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A computational study of nematic core structure and
disclination interactions in elastically anisotropic nemat-
ics

Lucas Myers1, Carter Swift2, Jonas Rønning3, Luiza Angheluta4, and Jorge Viñals1,4

A singular potential method in the Q tensor order parameter representation of a nematic liquid crystal
is used to study the equilibrium configuration of a disclination dipole. Unlike the well studied isotropic
limit (the so called one constant approximation), we focus on the case of anisotropic Frank elasticity
(bend/splay elastic constant contrast). Prior research has established that the singular potential
method provides an accurate description of the tensor order parameter profile in the vicinity of a
disclination core of a highly anisotropic lyotropic chromonic liquid crystal. This research is extended
here to two interacting disclinations forming a dipole configuration. The director angle is shown to
decay in the far field inversely with distance to the dipole as is the case in the isotropic limit, but with
a different angular dependence. Therefore elastic constant anisotropy modifies the elastic screening
between disclinations, with implications for the study of ensembles of defects as seen, for example,
in active matter in the extended system limit.

1 Introduction
In nematic liquid crystals, the four distortion modes – splay,
bend, twist, and saddle splay – can each contribute differently
to the elastic distortion energy1,2, a phenomenon hereafter re-
ferred to as “anisotropic elasticity”. Even though the origin of
this anisotropic elasticity can be traced to the relative alignment
of elongated nematogens, and it is well documented, there still
remain many open questions related to the effects of anisotropic
elasticity on the equilibrium and nonequilibrium properties of de-
fected nematics. A better understanding of the role of anisotropy
on the motion and interaction of disclinations is fundamental to
modeling biologically inspired and synthetic active matter sys-
tems.

In common thermotropic liquid crystals comprising small rod
like molecules, the contrast between splay, twist, and bend elas-
tic constants is small, and the so called one constant (“isotropic
elasticity”) approximation has been successful in a wide variety
of applications. More recently, however, attention has shifted
to systems comprised of more complex nematogens which ex-
hibit large elastic anisotropy. Chief among them, we mention
lyotropic chromonic liquid crystals3–7 and nematic micellar sys-
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tems8,9. Novel behavior has been uncovered which is a direct
result of elastic anisotropy, such as spontaneously broken chiral
symmetry due to confinement8–12, or the existence and motion of
topological solitons13–15. Complex anisotropic effects have also
been observed recently in studies of disclination line reconnection
in three dimensions16. In contrast with two dimensions, discli-
nation lines in three dimensions only have a topological charge
of 1/2, and can annihilate despite having the same charge sign.
An apparent asymmetry in the motion of wedge disclination seg-
ments (of effective charge ±1/2) seems to be eliminated through
twist in anisotropic media, thus restoring the implied topological
symmetry.

The topology of defected configurations in two and three di-
mensional nematic phases is well understood, including the case
of biaxial ground states17. In two dimensions, the orientation
θ(x) (see Fig. 1) of the nematic director n̂ is a harmonic function
of position x in the one constant (isotropic) approximation. Well
known singular solutions are associated with disclination point
sources2,18. Configurations comprising many disclinations can
be described by linear superposition, and results have been given
for a number of cases of interest, including, for example, binding-
unbinding transitions in active matter19, or defect interactions in
complex twisted configurations obtained by conformal mapping
techniques20. In contrast, little is known about nematic director
n̂ or tensor order parameter Q configurations corresponding to
defected configurations in elastically anisotropic media, both in
two and three dimensions. A key result in two dimensions was
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Fig. 1 Illustration of a +1/2 disclination to show the definition of the
director angle θ , as a function of the polar coordinates (r,ϕ).

obtained by Dzyaloshinskii21,22. When the splay K1 and bend K3

elastic constants are different, he found an analytic -albeit only
implicit- solution for the equilibrium nematic orientation θ cor-
responding to an isolated disclination. The solution is indepen-
dent of distance from the core, but depends on the azimuthal an-
gle around the disclination. More generally, the Euler-Lagrange
equations that follow from the Frank free energy are nonlinear
and challenging to solve analytically.

