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Physiochemical Machine Learning Models Predict Operational 
Lifetimes of CH3NH3PbI3 Perovskite Solar Cells
Wiley A. Dunlap-Shohl,a,b,c Yuhuan Meng,a,b,c Preetham P. Sunkari,a,b,c David A. C. Beck,a,d Marina 
Meilă,d,e and Hugh W. Hillhouse a,b,c,*

Halide perovskites are promising photovoltaic (PV) materials with the potential to lower the cost of electricity and greatly 
expand the penetration of PV if they can demonstrate long-term stability under illumination in the presence of moisture and 
oxygen. The solar cell service lifetime, as quantified by T80 (the time required for the power conversion efficiency to drop to 
80% of its starting value), for utility, commercial, or residential PV systems needs to be several decades in order to yield low-
cost electricity, and thus it is not practical to directly measure it. It would be useful if T80 could be predicted from the initial 
dynamics of a solar cell’s performance, but until now no models have been developed to do so. In this work, we report the 
development of machine learning models to predict T80 of ITO/NiOx/CH3NH3PbI3/C60/BCP/Ag solar cells operating at 
maximum power point under 1-sun equivalent photon flux in air at varying temperatures and relative humidities. Efficiency 
losses are driven by short-circuit current and fill factor, indicating that photochemical reactions with O2 and H2O are a major 
contributor to degradation. Spatial patterns evident from in situ dark field optical microscopy also suggest that the electric 
field gradient at device edges plays a significant role in perovskite decomposition. Models are trained using a menu of 
features from three distinct categories: (i) measurements of the initial rates of change of device parameters, (ii) ambient 
conditions during operation (temperature & partial pressure of H2O), and (iii) features based on underlying physics and 
chemistry. We show that a theory-based physiochemical feature derived from a model of the chemical reaction kinetics of 
the rate of degradation of CH3NH3PbI3 is particularly valuable for prediction and was selected as the most dominant feature 
in the best performing models. With a dataset consisting of 45 degradation experiments with T80 values ranging over a factor 
of almost 30, the model predicts T80 with an average accuracy of about 40% on samples not used in training. This hybrid ML 
approach should be effective when applied to other compositions, device architectures, and advanced packaging schemes.

Introduction 
Halide perovskites are on the cusp of breaking out as 
mainstream commercial photovoltaic materials, but there are 
some concerns about their potential for long-term stability due 
to the susceptibility of perovskite absorbers to decomposition 
in the presence of heat,1 light,2,3 oxygen,2 moisture,4–6 and 
electrical bias.7–10 The success of perovskite solar cells (PSCs) 
and other perovskite-based technologies may rest on how 
accurately manufacturers are able to estimate the service 
lifetimes of devices. Accurate predictions will allow 
manufacturers to identify appropriate markets and provide 
warranties, while at the same time allowing customers to assess 
the economics of the purchase. There have been many 

promising advances toward extending the operational life of 
perovskite solar cells, with several reports of perovskite solar 
cells passing the standard IEC solar cell durability tests (e.g., 
damp heat and thermal cycling).11–14 However, the mechanisms 
of degradation are quite different in perovskites than in 
conventional solar cells, and it is currently unclear if PSCs can 
survive on the time scale of decades in the wide variety of 
potential operational environments. In the early years of 
perovskite photovoltaics research, the large number of possible 
degradation processes, coupled with a lack of information on 
how to assign a hierarchy of their effects on material and device 
degradation, led to many testing protocols (accelerated or 
otherwise) generally developed independently by individual 
research groups, making comparisons of stability data from lab 
to lab difficult. Even in cases where standardized accelerated 
testing regimes (such as the IEC protocols) were obeyed, the IEC 
tests were developed for devices based on conventional 
inorganic semiconductors, and do not necessarily probe the 
performance-limiting processes in PSCs. Although the 
perovskite research community has started to develop testing 
protocols that are better designed to capture the most 
important degradation mechanisms,15 the field’s knowledge of 
these mechanisms remains incomplete, complicating these 
efforts. Furthermore, the large number of perovskite 
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compositions and device architectures introduces massive 
complexity to the space of possible chemical degradation 
pathways. A recent report16 attempting to construct a 
comprehensive overview of perovskite photovoltaics research 
catalogs over 5,500 architectures as determined by the contact 
materials alone—i.e., not even accounting for the additional 
complexities posed by the compositional flexibility of the 
perovskite absorber itself—of which over 1,000 were reported 
to yield PSCs that have power conversion efficiency >18% and 
thus represent potentially attractive fabrication strategies for 
commercialization. Since the principal degradation mechanisms 
that limit device lifetimes, and the major environmental factors 
that dictate them, may vary considerably across perovskite 
absorbers and device architectures, the development of “one-
size-fits-all” testing protocols is a risky strategy for lifetime 
validation. 

Development of mathematical models that can predict 
operational lifetimes can significantly reduce the uncertainty 
associated with selecting the correct testing protocols. 
Prediction offers several crucial advantages over standardized 
protocol-focused testing. It can assimilate information gathered 
under non-ideal circumstances (e.g., negative results based on 
“bad” devices or those with short lifetimes, which are seldom 
reported in the literature) that can nevertheless furnish useful 
information for model training. Through the incorporation of 
physical variables such as temperature or humidity as predictive 
features, these models’ functional forms can also indicate which 
aspects of degradation are most important. Despite their 
advantages, sufficiently accurate models can be challenging to 
build. In the limit of perfect information about a device’s 
construction, packaging, and the conditions it is subjected to, an 
idealized model would be able to describe how the chemical 
interactions resulting from environmental exposure and 
operation lead to changes in its performance. Such a model may 
be envisioned in principle as a set of coupled partial differential 
equations that could be solved in a 3-dimensional multi-physics 
numerical simulation. However, this approach would require 
thousands of variables and immense computing resources. 
Even assuming resource-intensiveness is not an impediment, 
many of the relevant physical processes this model would need 
to describe are currently unknown, ultimately making this 
strategy prohibitively difficult to achieve in practice. 

If a fully mechanistic model represents a “bottom-up” 
approach proceeding from elementary physical knowledge, we 
may consider models constructed via machine learning (ML) as 
providing an opposite, “top-down” approach that leverages 
empirically-determined relationships between the target 
behavior (i.e., how power conversion efficiency evolves over 
time) and easily measured variables of interest with a clear 
relationship with the target (e.g., environmental conditions, 
initial performance metrics, or details of device architecture 
and fabrication). ML models have recently been gaining ground 
in perovskite research, particularly in areas such as stability 
where important physical processes are insufficiently known to 
enable fully mechanistic descriptions. For instance, Howard et 
al.17 and Srivastava et al.18 have recently used neural networks 
to predict the evolution of perovskite photoluminescence 

intensity in response to humidity fluctuations and MAPbI3 solar 
cell power conversion efficiency evolution under thermal stress, 
respectively. However, in the latter the evolution was not 
investigated for times long enough to reach the device T80 (the 
time taken for the power conversion efficiency, PCE, to drop to 
80% of its starting value) that serves as the traditional figure of 
merit for device longevity, making it unclear how well these 
models would fare in full lifetime prediction. An additional 
drawback of neural networks is that they are not interpretable. 
Machine learning has also been used to optimize perovskite 
stability: Hartono et al.19 used a variety of supervised ML 
techniques to optimize 2D perovskite capping layers for 
protecting MAPbI3 against damp heat environments, finding 
that random forest regression performed best among all 
modeling approaches tested; Sun et al.20 combined DFT 
calculations and Bayesian optimization to identify the most 
stable members in the ternary cesium-formamidinium-
methylammonium lead iodide perovskite family (all synthesized 
under identical processing conditions).

