computational data both indicate that 
migration of the tertiary γ-carbon is favored over that of the 
secondary γ-carbon, with a difference in transition state 
energies for the two rearrangement pathways of 0.72 kcal/mol. 
This preference for migration of the tertiary carbon contrasts 
with previously reported trends in acyclic alkylidene 
carbenes,27-29 potentially due to specific hyperconjugative and 
homohyperconjugative interactions that become favorable 
within the rigid caged structure of 2-norbornylidene carbene 
(3). The bridgehead carbon–hydrogen bond proximal to the 
vinylidene group is constrained in an orientation that is nearly 
in-plane with the vinylidene group, allowing for donation of 
electron density into the empty p orbital of the carbene (σC–H  
p). The consistency between the experimental and 
computational data suggests that the photochemical approach 
to alkylidenecarbene generation used herein is a reliable 
method for mechanistic investigations of FBW rearrangements.
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