While it is possible to study both equilibrium and transient
configurations of nematics containing disclinations in the direc-
tor representation, with the Frank free energy governing elastic
distortion, and Leslie-Ericksen hydrodynamics, it is often the case
that a Q tensor order parameter representation and the Landau-
de Gennes theory are used instead. Virtually all studies of ne-
matic active and biological matter use this representation as it
eliminates the need for defect core regularization (especially in
three dimensions), and hence it permits a more convenient com-
putational treatment of disclinations and their motion. Unfor-
tunately, this choice has the effect in practice of restricting these
studies to the one constant approximation. Elasticity in the tensor
order parameter representation is incorporated in a phenomeno-
logical series expansion in powers of order parameter gradients,
Eq. (14) below. For small distortions, Frank elastic constants can
be related to the coefficients of the expansion as shown in Eq.
(15). In order to capture splay-bend anisotropy, one must resort
to at least cubic terms in gradients of the order parameter. At
this order, however, the Landau-de Gennes energy is known to
become unbounded for any choice of parameters23,24. In princi-
ple, the requirement of a bounded free energy could be accom-
plished by consideration in the expansion defining Fel of terms
at least of fourth order in Q25. However, it is also possible to
have a bounded free energy, only third order in Q, by constrain-
ing the eigenvalues of Q to lie within their physically admissible
range23. The resulting singular potential method sidesteps the
need to choose between fourteen possible fourth order invari-
ants26 (in addition to choosing among six possible third order
invariants).

Building into the theory the constraint that the eigenvalues of Q
must remain within the physically admissible range can be accom-
plished by an appropriately defined singular potential23,27–30.
The drawback of this theory is that the determination of the en-
ergy needs to be done entirely numerically at a significant com-
putational cost relative to simple evaluations of the Landau-de

Gennes energy. Two complementary issues are investigated be-
low in relation to elastically anistropic nematic phases, both in
the tensor order parameter representation. First, we build on the
singular potential method analysis of Ref.29 to quantitatively de-
scribe both bialixiality and anisotropy of disclination cores. We
use the method to compute the optical retardance, Γ = S − P,
near a disclination core, where S and P are the uniaxial and bi-
axial order parameters respectively. Exactly at the disclination
core, S = P, in agreement with experiments31 and earlier calcula-
tions29. We then consider a Fourier decomposition of the optical
retardance Γ(r,ϕ) = ∑n Γn(r)cos(nϕ) and show that as the core
is approached Γ0 ∼ r, as happens in elastically isotropic systems.
We also show that Γ1 for a +1/2 disclination and Γ3 for a −1/2
disclination are nonzero in the region of r ∼ 1. However, they
vanish as r2 as the core is approached. Hence, the uniaxial and
anisotropic far field leads to an anisotropic and biaxial region as
the core is approached. At even smaller distances, the configu-
ration becomes both uniaxial and isotropic, as judged from the
azimuthal Fourier transform of Γ.

Second, we focus on the interaction of a pair of disclinations
of opposite sign (a disclination dipole), and examine the nature
of their screening at distances much larger than their separation.
For isotropic elasticity, the orientation angle far from the discli-
nation pair behaves as θ = q1 + q2 − d(q1 − q2)sinϕ/(2r) where
q1,2 =±1/2 are the charges of the disclinations separated by dis-
tance d, r is the radial distance from the pair, and ϕ is the az-
imuthal angle measured relative to the separation distance vec-
tor. For two disclinations of opposite charge, the distortion is
screened and decays algebraically as 1/r, modulated by sinϕ in
angular dependence. In the anisotropic case, the far field de-
pendence contains an additional term of the form ±d sin(3ϕ)/r
which has the same decay with distance, but a different angu-
lar dependence. As a consequence, disclination interactions in
elastically anisotropic nematics are qualitatively different than
their isotropic counterparts, and the implications of these findings
on current phenomenology involving multiple defect interactions
and motion need to be reexamined.