Physics-informed machine learning is an especially 
promising strategy that can address some of the shortcomings 
of fully empirical ML by incorporating mechanistic knowledge 
or imposing physical constraints on predictive models. This class 
of models can, in principle, make maximum use of available 
mechanistic knowledge while retaining the economy and 
flexibility of empirical models. With regards to the challenge of 
predicting PSC service lifetimes, conventional wisdom dictates 
that chemical decomposition of the absorber is a major factor 
determining the rate of device performance loss. Mathematical 
descriptions of perovskite decomposition pathways are 
therefore expected to be important ingredients of predictive 
models that may reduce reliance on potentially useful but 
uninformative empirical relationships between service lifetime 
and environmental conditions. Recently, we have shown that 
the initially observed chemical decomposition rate of 
CH3NH3PbI3 thin films (as inferred from changes in optical 
transmittance) is a good predictor of decay of the films’ carrier 
diffusion length over time.21 Furthermore, we have shown that 
this decomposition rate can be predicted accurately from 
temperature, above-band gap illumination intensity, and 
ambient partial pressures of H2O and O2.6 In this work, we 
develop the first predictive machine learning model of 
perovskite solar cell operational lifetime, as quantified by the 
device T80. T80 is predicted as a function of the ambient 
environmental conditions as well as measurements of current-
voltage characteristics taken over the first 90 minutes of 
operation. The models are trained using 45 experiments carried 
out under 1-sun equivalent illumination in air at a variety of 
different temperatures and humidities. This work exemplifies 
how physics-informed ML models can be used to unite 
mechanistic physical information with sample-specific 
observations of performance evolution to both maximize 
predictive accuracy and model interpretability. The time scale 
for decay of other metrics such as short-circuit current density 
Jsc, open-circuit voltage Voc, fill factor (FF), diffusion length, etc. 
can be formulated as a time to decay to 80% of its initial value 
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(T80,Jsc, T80,Voc, etc.), but unless otherwise noted, we will use 
“T80” to refer to T80 specifically for the PCE.

Results and discussion 
Analysis of Device Degradation Data

Device degradation data are collected in a testing station 
where temperature, humidity, oxygen, and illumination are 
controlled (Figure 1a). Solar cells (approximate area: 0.07 cm2) 
are placed underneath the objective lens of a microscope 
equipped with a light source and low-magnification objective 
that illuminates the entire device with a 1 sun equivalent above-
band gap photon flux of 542±17 nm light (i.e., 1.56 × 1021 
photons ∙ m-2 ∙ s-1). Electrical characteristics are measured in situ 
using a Keithley 2420 source-measure unit. The device under 
test is placed on a thermal stage to regulate temperature, which 
is then enclosed in a controlled-humidity chamber. Device 
operating characteristics are collected periodically (for most 
runs, every 15 minutes), including steady state open-circuit 
voltage, short-circuit current, and maximum power point 
voltage and current, as well as forward and reverse-scan J-V 
sweeps. In the interim period between measurements, devices 
are held at the bias corresponding to the most recently 
determined maximum power point. The device degradation 
dataset used for T80 modeling comprises 45 runs representing 
37 distinct environmental conditions collected in air at 
temperatures ranging from 25 to 85 °C and relative humidities 
ranging from 0 to 70%. Solar cells are fabricated in a commonly 
used inverted ITO/NiOx/CH3NH3PbI3/C60/bathocuproine 
(BCP)/Ag architecture. Devices used in this study have mean 
initial Jsc of 19.6 ± 1.2 mA/cm2, Voc of 0.984 ± 0.025 V, and fill 
factor of 71.7 ± 4.8% (uncertainty represented by the standard 
deviation), corresponding to an initial PCE of 13.8 ± 1.4%. Note 
here that we report the PCE with respect to the AM1.5G 
irradiance of 100 mW/cm2, rather than the actual incident 
power of the monochromatic light used to illuminate the 
sample (~57 mW/cm2). Since the incident photon flux is 
calibrated to match the absorbed component of the AM1.5G 
spectrum, this efficiency metric is more meaningful than the 
true PCE under 542 nm illumination. We do not use a shadow 
mask to constrain device active area, in order to facilitate 
microscopy across device edges as well as the interior. 
Therefore, the active area is assumed to correspond to the 
overlap area between the ITO and Ag electrodes and may lead 
to minor inaccuracy in the estimation of Jsc due to light-piping 
effects or fluctuation of individual device active area relative to 
the nominal value (about 7 mm2) due to variation in substrate-
mask alignment during Ag contact deposition. The T80 values in 
this dataset vary over an order of magnitude, ranging from 
under 200 min in high-thermal stress conditions to almost 5000 
min at lower temperature and humidity. Histograms of these 
quantities and a breakdown of the environmental conditions 
investigated in this study are plotted in Figure S1. 

Typical device parameter evolution is shown in Figure 1b, 
using a sample run collected at 25 °C and 50% relative humidity 
(RH). The overall trajectory of PCE is dominated by the evolution 

of Jsc, which decays monotonically with an initial, relatively slow 
plateau giving way to a more rapid drop-off as the perovskite 
absorber decomposes (as indicated by dark field microscopy; 
see discussion below). PCE is boosted at first by gains in both fill 
factor and Voc, but while Voc remains relatively high over the 
course of degradation, fill factor experiences a steady decline 
after the initial rise. The mid-term decay in fill factor also plays 
a significant role in PCE decline. Looking across the entire 
dataset (Figure 1c), PCE losses before T80 are determined mostly 
by Jsc (on average, at 87% of its starting value at T80), followed 
closely by fill factor (91% of its starting value at T80), while Voc 
increases tend to buffer these losses slightly (102% of its 
starting value at T80). Overall, this behavior is consistent with 
what we21,22 and others23 have observed when examining the 
degradation of perovskite films’ optoelectronic properties: 
carrier transport (i.e., mobility and diffusion length) is much 
more sensitive to perovskite decomposition than carrier 
lifetime is, implying that Jsc should decay much more rapidly 
than Voc if absorber degradation is a predominant cause of PCE 
loss. The fill factor is affected by both mobility and lifetime but 
also potentially by processes in the device not directly related 
to absorber decomposition and falls between Jsc and Voc in the 
severity of its effect on PCE evolution. 

The significant average reduction in Jsc at T80 indicates that 
perovskite decomposition is a process of major importance in 
device failure. Moreover, the logarithm of the time at which Jsc 
reaches 80% of its starting value (T80,Jsc) obeys a moderately 
strong correlation (Pearson coefficient ρ = -0.73) with the 
chemical decomposition rate of CH3NH3PbI3 predicted by our 
kinetic model for a given combination of temperature and 
humidity under 1 sun photon flux in air (Figure 2b), further 
suggesting that the photooxidation processes that dominate 
perovskite material degradation when films are exposed to the 
air also represent a major factor in PCE loss for full devices. 
Bryant et al.24 have shown convincing corroborating evidence 
that photooxidation-like processes driven by injected electrons 
under dark O2-containing environments lead to rapid 
degradation underneath the active electrode of 
ITO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au PSCs while leaving 
adjacent perovskite regions intact, including those under 
unbiased contacts. Here the impact of material decomposition 
in devices is imaged using dark field (DF) microscopy in 
reflection geometry, which is sensitive to spatial changes in 
refractive index (which would occur during the conversion of 
perovskite to secondary phases) or film roughening that 
increase scattering.21 The bright regions in dark field images 
correspond to locations where significant portions of the 
perovskite absorber have decomposed into PbI2, which is the 
only solid degradation product of the dominant water-
accelerated photooxidation pathway.6 PbI2 is easily recognized 
by its bright yellow color, which the naked eye can perceive 
clearly in heavily degraded devices. We also observe a peak 
characteristic of PbI2 in the X-ray diffraction pattern of a device 
after degradation at 25 °C under 1 sun illumination in 60% 
relative humidity air (Figure S2), corroborating this visual 
indication. Dark field images of pristine devices are initially flat 
and featureless (Figure 2c), indicating uniform device layers 
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largely free of macroscopic defects. As degradation progresses 
under 50% relative humidity conditions and 1 sun illumination 
in air at 25 °C (Figure 2d-g), material transformation is at first 
most noticeable at the device edges and at intermediate times, 
isolated defects in the interior. The “knee” in Jsc is 
approximately concurrent with a strong increase in the 
scattering of the incident light (the appearance of large 
numbers of bright spots in the dark field images) throughout the 
device (Figure 2f). These more homogeneous patterns suggest 
that, at longer timescales, diffusion of O2 and H2O directly and 
more uniformly through the contact (for instance, along grain 
boundaries as opposed to regions of poor coverage created by 
fabrication defects) may cause degradation as well. This 
interpretation is supported by the observation that thicker Ag 
contacts (300 nm vs. the standard 100 nm used in all other 
devices in this work) suppress the rates of both Jsc decay (0.0043 
%/min for the 300 nm contact vs. 0.0102 %/min for the 100 nm 
contact, both calculated from a linear fit to the time evolution 
of Jsc over the first 1000 min of each experiment, both 
conducted under identical environmental conditions) and dark 
field intensity rise (Figure S3), indicating that degradation is 
mediated to some extent by mass transport directly through the 
contact. However, performance is already severely 
compromised by degradation at edges and macroscopic defects 
by the time this homogeneous degradation mode becomes 
significant. 

The spatial patterns in the dark field images indicate that 
photooxidation alone may be an incomplete explanation for the 
progression of solar cell degradation. If it were the only factor, 
we would expect to see the most degradation where the 
perovskite is least protected (i.e., the region outside the Ag 
contact that defines the device), yet the region most vulnerable 
to decomposition occurs at the device boundary. At early stages 
of degradation, dark field intensity of the exposed areas 
degrades much faster than the device interior (probing a region 
free of macroscopic defects indicates no significant trend of 
increasing intensity), signifying that the contact still acts as an 
effective diffusion barrier during this period (Figure S4a,b). 
However, degradation outside the contact is quickly 
outstripped by that of the edge region (Figure S4c), although 
both proceed faster than in the device interior. Overall, these 
patterns imply that both photooxidation and a separate 
degradation mode (or modes) introduced by the contact 
combine to make decomposition most severe at the device 
boundary. Two broad categories by which the contact might 
exacerbate degradation are: (i) chemical reactions between 
halide ions released by the perovskite and the Ag metal and (ii) 
the influence of the electric field induced by the presence of the 
contact.

The possibility of chemical reactions is supported by 
observations made by Besleaga et al.25 in which 
FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD devices under Ag 
contacts spontaneously degrade even under storage in dark, 
low-humidity (~10% RH) conditions, while equivalent devices 
with a protective Mo layer beneath the Ag or with Au 
substituted for Ag entirely degrade slower or not at all under 
the same conditions, within the limits of detection. This 

behavior is attributed to the ability of Ag to act as a chemical 
sink for I- ions (producing AgI), which, when combined with the 
rapid diffusivity of the latter in the Spiro-OMeTAD hole 
transport layer, creates a chemical gradient that depletes the 
perovskite of iodine, causing it to break down. We expect that 
if this process were a major trigger of degradation, it would 
occur more homogeneously across the device, but we do not 
exclude the possibility that chemical reactions with the Ag 
electrode play some role. Contrary to the report of Besleaga et 
al.,25 however, when the Ag contact is replaced with Au, Jsc 
decays and dark field intensity rises more rapidly despite the 
latter ostensibly being more stable (Figure S3a). Kerner et al.37 
have noted that Au can also react readily with iodine 
compounds, especially the oxidized forms such as I2 and I3

-, the 
former of which is a likely product of photooxidation while the 
latter may be formed by subsequent reaction with fresh I- from 
the perovskite. It may thus be the case that, when regions near 
the edges of the contacts are weakened by photooxidation, that 
decomposition products from the perovskite may facilitate 
additional reactions with the metal electrodes, accelerating the 
overall process of degradation. We do not directly observe 
reaction between Ag and I by X-ray diffraction (Figure S2), but 
this lack of evidence does not necessarily preclude the 
participation of this mechanism if the products are amorphous 
or generated in quantities too small to be probed. 

Alternatively, bias-induced degradation may also be invoked 
to account for the influence of the contacts. Leijtens et al.9 
observed that sustained application of bias to CH3NH3PbI3 films 
leads to methylammonium accumulation near the cathode and 
depletion near the anode, eventually leading to irreversible 
decomposition of the perovskite. They also observed that this 
process can be accelerated by the presence of water (or other 
polar solvents like dimethylformamide), suggesting that such 
species can enhance degradation by enhancing ion mobility. 
Barbé et al.26 observed patterns of degradation near device 
edges similar to those in Figure 2 when biasing them at 1 V in 
the dark under atmospheres containing different combinations 
of O2 and H2O. They reported that significant device 
degradation occurred only when H2O was present and thus 
concluded that humidity, not oxygen, was the predominant 
cause of device degradation due to its ability to facilitate ion 
drift. However, since the energy bands in a ~1.6 eV bandgap 
solar cell under 1 V bias should be nearly flat, as this condition 
is generally close to open-circuit, there should not be significant 
internal electric fields to drive ion migration. As a result, bias-
induced degradation does not seem like the most likely 
explanation for increased decomposition near device edges. 
However, even in the reduced field state at maximum power 
point, the gradient of the electric field between the device 
region and the adjacent exposed regions may be considerable. 
Under an electric field gradient, dipoles such as MA+ cations will 
experience a force that may also lead to decomposition of the 
material. We emphasize that although the observed effect of 
this proposed mechanism is the same as that proposed by 
Leijtens et al.9 – i.e., local degradation through depletion of MA+ 
cations – we propose that the physical origin of the force is an 
electric field gradient acting on dipoles ( ) rather the 𝐅 =  (𝐩·∇)𝓔
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electric field itself acting on charges ( ; here,  is the 𝐅 =  𝑞𝓔 𝐅
electric force acting on a species either of electric charge  or 𝑞
electric dipole moment  as a result of electric field ). Since 𝐩 𝓔
the gradient is localized at the device edges, this additional 
stress may account for the rapid degradation there.