2 Nematic director and Q tensor representations
In the director representation, local order in the nematic phase
is described by a director field, the unit vector n(x). This field
corresponds to the local average orientation direction of the con-
stituent molecules, with configurations being invariant under the
transformation n → −n. The Frank free energy considers dis-
tortions away from a uniform ground state, and contains all
scalar combinations of gradients of n to second order that respect
n →−n2,

Fn(n,∇n)=
∫

Ω

[
1
2

K1(∇ ·n)2 +
1
2

K2 [n · (∇×n)]2

+
1
2

K3 |n× (∇×n)|2 + 1
2

K24∇ · [(n ·∇)n−n(∇ ·n)]
]

dV

(1)
with K1,K2,K3,K24 the elastic constants that correspond to splay,
twist, bend, and saddle splay distortion modes respectively. In
two dimensions, the twist and saddle-splay terms are manifestly
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zero. We introduce an anisotropy parameter ε = (K3 −K1)/(K3 +

K1), dimensionless lengths x = x/ξ where ξ is a characteristic
length scale defined in Eq. (18) in relation to the the Q-tensor rep-
resentation, and a dimensionless free energy Fn = 2Fn/(K1 +K3).
Dropping the overlines for simplicity one finds,

Fn(n,∇n) =
∫

Ω

[
(1− ε)(∇ ·n)2 +(1+ ε) |n× (∇×n)|2

]
dV (2)

The minimizer of Eq. (2) for a single point disclination in an
infinite medium and for arbitrary ε has been given by Dzyaloshin-
skii, though only implicitly as an integral equation21,22. The ne-
matic director n = (cosθ ,sinθ) is determined by the orientation
field θ , which is found to be independent of the distance r from
the point defect, and depends only the azimuth ϕ, i.e. θ(ϕ) (see
Fig. 1). The Euler-Lagrange equation for the minimizer of the
Frank free energy (2) is

d2θ

dϕ2 = ε

[
d2θ

dϕ2 cos2(θ −ϕ)+

(
2

dθ

dϕ
−
(

dθ

dϕ

)2
)

sin2(θ −ϕ).

]
(3)

In the isotropic limit of ε = 0, the director orientation is multival-
ued θiso(ϕ) = qϕ, where q =±1/2 is the disclination charge31. A
perturbative solution in ε can be found by expanding,

θ(ϕ) = θiso(ϕ)+ εθc(ϕ)+O(ε2), (4)

where the first order correction is nonlinear in ϕ 31

θc =
q(2−q)
4(1−q)2 sin(2(1−q)ϕ). (5)

This expression also follows directly from Dzyaloshinskii’s solu-
tion – see Appendix D for details.

In order to capture both the magnitude of local order and bi-
axiality, a tensor order parameter representation is commonly in-
troduced. It is a coarse-grained, statistical measure of nematic
alignment. In three dimensions it is defined as

Q =
∫

S2

(
p⊗p− 1

3 I
)

ρ(p)dσ . (6)

Here ρ(p) is the probability density function of molecular orien-
tation p defined on S2, the unit sphere, and dσ is the surface mea-
sure on the sphere. We have denoted by I the rank three identity
tensor. Because of nematic symmetry, one has ρ(p) = ρ(−p). By
definition, Q is traceless and symmetric. Its three eigenvectors
n,m, l form an orthonormal basis, so that Q may be written as,

Q = S(n⊗n− 1
3 I)+P(m⊗m− l⊗ l). (7)

S and P can be written in terms of the three eigenvalues, λ1 ≥
λ2 ≥ −(λ1 + λ2) as S = 3

2 λ1 and P = 1
2 λ1 + λ2. The eigenvectors

corresponding to λ1 and λ2 are n and m respectively. The scalar
order parameter S describes the degree to which molecules are
aligned along the director n, while P describes biaxiality, or the
difference in alignment along the two remaining axes.