Macroscopic defects in the device interior where Ag 
coverage is low may effectively act as device edges as well, 
explaining why degradation fronts from the outer device 
boundary and interior defects propagate in similar ways. 
Degradation caused by the field gradient may further disrupt 
the integrity of the device, making it easier for O2 and H2O to 
penetrate the absorber; thus, these multiple modes of 
degradation may have a mutual accelerating effect. In a similar 
experiment to that shown in Figure 2 conducted at the same 
conditions (25 °C/50% RH), when the edges of the device are 
covered with Kapton tape but the center remains exposed, the 
dark field images show that degradation is partially though not 
entirely suppressed in the protected region, but occurs at 
similar rates in the center (Figure S5). Comparing this 
experiment against the one shown in Figure 2, the initial decline 
in Jsc is significantly slowed by the partial protection. The fact 
that degradation can still be observed at the Kapton-protected 
edges points to the existence of a mode that does not require 
environmental stimuli (e.g., electric gradient-induced 
degradation), but the suppression in its rate again indicates that 
photooxidation also plays a significant role. The overall picture 
of hypothetical degradation mechanisms is summarized in 
Figure 2h-k: photooxidation is the major cause of degradation 
outside the Ag contact but also contributes to degradation at 
the device edges and macroscopic defects in the device interior, 
where H2O and O2 can most easily diffuse from areas 
unprotected by the contact; chemical reactions between 
decomposition products from the perovskite and Ag from the 
contact may occur within the device; and electric field gradients 
at the device edges can exert forces on dipolar species such as 
MA+ cations in the perovskite, leading to field-induced 
decomposition even in the absence of other external stresses.

While the effects of material decomposition on Jsc are a 
major factor in how the PCE evolves over time, fill factor also 
plays an important role in the critical period leading up to T80. 
Fill factor is generally interpreted as being impacted by three 
major processes: series resistance, shunting, and 
recombination. To determine which are dominant in our 
experiments (and how these might vary with environmental 
conditions), we examine the change in series resistance Rs and 
shunt resistance Rsh at T80 relative to their starting values (both 
values are estimated from fits of the reverse-scan J-V sweeps to 
a diode equation based on the Lambert W-function).27–29 
Starting values of Rs range from 4 to 100 Ω with an average of 
36 Ω; the changes in Rs at T80 range from -44 to +128 Ω, with an 
average increase of 18 Ω, and the relative change ΔRs/Rs(t=0) 
ranges from -87% to +606%, with an average relative increase 
of +68%. In general, although series resistance may increase or 
decrease by nearly an order of magnitude at T80 (Figure 3), there 
does not appear to be a consistent tendency towards either. By 
contrast, Rsh almost always decreases (starting values range 
from 6.42 × 103 to 1.30 × 106 Ω with an average of 9.56 × 104 Ω; 

absolute changes from -1.30 × 106 to +3.30 × 103 Ω with an 
average of -8.59 × 104 Ω; relative changes from -99.5% to 
+40.7% with an average of -62.3%), and in the few cases in 
which it does not decrease, the increase is marginal (less than 
50%). Thus, shunting can be a significant contributor to fill 
factor loss. We note, however, that only a minority of devices 
we tested shunted catastrophically (as evidenced by linear, or 
nearly linear J-V curves), and they are excluded from this 
analysis on the likelihood that this failure mode indicates 
significant fabrication defects unrepresentative of well-made 
devices. In addition to shunting, recombination also likely plays 
a role in the decline of fill factor, particularly at higher 
temperatures. We can estimate the influence of recombination 
by examining the behavior of Voc. There is a clear trend of 
reduced Voc(T80)/Voc(t = 0) with increasing temperature (Figure 
3), signifying that physical mechanisms that increase carrier 
recombination over time are activated by heat. A similar trend 
in FF(T80)/FF(t = 0) indicates that thermally-activated 
recombination processes constraining Voc may constrain FF as 
well (Figure 3). Similar analysis shows that the tendency to 
shunt is not strongly affected by temperature, while the 
increase in series resistance at T80 is in general much lower at 
higher temperatures (Figure 3). Plots of normalized Jsc, Voc, and 
FF at T80 against relative humidity (Figure S6) display no obvious 
correlations, indicating that the same H2O-mediated 
degradation mode or modes are active under all conditions 
probed in this study. In summary, fill factor is predominantly 
affected by shunting (regardless of temperature) and 
recombination (at higher temperatures), and the influence of 
the latter is also evident in the behavior of Voc. The physical 
origin of temperature-activated recombination is unclear, but it 
may relate to interdiffusion of device components that lead to 
defects at interfaces or in the bulk of the perovskite.

Development of Machine Learning Models to Predict 𝑻𝟖𝟎

Having developed a basic understanding of how CH3NH3PbI3 
solar cell degradation proceeds in different environments, we 
now turn to the task of developing machine learning models to 
forecast the evolution of their power conversion efficiency 
(PCE). Predicting a variable such as T80 falls under the category 
of supervised learning: each degradation experiment is 
“labeled” by the value of T80, and the objective of the machine 
learning algorithm is to discover a mathematical relationship 
between the labels and other data characteristic of each 
experiment, termed “features.” To maximize the models’ 
predictive utility, the features should be calculated from data 
measured during the early stages of degradation. The data that 
are available depends on how the experiment is set up and 
conducted, and might in principle include J-V measurements, 
environmental conditions, device architecture and processing, 
photoluminescence or dark field measurements, capacitance 
spectroscopy, or any other data available from device or film 
characterization. Which of these data to include in the feature 
set is a critical decision. On one hand, more extensive feature 
sets improve the chances of obtaining high predictive accuracy 
by incorporating as many potentially relevant effects into the 
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model as possible. On the other hand, incorporating too many 
variables may needlessly increase the experimental burden of 

data acquisition, and reduce the model’s general applicability if 
it relies on data from techniques that are not readily available 
to the PV research community. Moreover, models that attempt 
to incorporate too many features are vulnerable to 
overfitting—that is, learning noise, rather than the true 
patterns in the dataset—and generalize poorly when applied to 
new data beyond the training set. Therefore, we focus on two 
major classes of features available from instruments that are 
relatively inexpensive and ubiquitous in photovoltaics research 
laboratories: a priori data that are known from the 
environmental conditions the solar cells are subjected to, and 
sample-specific measurements based on J-V measurements 
made during the first few cycles of data acquisition. Explicitly, 
the a priori variables are temperature, partial pressure of H2O, 
and the kinetically modeled CH3NH3PbI3 decomposition rate 
determined from the ambient environmental conditions, as we 

have recently reported elsewhere.6 The kinetic model 
represents the superposition of four decomposition pathways, 
and the equation relating the decomposition rate to ambient 
temperature, partial pressures of oxygen and moisture, and 
incident photon flux is provided in Supplementary Note 1. 
Features constructed from J-V measurements include the initial 
values of Jsc, Voc, and fill factor, as well as the first and second 
time derivatives of each parameter at the start of each 
degradation experiment normalized to its starting values. 
Between the a priori and sample-specific variables, this 
construction yields a total of 12 features, summarized explicitly 
in Table 1. 

Table 1. Features provided to machine learning models that predict perovskite solar cell 
T80, and how they are calculated.

Relative to the size of the dataset (45 runs), the feature set 
is still large enough to pose a risk of overfitting. To avoid this, 
we employ modeling techniques that enforce sparsity of the 
dataset, including linear regression with greedy feature 
selection (GFS) by orthogonal matching pursuit,30 LASSO,31 and 
ridge regression.32,33 In all of these models, the natural 
logarithm of T80 is expressed as a linear combination of the 
features, but the methods for determining the coefficients of 
each feature are different. In greedy feature selection, features 
are selected sequentially based on which one most reduces the 
error of the prior model (starting from a model that includes no 
features at all); the search is terminated before the number of 
selected features exceeds 10% of the number of features in the 
training set (note that it is also possible to terminate the search 
using error-based criteria, although doing so may not enforce 
sparsity as stringently as constraints based on the size of the 
feature set). LASSO and ridge regression assign coefficients by 
attempting to simultaneously minimize the least squares error 
of the regression in addition to a penalty term that is 
proportional to the ℓ1- (LASSO) or ℓ2-norm (ridge regression) of 
the vector of feature weights. With LASSO, insignificant features 
are often assigned a weight of precisely zero, strictly enforcing 
sparsity; with ridge regression, the weights of insignificant 
features are suppressed but do not vanish entirely. The models 
are tested through leave-one-out cross-validation – that is, each 
experiment in the dataset is sequentially removed as a test 
sample, and the remaining data are used to train the model. 
Statistics from the distribution of testing error furnish an 
unbiased estimate of the model’s predictive accuracy on unseen 
data, representing its ultimate figure of merit. Stability of the 
models relative to the training set may be assessed by 
comparing the feature weights across iterations of the 
test/train split: stable models will repeatably select the same 
features and assign weights with consistent magnitudes, while 
feature weights in unstable models may fluctuate considerably.

Models trained using GFS, LASSO, and ridge regression are 
relatively consistent with one another. Parity plots of test set 
predictions (Figure 4a-c) show that average prediction accuracy 
for all models lies in the range of ~35-45%. The R2 values for the 
test set predictions are also similar at 0.66-0.7, showing that the 
models can explain about 2/3 of the variance in unseen 

feature 
symbol

units physical interpretation/calculation method

𝑟MAPI mol⋅m-2⋅s-1 Decomposition rate of CH3NH3PbI3 film 
under the specified environmental 
conditions; calculated from kinetic model 
described in Siegler et al.6

𝑇 °C Solar cell temperature, controlled during 
the experiment

𝑃H2O kPa Partial pressure of ambient H2O, calculated 
from relative humidity measurement

𝐽sc(𝑡 = 0) mA⋅cm-2 Short-circuit current at the start of the 
experiment, taken from steady state 
measurements at short circuit

𝑉oc(𝑡 = 0) V Open-circuit current at the start of the 
experiment, taken from steady state 
measurements at open circuit

FF(𝑡 = 0) % Fill factor at the start of the experiment, 
taken from steady state measurements at 
open circuit, short circuit, and maximum 
power point

d𝐽sc/d𝑡 min-1 1st time derivative of the normalized short-
circuit current (by its initial value), 
estimated from the first 90 minutes of each 
experiment

d𝑉oc/d𝑡 min-1 1st time derivative of the normalized open-
circuit voltage (by its initial value), 
estimated from the first 90 minutes of each 
experiment

dFF/d𝑡 min-1 1st time derivative of the normalized fill 
factor (by its initial value), estimated from 
the first 90 minutes of each experiment

d2𝐽sc/d𝑡2 min-2 2nd time derivative of the normalized short-
circuit current (by its initial value), 
estimated from the first 90 minutes of each 
experiment

d2𝑉oc/d𝑡2 min-2 2nd time derivative of the normalized open-
circuit voltage (by its initial value), 
estimated from the first 90 minutes of each 
experiment

d2FF/d𝑡2 min-2 2nd time derivative of the normalized fill 
factor (by its initial value), estimated from 
the first 90 minutes of each experiment
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samples. Bar plots of the feature weights (Figure 4d-f) show that 
similar features are typically assigned high weights across all 
three modeling algorithms despite the differences in how they 
are selected. The models trained by GFS and LASSO are 
considerably sparser than those trained by ridge regression yet 
retain comparable predictive accuracy, indicating that most of 
the features selected by the latter are superfluous and do not 
meaningfully contribute to prediction. We therefore focus 
our discussion of model interpretation below on the common 
features selected by GFS and LASSO. The features selected 
with mean value greater than their standard deviation across 
all test-train splits are almost identical for GFS and LASSO 
(which is a good sign). A full breakdown of the coefficients for 
each test-train split is given in Figures S7-S9.

To test whether more sophisticated models can further 
improve accuracy, we also investigate the use of a hybrid best-
subset selection (BSS) method34–37 to constrain the feature set. 
Briefly, features are selected by simultaneously enforcing ℓ0 and 
ℓ2 penalties. That is, ridge regression is performed subject to a 
sparsity constraint imposed by the ℓ0 norm (equivalent to the 
number of non-zero values in the vector of model coefficients). 
After using the hybrid ℓ0ℓ2 penalty to shrink the feature set, an 
ordinary least squares fit is performed to determine the 
coefficients corresponding to the surviving features. Further 
details of this algorithm’s implementation are given in 
Supplementary Note 2. Using the hybrid BSS method improves 
the mean test set error to 41% and the R2 values for test set 
predictions to 0.731 (Figure 5a). Relative to the next-best 
approach (LASSO), the hybrid BSS method is evidently effective 
at reducing the impact of the most difficult to predict /highest-
error samples (as these contribute disproportionally to the 
mean), although the median error in LASSO is slightly lower. The 
distribution of coefficient weights resembles those obtained 
when GFS and LASSO are used (Figure 5b; full coefficient 
breakdown for all test-train splits given in Figure S10), although 
all values are slightly larger for hybrid BSS. This result may be 
viewed as a consequence of the more stringent feature 
selection in BSS, which eliminates the fourth feature (on which 
the above models do not agree), and the fact that BSS does not 
shrink the coefficients due to their final determination by 
ordinary least squares fitting.  

Interpretation of the Model Predictions

Explicitly, the model trained by hybrid BSS (using the values 
obtained for the test/train split with median error, as in Figure 
S10c) may be written as:

ln(𝑇80 ) = 𝑐 + 𝛽1
𝑟MAPI ― 𝑟MAPI

𝜎𝑟
+ 𝛽2

𝑇 ― 𝑇
𝜎𝑇

+ 𝛽3

(dFF
d𝑡 )

𝑡 = 0
― (dFF

d𝑡 )
𝑡 = 0

𝜎𝐹

Here, the terms  are the feature coefficients learned by the 𝛽𝑖

model; the constant  is the intercept, also learned by the 𝑐
model; and the terms under the bars and  are the means and 𝜎𝑖

standard deviations resulting from feature standardization. The 
standardization parameters are not learned by the model, but 

are introduced before training to put all features on statistically 
equivalent (mean of zero and standard deviation of 1) and 
unitless footing. Coefficient values are provided in Table 2.

Table 2. Parameters of the model trained by hybrid BSS corresponding to the test/train 
split with median testing error.