A Landau-de Gennes free energy expansion is introduced in
terms of scalar contractions of Q (the “bulk" terms), supple-
mented by terms in gradients of Q (the “elastic" terms). For small

distortion and fixed S, the elastic terms in the Landau-de Gennes
free energy may be mapped onto the Frank elastic free energy ex-
actly. In order to include bend-splay anisotropy, one must expand
the elastic energy at least to third order in gradients of Q. It is well
known, however, that at this order the free energy is unbounded
below23,24. A possible remedy involves consideration of gradi-
ent terms of fourth order in Q25. It is also possible to maintain
a third order theory, and avoid choosing among fourteen possi-
ble fourth order terms allowed by symmetry, by introducing the
Ball-Majumdar singular bulk potential method23,30. A bulk free
energy Fb[Q] = E[Q]−T ∆S[Q] is defined where E is the bulk en-
ergy, T is the temperature, and ∆S is the entropy relative to the
isotropic phase. The energy is chosen to be of the Maier-Saupe
form E[Q] = −κ

∫
Ω

tr
[
Q(x)2]dV where κ is a positive constant

that characterizes alignment strength. The entropy may be writ-
ten in terms of the molecular probability distribution function,

∆S=−nkB

∫
Ω

∫
S2

ρ(p,x) ln [4πρ(p,x)]dσdV (8)

where n is the number density of nematogens, kB is Boltzmann’s
constant, and the probability density function of molecular orien-
tation ρ is allowed to be a function of position for an inhomoge-
neous configuration. In order to find an explicit expression of ∆S

in terms of Q, ρ is determined so that it maximizes ∆S subject to
the constraint (6). The solution is,

ρ(p) =
exp
(
pT ΛΛΛp

)
Z[ΛΛΛ]

(9)

with partition function Z given by:

Z[ΛΛΛ] =
∫

S2
exp
(

pT
ΛΛΛp
)

dσ , (10)

where ΛΛΛ is a tensor of Lagrange multipliers arising from the con-
straint (6). By substituting Eq. (9) into Eq. (6) we may relate the
multipliers ΛΛΛ to Q as a mean field consistency condition,

Q =
∂ lnZ
∂ΛΛΛ

− 1
3

I. (11)

Substituting Eq. (9) into Eq. (8) and using Eq. (11) to simplify,
the entropy may be written in terms of Q as,

∆S=−nkB

∫
Ω

[
ln4π − lnZ[Q]+ΛΛΛ[Q] :

(
Q+ 1

3 I
)]

dV (12)

where : is a double index contraction.

For the elastic free energy in our present study, we include only
one term of third order in Q to allow for bend-splay anisotropy,

Fel =
∫

Ω

[
L1 |∇Q|2 +L2 |∇ ·Q|2 +L3 (∇Q)

... [(Q ·∇)Q]

]
dV (13)

where
... is a triple index contraction from inner indices to outer

indices, and Li are the elastic constants. Written in index notation
this equation reads,

Fel[Q,∇Q] =
∫

Ω

[
L1
(
∂kQi j

)2
+L2

(
∂ jQi j

)2
+L3Qlk

(
∂lQi j

)(
∂kQi j

)]
dV

(14)
We recall that the mapping to the Frank free energy coefficients
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in the case of a uniaxial and constant S nematic phase is given
by32:

K1 = 4L1S2 +2L2S2 − 4
3 L3S3

K2 = 4L1S2 − 4
3 L3S3

K3 = 4L1S2 +2L2S2 + 8
3 L3S3

K24 = 4L1S2 − 4
3 L3S3

(15)

The total free energy in the singular potential method is the sum
F = Fb +Fel.

Rotational relaxation dynamics of the nematogens is consid-
ered through

∂Q
∂ t

=−γ
δF
δQ

. (16)

with γ a rotational diffusion constant. We introduce dimension-
less variables,

x = x/ξ , t = t/τ, κ =
2κ

nkBT
, L2 =

L2

L1
, L3 =

L3

L1
(17)

where the length and time scales are,

ξ =

√
2L1

nkBT
, τ =

1
γ nkBT

(18)

Dropping the overlines for simplicity, the dimensionless equation
of motion for Q is,

∂Q
∂ t

= κQ−ΛΛΛ+∇
2Q

+
L2

2

(
∇(∇ ·Q)+ [∇(∇ ·Q)]T − 2

3 (∇ · (∇ ·Q))I
)

+
L3

2

(
2∇ · (Q ·∇Q)− (∇Q) : (∇Q)T + 1

3 |∇Q|2 I
)

(19)

with the transpose of a rank-3 tensor being defined as (∇Q)T
kl j =

∂ jQkl . Hereafter, all distances and times will be dimensionless.

The partition function defined on the unit sphere (10) must
be evaluated numerically, as well as the self consistency condi-
tion (11) to find ΛΛΛ = ΛΛΛ(Q). Stationary solutions of Eq. (19) are
found by using the Newton-Rhapson relaxation method for the
case of configurations with one isolated disclination. For the case
of a disclination pair, however, the Newton-Rhapson method is
not computationally efficient due it to its slow convergence for
large systems. Instead we discretize Eq. (19) in time by using a
Crank-Nicolson method. We then use the same Newton-Rhapson
method to solve for each subsequent time step, and iterate in time
until ∂tQ is sufficiently small. We have implemented this singu-
lar potential method in a new Finite Element formulation, based
on the framework deal.ii, that allows for efficient paralellization.
Large three dimensional configurations can be efficiently studied
at high resolution (in the scale of ξ ). The Appendices provide
additional numerical details.

Boundary conditions in a finite domain need to be discussed
separately. Given the variational derivative of the energy δF

δQ =
∂ f
∂Q − ∇ · ∂ f

∂ (∇Q)
, we impose Neumann boundary conditions by

requiring that the normal component at the outer boundary
N ·∂ f/∂ (∇Q) = 0, where N is the outward pointing normal. This
reduces to the familiar Neumann boundary condition on Q in the
isotropic limit, but more generally, it is the natural boundary con-
dition to use for a fully anisotropic system.

3 A single disclination in the Q tensor representa-
tion

We present first the results of a high resolution numerical study
of Q for a single disclination in an elastically anisotropic medium
(L3 ̸= 0). We show that the singular potential method can quan-
titatively describe the biaxial core region around the disclination,
and that the stationary configuration reduces to the Dzyaloshin-
skii solution away from the core where the nematic configuration
becomes uniaxial.

The thin film approximation for Q is used (Qxz = Qyz = Qzx =

Qzy = 0) so that the tensor is described by three independent com-
ponents, not just two as in a strictly two dimensional case, and
hence biaxiality can be accommodated. The xz, yz, zx, and zy
components of the right-hand side of Eq. (19) are manifestly
zero because ΛΛΛ and Q can be simultaneously diagonalized30, and
∂zQ = 0. Hence, any configuration initialized in the thin film ap-
proximation will remain as such without further constraint on the
equation of motion. Additionally, the thin film approximation re-
stricts all eigenvectors to lie in the x-y plane or along the z-axis.
For a configuration with directors initialized in the x-y plane, the
only way for the director to escape into the z-direction is for Qzz to
become equal to the larger of the other two eigenvalues, creating
the so-called “pancake” configuration. This does not happen in
our configurations, though a clarifying visualization for how this
manifests in the x-y plane for disclinations can be found in Ref.33

Fig. 4.7.

The biaxial core region has been extensively studied in the one
constant approximation34,35, and in a more general case that in-
cluded all possible terms in gradients up to second order in Q36.
Strong biaxiality develops in the core region of the disclination.
For a Landau-de Gennes bulk energy, a purely uniaxial configura-
tion is shown not to be stable; although uniaxial far from the core,
the three eigenvalues of Q become distinct as the core region is
approached, and two of them eventually cross at the disclination
line36. The core structure of Q has also been recently character-
ized experimentally in lyotropic chromonics31, enabled by a large
size of their core (tens of microns). A biaxial region has been
confirmed in the optical retardance, albeit with a strong angular
dependence due to elastic anisotropy. This angular dependence
of the retardance has been shown to be in agreement with results
of the singular potential method29.