The most consistently important features in all models 
described above are the kinetically modeled 
CH3NH3PbI3 decomposition rate, temperature, and the 
first derivative of fill factor with respect to time. The 
former two are negatively related to T80, while the latter is 
positively related. The major role of the kinetically modeled 
CH3NH3PbI3 decomposition rate rMAPI reinforces the observation 
that photooxidative absorber degradation is an important 
constraint on solar cell lifetime. As noted above, however, there 
are likely other processes besides photooxidation that 
contribute to the observed spatial patterns of degradation that 
may be specific to the device architecture. The similarly large 
influence of temperature is in accord with the observed 
increases in fill factor and Voc losses under heating noted 
previously, embodying the effects of physical processes that 
increase recombination (or otherwise compromise 
performance). There are many possible thermally activated 
processes that might do so. NiOx has also been shown to 
undergo a thermally-induced reaction with MAI, compromising 
performance of CH3NH3PbI3 PSCs processed under short high 
temperature anneals;38 it is possible that this reaction may 
occur at lower temperatures, albeit at a slower rate that could 
nevertheless compromise device performance over longer 
periods of operation at more moderate temperatures. 
Numerous studies have reported that diffusion of other 
structural components can occur rapidly in perovskite solar 
cells: In3+ from ITO;38,39 contact metals such as Au;40,41 and even 
Na+, Ca2+, and other components of soda-lime glass 
substrates.42,43 Although halide perovskites are generally 
tolerant of metal ion impurities, sufficient levels may still lead 
to deterioration of their optoelectronic properties. In view of 
the many possible avenues by which temperature-activated 
processes could occur, we take no position on its precise origins 
here, but note that future generations of predictive models 
stand to benefit from detailed studies of the relevant physical 
processes. 
The initial rate of fill factor rise is the only sample-specific 
feature consistently assigned high weight in the models. At 
lower temperatures, below 55 °C, the fill factor initially 
increases before settling into its longer-term decline (as seen in 
Figure 1b). At higher temperatures (≥65 °C), an initial rise in FF 
is rarely observed, and there is an overall negative linear 

ln (𝑇80) = 𝑐 + ∑𝑝

𝑖 = 1
𝛽𝑖

𝑥𝑖 ― 𝜇𝑖

𝜎𝑖
 

Feature 𝒙𝒊 Units Coefficient  𝜷𝒊 Mean 𝝁𝒊 Std. Dev. 𝝈𝒊

Intercept 𝑐 ln(min) 6.972 -- --
𝑟MAPI mol⋅m-2⋅s-1 -0.3646 1.208×10-7 3.734×10-8

𝑇 °C -0.3801 51.36 22.06
dFF/d𝑡 min-1 0.2674 2.425×10-4 7.317×10-4

(1)
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correlation between dFF/dt and temperature (Figure 6a). 
However, the initial value of the fill factor also increases with 
temperature (Figure 6b), indicating that the initial rise observed 
at lower temperature may also occur at higher ones, but much 
faster, within the first data acquisition cycle. This initial rise 
correlates very weakly with initial changes in shunt resistance 
and modestly with series resistance (Figure 6c,d). These results 
suggest that multiple thermally activated processes influence 
fill factor: a beneficial process acting on short to moderate 
timescales that increases it, and a longer-timescale process that 
deteriorates it along with Voc, as discussed above. In the model, 
the fill factor time derivative captures the shorter-timescale 
beneficial processes (or more accurately, the net effect of the 
beneficial processes and the detrimental ones), while 
temperature captures the longer-term effects of the adverse 
ones. We consider two hypotheses for the origin of processes 
that initially benefit the fill factor: either they are related to ion 
redistribution as a result of the device transitioning from 
equilibrium in the dark (its storage state) to maximum power 
point under illumination (its main operating condition); or they 
may reflect irreversible improvements associated with 
elimination of trap states in the bulk or at interfaces. In the 
former case, when the device is in the dark, mobile ions (e.g., 
iodine or methylammonium vacancies) will drift under the built-
in electric field and accumulate at the contacts until the 
electrochemical potential associated with their buildup is strong 
enough to resist further drift. Domanski et al.44 investigated 
transient changes in perovskite solar cell power output and 
concluded that different ionic species drift on different 
timescales, with halide vacancies moving relatively quickly, on 
the order of 0.1-100 s, and cation vacancies moving much more 
slowly, on the order of >1000 s. This difference in ionic mobility 
implies that halide vacancies are responsible for J-V hysteresis 
observed on time scales of seconds to minutes, while cation 
vacancies are more likely to account for longer-term reversible 
evolution in device performance. When the device is measured, 
it spends most of its time operating near the maximum power 
point—i.e., at relatively high forward bias. When placed under 
these conditions, the applied bias acts in opposition to the built-
in electric field, and thus the ions will no longer be pushed as 
strongly toward the contacts as they were in the dark. As they 
reestablish a new equilibrium, the perovskite energy bands will 
also shift in response to the changing charge distribution. 
Reconfiguration of the bands in this manner may also change 
the relative positions of the Fermi level and midgap trap states, 
with the possibility of these states shifting from mostly unfilled 
(active) to mostly filled (inactive) and thus resulting in reduced 
recombination. Band bending due to ion accumulation at the 
interfaces driven by the built-in field may also create charge 
extraction barriers there. When the device shifts from its dark 
equilibrium state to maximum power point, these barriers may 
be alleviated as mobile ions diffuse back into the bulk. To test 
whether ion migration plays a role in fill factor improvement, 
we assess whether these effects are reversible when the device 
is transitioned between periods of operation under illumination 
at maximum power point (when the electric field across the 
device is low) and in the dark at short circuit (when it is high). 

The results of this experiment indicate that the initial FF 
improvement is partially reversible and strongly correlated with 
changes in series resistance. (Figure S11). We note also that the 
rise in fill factor over the first light cycle is anti-correlated with 
the change in Voc, suggesting that its initial enhancement occurs 
in spite of increased carrier recombination rather than due to a 
reduction in defect activity and implying that interface barrier 
alleviation may be the best explanation. However, during 
successive cycles FF and Voc display a similar upward trend, 
indicating that increases following the initial rise may have a 
different physical origin such as passivation of trap states by O2 
or H2O. After several light/dark cycles, the FF improvement is 
maintained across the dark periods (i.e., appears to become less 
reversible). This may indicate that drift of ions in the dark is 
slower than their diffusion in the light, allowing performance 
gains to build up over time with a 50% light/dark duty cycle. 
Hysteresis in the device begins low and remains so over the 
course of the experiment, indicating that there are no major 
changes in the mobile ion population. In view of the partially 
reversible nature of the initial fill factor improvement and its 
clear connection with series resistance, we therefore believe it 
can be plausibly explained by interfacial band reconfiguration 
due to ion migration. 