A stationary solution of Eq. (19) in the thin film approximation
has been obtained in a two dimensional circular domain of ra-
dius R = 20/

√
2, with an isolated ±1/2 disclination near its center

maintained by appropriate Dirichlet boundary conditions on the
outer boundary. We choose dimensionless values of the parame-
ters κ = 8.0, L2 = 4.58, L3 = 4.5. κ has been chosen so that the
system is below the supercooling limit as in the experiments of
Ref.31 and simulations of Ref.29, which corresponds to an equi-
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(a) (b)

(c) (d)

Fig. 2 (a), (c) Director angle θ as a function of the azymuth ϕ ′ at various distances from the core for +1/2 and −1/2 disclinations respectively,
computed from the equilibrium Q tensor. The solid line is θDZ(atan2(r′ sinϕ ′+ydisc,r′ cosϕ ′+xdisc)) with θDZ(ϕ) the solution to Eq. (3) and (xdisc,ydisc)

the disclination centers. (b), (d) Angular Fourier decomposition of Γ as a function of distance from the defect core for +1/2 and −1/2 disclinations
respectively. The insets shows the asymptotic behavior as the disclination core is approached. Pluses (Γ0) and dots (Γ1, Γ3) are points obtained from
the numerical solutions, dashed horizontal lines represent the long distance equilibrium values of S = S0 (and P = 0), and solid lines are fits of the form
A(r′)n +B. Fit coefficients for the +1/2 disclination are A = 0.733, n = 0.996, B =−8.69×10−5 and A = 0.0392, n = 1.986, B =−4.23×10−5 for Γ0 and
Γ1 respectively. Fit values for the −1/2 disclination are A = 0.644, n = 0.998, B =−3.95×10−5 and A = 0.0253, n = 1.990, B =−3.26×10−7 for Γ0 and
Γ3 respectively. We note that the data points shown in the figure are only a small subset as our numerical solution has a resolution of r ≈ 0.002.

librium value of S to be S0 = 0.6751. L3 is chosen to be as large as
possible while maintaining numerical stability, while L2 is chosen
to maintain ε = 0.4 through Eq. (15), consistent with Refs.29,31.
The most notable effect of taking a different ε value would be to
change the director profile far from the disclination core, as can
be seen from eq. (5). The effect of taking L3 larger while keeping
a fixed ε value is to increase the higher Fourier mode amplitude.

The computational domain is discretized with quadrilateral
elements, initially with 12 cells. It is then globally refined 5
times, and further refined at distances R= 8,4,2,1, 1

2 ,
1
4 ,

1
8 ,

1
16 from

the disclination center. Every refinement operation divides each
quadilateral cell into four children cells. Dirichlet boundary con-
ditions on Q assumed uniaxial are imposed on the outer boundary
with S = S0, and a director angle equal to the numerical solution
to Eq. (3), with ε obtained from S0, L2, and L3, via Eq. (15), and
polar angle ϕ centered at the computational domain origin.

The director n and scalar order parameters S and P are deter-
mined by calculating the eigenvalues and corresponding eigen-
vectors of the Q tensor at each point in the computational do-
main. This is done with the eigh method from the Numpy nu-
merical package, which calculates the eigensystem of a symmet-

ric matrix37. We find that the stationary disclination cores are lo-
cated at (xdisc,ydisc) = (0,0) and (0.868,0) for the −1/2 and +1/2
disclinations respectively. The quantity Γ(r′,ϕ ′) = (S−P) is com-
puted as it is proportional to the optical retardance in the exper-
iments31. Primed variables are polar coordinates referred not to
the center of the computational domain, but to the actual discli-
nation center (xdisc,ydisc) defined as the location where S = P. To
probe the effect of anisotropy, an angular Fourier transform is in-
troduced,

Γ(r′,ϕ ′) = ∑
n

Γn(r′)cos(nϕ
′) (20)

The Fourier coefficients are calculated with the rfft real Fourier
transform method from the Numpy numerical package. The co-
sine coefficients in Eq. (20) are 2/N times the real part of the
discrete transform modes, where N is the number of grid points
at each r′ 37.