Conclusions
In this work, we have experimentally examined the degradation 
of 45 ITO/NiOx/CH3NH3PbI3/C60/BCP/Ag solar cells under a wide 
range of environmental conditions. We find that power 
conversion efficiency tends to decline mostly because of losses 
in short-circuit current and fill factor, while open-circuit voltage 
typically remains high over the useful lifetime of the devices. 
Short-circuit current losses are strongly associated with water-
accelerated photooxidation and electric field-related 
decomposition of the perovskite absorber (via electric field 
gradients). Fill factor losses are almost universally attributable 
at least in part to reduction in shunt resistance, but increases in 
recombination play a larger role at higher temperatures, at 
which open-circuit voltage also starts to become affected. 
Machine learning models trained to predict T80 have error of 
~35-45% on average, and can attain this level of performance 
using sparse feature sets relying on the kinetically modeled 
CH3NH3PbI3 decomposition rate, the temperature, and the 
initial time derivative of the device’s fill factor. Both our analysis 
of the data and the model’s choice of features suggests that 
decomposition of the perovskite plays a large role in the gradual 
loss of power conversion efficiency by way of short-circuit 
current reduction, but additional thermally-activated processes 
likely contribute to increased recombination over time resulting 
in fill factor and Voc losses (particularly under higher 
temperatures). This work demonstrates how incorporating 
physical knowledge of the processes constraining device 
performance can contribute to ML model accuracy when the 
size of the dataset is restricted by allowing the development of 
highly informative features. The success of our models should 
motivate future efforts to develop quantitative understanding 
of decomposition processes of other perovskites of interest 
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(particularly compositions rich in formamidinium), as well as 
interlayer device interactions that may lead to increased carrier 
recombination rates. 

In future modeling tasks, it will be important to consider 
complexities that arise in moving from the relatively simple 
laboratory cell scale to the more commercially relevant module 
scale. For instance, environmental stresses in the field are not 
static but vary in ways that may be reasonably predictable (e.g., 
day/night and seasonal cycles) and others that are less so (e.g., 
weather). These variations will not only complicate the 
prediction task, but may introduce additional modes of 
degradation that are less active in static conditions (for 
instance, mechanical stresses arising from thermal cycling).45 It 
will therefore be important to develop predictive models that 
can refine lifetime predictions based on both expected cycles of 
ambient conditions and unexpected excursions about these 
patterns. Another important consideration at the module level 
is that spatial uniformity of the stresses – especially illumination 
– may not be taken for granted. Partial shading of component 
cells in a module may place them in reverse bias, activating 
additional decomposition pathways beyond those experienced 
by a cell operating continuously at maximum power point under 
steady and uniform illumination.7 Environmental exposure may 
result in other types of localized effects that are deleterious to 
global performance, such as mechanical impact from 
hailstones.46 Finally, aspects of module integration that are not 
relevant at the cell level, such as the scribes needed to form cell 
interconnects or buildup of high voltages resulting from 
connecting many cells in series, may introduce or exacerbate 
interfacial chemical reactions or electric field gradient-induced 
degradation.46 Collectively, these considerations imply that 
taking temporal and spatial variations in stresses into account 
will be important to make reliable predictions at the module 
level, suggesting that timeseries forecasting techniques will be 
an important tool in future generations of models. It will likely 
also be crucial to design models to detect and react to randomly 
activated failure modes such as those activated by partial 
shading or hail impact. Hybrid classification-regression models, 
wherein a model first compares the current behavior of a 
module against its history to identify its operating mode 
(classification) and then selects a corresponding mathematical 
model (regression), might therefore be a useful strategy to 
adjust in real time to changing conditions. Ultimately, our 
present work shows that identifying the important degradation 
modes constraining solar cell performance is an effective 
foundation for designing predictive models, and we expect that 
similar approaches of characterizing the more complex range of 
phenomena operating at the module level will be integral to 
lifetime forecasting of commercial-scale devices.

Experimental
Device Fabrication

ITO-coated glass slides (1.5 × 1.5 cm, 15 Ω/sq, Yingkou 
Shangneng Photoelectric Material Co.) were sonicated in 
Alconox detergent solution, deionized water, acetone, and 

isopropanol for 10 min each, rinsing in deionized water in 
between each step. After the isopropanol sonication step, the 
slides were blow-dried in nitrogen and plasma cleaned in argon 
for 10 min. The substrates were then transferred to a nitrogen-
filled glovebox, where they were spin-coated with a solution of 
0.1 M Ni(OAc)2⋅4H2O (Sigma Aldrich, 99.998% trace metals 
basis) and 0.1 M ethanolamine (Sigma Aldrich, ≥99.5%) in 
ethanol (Sigma Aldrich, anhydrous) at 3000 rpm for one minute. 
The solution was strained through a 0.2 μm PTFE filter prior to 
use. The substrates were then removed from the glovebox and 
annealed at 300 °C for 60 min in air to form the NiOx hole 
transport layer. The substrates were then returned to the 
glovebox for CH3NH3PbI3 deposition. Here, a 1 M solution of 
methylammonium iodide (GreatCell Solar) and PbI2 (Alfa Aesar, 
99,999%, ultra-dry) dissolved in γ-butyrolactone and dimethyl 
sulfoxide (in a 7:3 GBL:DMSO volume ratio; both solvents 
anhydrous grade from Sigma Aldrich) was spin-cast onto the 
NiOx-coated substrates at 4000 rpm for 45 sec. 15 seconds prior 
to the end of the spin step, 580 μL of toluene (Sigma Aldrich, 
anhydrous grade) was poured onto the substrate to promote 
nucleation of the perovskite precursors. After the spin step, the 
films were annealed on a hot plate at 100 °C for 10 min. During 
perovskite deposition, the glovebox was continuously purged 
with flowing nitrogen to avoid solvent buildup. After the 
perovskite deposition, the substrates were transferred to a 
separate glovebox with a thermal evaporator (Angstrom 
Engineering Nexdep). There, 40 nm of C60 (Lumtec), followed by 
7 nm of bathocuproine (Sigma Aldrich, sublimed grade) were 
evaporated from tungsten boats at maximum deposition rates 
of 0.5 and 0.3 Å/s, respectively. The substrates were then 
withdrawn from the evaporator, placed beneath a shadow 
mask, and returned to the evaporator to deposit patterned Ag 
(Kurt Lesker, 99.99%) contacts. In each deposition, 2-3 Ag 
pellets were placed in a tungsten boat and evaporated at a 
maximum rate of 2 Å/s. All evaporation steps were conducted 
at a base pressure of 5×10-6 Torr or lower. After Ag deposition, 
completed devices were stored in the dark in a nitrogen-filled 
glovebox until use.

Device Degradation Experiments

Devices used in degradation experiments were withdrawn from 
storage and loaded into a small homemade heating stage 
equipped with cartridge heaters and closed-loop thermocouple 
temperature control. The stage was placed in a homebuilt 
environmental control chamber equipped with a humidity 
controller and feedthroughs for electrical test leads and a 
microscope objective. This setup enabled the devices to be 
connected to a Keithley 2400 source/measure unit and 
illuminated by an Olympus BX53M upright microscope with a 
Lumencor Spectra X Light Engine LED light source. Here, we 
used the Lumencor’s 542 nm green LED, whose intensity was 
calibrated to yield a photon flux equivalent to that absorbed by 
a perovskite with a 1.61 eV band gap under AM1.5G 
illumination (1.56×1021 photons⋅m-2⋅s-1). The microscope was 
set up to illuminate the sample and detect re-emitted radiation 
in reflection geometry, allowing photoluminescence (PL) and 
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dark field (DF) images to be captured by placing an appropriate 
filter cube in the path. For photoluminescence, a dichroic mirror 
with 665 nm cutoff (Semrock FF665-Di02-25x36) was used; a 
long-pass filter on the emission side of the cube with 664 nm 
cutoff (Semrock BLP01-664R-25) further attenuates spurious 
signal due to reflected excitation light. For dark field, a standard 
Olympus U-MDF filter cube was used. During degradation 
experiments, the PL and dark field cubes were switched 
automatically using a homemade drive mechanism controlled 
by an Arduino Uno microcontroller. Electrical measurements 
were made with the PL cube in place (1 sun equivalent 
illumination) every 15 minutes, until at least T80 was observed. 
The measurement suite was, in chronological order: PL 
measurements under 1 sun illumination and open-circuit 
conditions; dark field measurements under ~0.01 sun 
illumination and open-circuit conditions; steady Voc 
measurement for 10 s; a short J-V sweep to determine the 
maximum power point followed by steady measurement at 
MPP for 10 seconds; steady Jsc measurement for 10 s; reverse 
and forward light J-V sweeps taken at 0.25 V/s; and finally, 
reverse and forward dark J-V sweeps taken at 0.25 V/s. In the 
interim periods between measurements, the device was 
maintained at the voltage corresponding to the most recently 
determined maximum power point under 1 sun illumination. 
Data acquisition was coordinated by a house-developed control 
script written in Python, with MicroManager software47 
controlled as a subprocess for image acquisition. After each 
experiment, the raw data were post-processed by house-
written Python scripts to convert them into formats suitable for 
machine learning model training. Note that in a few cases 
(representing <1% of the total measurements collected), 
aberrations in data collection such as temporary malfunction of 
the electrical measurement equipment or misalignment of the 
filter cube in the microscope after switching between dark field 
and PL modes may result in temporary apparent losses in one 
or more device parameters. These events may lead to 
misidentification of T80; where this is the case, such points are 
manually identified and replaced with a linear interpolation 
between the adjacent points.

X-ray diffraction data were collected with a Bruker D8 
Discover instrument equipped with a Pilatus 100K large-area 2D 
detector and a Cu anode (wavelength 1.542 Å, Kα radiation). 
The X-ray beam spot size was defined with a 0.3 mm collimator.
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Figure 1. (a) Schematic of device architecture and degradation equipment. (b) Data from a typical run collected under 1 sun illumination at 25 °C in 50% RH air, showing 
that the power conversion efficiency closely tracks the evolution of short-circuit current, but is also affected by an early decline in fill factor and a later, more modest 
decline in open-circuit voltage that only occurs well after T80. (c) Histograms taken across all 45 degradation experiments in this study of short-circuit current density 
Jsc, fill factor FF, and open-circuit voltage Voc at T80 relative to their initial values (sample values are depicted as horizontal dashed lines in panel b) show that on 
average, Jsc and FF losses account for most of the decline in PCE, while Voc increases modestly. Dashed lines in (c) represent mean values of the histograms with the 
corresponding colors.

Figure 2. The short-circuit current evolution of CH3NH3PbI3 solar cells is closely related to material decomposition. (a) Jsc evolution of a representative device at 25 °C 
and 50% RH. (b) Scatterplot of T80,Jsc, the time at which Jsc reaches 80% of its maximum value, versus the kinetically modeled decomposition rate of CH3NH3PbI3 at the 
temperature and humidity indicated by the symbol color and shape, showing a strong logarithmic correlation. (c-g) Dark field images of the device taken at 
representative points in (a) denoted by the labeled vertical lines: (c) Initially, the image is almost completely featureless, indicating absence of macroscopic defects. 
(d,e) In early stages of degradation, material decomposition is most pronounced at the edges and weak points in the device interior, which are most vulnerable to 
ingress of atmospheric species. (f) At the knee at which Jsc begins to decrease sharply, decomposition starts to occur homogeneously throughout the interior. (g) When 
less than 10% of the initial Jsc remains, most of the device has experienced severe material degradation, with only a small fraction of the active area remaining intact. 
Approximate edges of the device, determined by the overlap of the Ag and ITO electrodes, are denoted by dashed lines in (c). Scale bars in (c-g) are 1 mm. (h-k) 
Schematic of hypothetical degradation modes in MAPbI3 solar cells operating in air. (h) Photooxidation of the absorber is likely to occur at regions unprotected by the 
top Ag contact or at the edges of the device, where moisture and oxygen may diffuse laterally. (i) Fabrication defects (e.g., thin spots in the contact due to shadowing 
by dust particles on the surface) may also serve as ingress routes for oxidizing species. (j) Iodine may react with Ag from the contact to produce AgI. (k) Electric field 
gradients at device edges induce a force on dipolar species such as MA+ that may break down the perovskite absorber. Defects in the Ag contact as in (i) may also act 
as device edges, contributing to gradient-induced degradation as well.

Figure 3. Relative changes in device performance parameters (parameter at t = T80 compared to its initial value). (a-e) Scatter and box plots of relative changes in 
device parameters as a function of temperature: (a) Voc, (b) Jsc, (c) fill factor, (d) series resistance, and (e) shunt resistance. (f) Series and shunt resistance, relative to 
their initial values, plotted against one another. The Pearson correlation ρ between each variable pair and number n of samples plotted are given in the headings. In 
general, Jsc losses have a more pronounced effect on PCE at lower temperatures, while fill factor and to a lesser extent Voc losses become more important as 
temperature rises. Series resistance effects on fill factor tend to be higher with reduced temperature, while shunting effects appear to be insensitive to it. Overall, 
while series resistance may have increased or decreased at T80, it does not do so in a consistent manner; by contrast, the shunt resistance almost always decreases. 
Environmental conditions are indicated according to the symbol legend in Figure 2.

Figure 4. Modeling results for greedy feature selection (a,d), LASSO (b,e), and ridge regression (c,f) with leave-one-out testing. (a-c) Parity plots show that predictions 
on samples withheld in leave-one-out prediction are in fairly good agreement with the observed values, with average error generally in the range of ~35-45%, and 
that error metrics are relatively close to one another across modeling approaches. Environmental conditions of the runs plotted in (a-c) are indicated according to the 
symbol legend in Figure 2. (d-f) Bar plots of feature coefficients show that the models also tend to agree on which features are most important. The sign of the 
coefficients is indicated by the color of the bars: red if negative and blue if positive. For clarity, only features for which the mean value is larger (in absolute value) 
than the standard deviation across all test/train splits are shown; a more complete breakdown of the coefficients is given in Figures S7-S9. The standard deviation of 
coefficient values across all test/train splits is represented by the black bars in (d-f). 

Figure 5. Modeling results for the hybrid best-subset selection method. The parity plot of test-set predictions (a) demonstrates a modest improvement in accuracy 
over the models considered in Figure 4, while the bar plot of feature coefficients (b) show that the models constructed by hybrid BSS are similarly structured to those 
from the other approaches.

Figure 6. (a) Scatterplot of initial 1st time derivative of fill factor against temperature. (b) Scatterplot of initial fill factor against temperature. (c) Scatterplot of initial 
1st time derivative of fill factor against initial 1st time derivative of shunt resistance. (d) Scatterplot of initial 1st time derivative of fill factor against initial 1st time 
derivative of series resistance. The Pearson correlation ρ between each variable pair and number n of samples plotted are given in the headings. Environmental 
conditions are indicated according to the symbol legend in Figure 2.
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