Figures 2a and 2c show the director angle θ vs. the azimuth
ϕ ′ plotted at several fixed distances from the disclination centers.
At large distances, the director angle approaches the Dzyaloshin-
skii perturbative solution of Eq. (3) calculated relative to the do-
main center (as is appropriate for the boundary conditions), but
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plotted as a function of ϕ ′ at several values of r′. Explicitly, if
θDZ(ϕ) is the solution to Eq. (3), the solid line in Fig. 2a is given
by θDZ(atan2(r′ sinϕ ′+ ydisc,r′ cosϕ ′+ xdisc)) for r′ = 10. For small
values of r′ the director angle approaches a straight line in the dia-
gram, the isotropic solution θ = 1

2 ϕ ′. As r′ increases, however, the
angle tends towards the Dzyaloshinskii uniaxial solution. In or-
der to further probe the biaxial core region, Figs. 2b and 2d show
the two dominant angular Fourier modes Γn(r′). The figures also
show a fit to a power law with distance. The zeroth Fourier modes
goes to zero linearly, while the higher Fourier modes appear to de-
crease quadratically as the disclination center is approached. The
determination of this dependence has been made possible by the
high spatial resolution of our numerical method. Neither prior re-
search nor the experimental work could make this determination.

The singular potential method with L3 ̸= 0 predicts a compact
biaxial core, with amplitudes of the angular Fourier components
of Γ vanishing faster with distance to the defect center than the
zeroth order component. Therefore the director angle approaches
qϕ ′ as is the case for an elastically isotropic medium. Further-
more, the dominant dependence of the eigenvalues is also lin-
ear as the core center is approached, in agreement with earlier
isotropic results. Both results suggest that the isotropic and lin-
ear core approximation is a reasonable approximation even in
anisotropic media.

4 A disclination dipole
The complicating factor that remains, and to which we turn next,
is that in two or multi defect configurations, the tensor field is not
a superposition of configurations corresponding to isolated sin-
gle defects. Therefore it remains to be seen whether interaction
leads to a more complicated core structure in multi disclination
systems.

The Euler-Lagrange equations corresponding to the Frank en-
ergy (2) in Cartesian coordinates read,

∇
2
θ = ε

[
sin(2θ)(θ 2

x −θ
2
y −2θxy)+ cos(2θ)(θyy −θxx −2θxθy)

]
(21)

Consider now a pair of disclinations a distance d from each other,
which are mutually aligned or anti aligned. We seek a pertur-
bative solution for the director field to first order in ε 38,39. The
solution in the isotropic limit of ε = 0 can be written as

θiso = q1ϕ1(x,y)+q2ϕ2(x,y)+
π

2
(22)

where q1,q2 are the corresponding disclination charges, and we
have introduced polar coordinates (ri,ϕi) centered at each defect
position (xi,yi) (see Fig. 3 for a diagram of the relevant coordi-
nates). The constant term rotates the director everywhere by π/2,
a transformation under which Eq. (2) is invariant. For q1 and q2

half integers of opposite sign, this solution and the corresponding
one without the constant term are so-called “isomorphs”, char-
acterized by whether the line connecting the two defects is par-
allel or perpendicular to the far-field director. For example, with
q1 =+1/2 and q2 =−1/2, Eq. (22) is the perpendicular isomorph.

By expanding θ(x,y) = θiso(x,y)+ εθc(x,y)+O(ε2), and substi-
tuting into Eq. (21) we find a Poisson equation for the first order

q1 q2

r1 r2r

ϕ1
ϕ2ϕ

d

Fig. 3 Diagram showing a disclination pair in polar coordinates. Here
(ri,ϕi) are polar coordinates centered on the disclination with charge qi,
and (r,ϕ) are polar coordinates centered on the midpoint between the
two disclinations.

correction θc:

∇
2
θc =

q1(2−q1)

r2
1

sin(2(1−q1)ϕ1 −2q2ϕ2)

+
q2(2−q2)

r2
2

sin(2(1−q2)ϕ2 −2q1ϕ1)

− 2q1q2

r1r2
sin [(1−2q1)ϕ1 +(1−2q2)ϕ2]

(23)

We point out that the other isomorph merely changes the right-
hand side –and therefore the solution– by a sign. In what follows,
we find an approximate solution to Eq. (23) in various regions
which can then be compared against numerical results.

For concreteness, we choose q1 = +1/2 and q2 = −1/2. Near
one of the disclinations, (x1,y1), one may rewrite ϕ2 and r2 in
terms of ϕ1 and r1. In this region, r1/d ≪ 1 so that we Taylor
expand the right-hand side to find,

∇
2
θc =− 3

4r2
1

sinϕ1 +
3

8dr1
sin2ϕ1 +O

( r1

d

)
(24)

A particular solution θ
p,1
c can be found as given by

θ
p,1
c =

3
4

sinϕ1 −
r1

8d
sin2ϕ1 (25)

By comparing it with Eq. (5), we note that the term independent
of r1 corresponds to the correction for an isolated disclination in
an anisotropically elastic medium, while the term due to pairwise
disclination interaction is new and goes linearly in r1 close to q1.
A similar calculation for the region close to q2 yields a particular
solution,

θ
p,2
c =

5
36

sin3ϕ2 +
r2

24d
(sin2ϕ2 − sin4ϕ2) (26)

Again we obtain a term independent of r2 which is identical to eq.
(5), and an interaction term which is linear in r2.

Finally, in the far-field, one may rewrite the equation to first
order in polar coordinates whose origin is midway between the
two defects (r,ϕ). Expanding the inhomogeneous term in d/r ≪ 1
yields,

∇
2
θc =−2d

r3 sin3ϕ +O

((
d
r

)2
)

(27)
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A particular solution to second order is given by,

θ
p, f
c =

d
4r

sin3ϕ (28)

The dependence on 3ϕ and proportional to d/r at long distances is
unexpected. Consider the isotropic solution Eq. (22), and express
it in terms of the midpoint polar coordinates,

θiso = q1 arctan

(
sinϕ

cosϕ + 1
2

d
r

)
+q2 arctan

(
sinϕ

cosϕ − 1
2

d
r

)

=−d (q1 −q2)

2r
sin(ϕ)+q1ϕ +q2ϕ +O

((
d
r

)2
)

If q1+q2 = 0 the constant terms identically vanishes (charges mu-
tually screen), and the dipolar term has the expected dependence
in d/r sinϕ from a multipolar expansion. However, anisotropic
elasticity changes charge screening, and it introduces a new term
that, while also decaying as d/r at long distances, has a different
angular dependence.

A general solution which matches the particular solutions in the
inner and far field regions would also require the general solution
to Laplace’s equation. Far from the disclination pair, one would
have,

θ
s, f
c = ∑

n

Bn

rn sin(nϕ) (29)

The inner solutions include the components n= 1,n= 2,n= 3, and
(although much smaller in magnitude as we will argue below)
n = 4 components. Hence, we would expect those Fourier modes
to be present in the far field in order to match at the near-field
far-field boundary, giving an approximate far-field solution of:

θ
f

c ≈ d
4r

sin3ϕ +
4

∑
n=1

Bn

rn sinnϕ (30)

We will not pursue this analytic expansion further. Rather we
will argue that this dependence is consistent with our numerical
solutions for weak elastic anisotropy shown below.

5 Numerical solutions for a disclination pair

5.1 Director representation
Equation (23) is a Poisson equation in which the source term is
singular at the location of the two disclinations. We have modified
a preexisting deal.II library program to solve it40,41. The actual
linear system is solved with the conjugate gradient method with
Trilinos ML algebraic multigrid as a preconditioner42. As was the
case with the Q tensor, we take as outer boundary condition a
zero normal component of the configurational force, where here
the configurational force is ∂ fn/∂ (∇θ) with fn the Frank elastic
energy density. Because the solution is found perturbatively, the
boundary conditions must be specified order by order (see Ap-
pendix C, Eq. (64) for details). We solve on a circular domain
radius R = 5,500 and defect spacing d = 60. These dimensions
have been chosen to correspond with the Q-tensor configuration
solution shown later.

We also solve Eq. (23) inside a modified circular domain that
excludes the singular points in its right hand side. We cut out two

small discs around each disclination, and impose Dirichlet bound-
ary conditions on the circumference of each discs. For simplicity,
we prescribe θc = 0 on these internal boundaries which corre-
sponds to θ = θiso from eq. (22). We choose the cutout radius
rcutout = 10 because, as evidenced in Figs. 2c and 2a, an isolated
disclination in the Q-tensor formulation becomes uniaxial with
approximately constant-S at approximately r = 10. The choice of
domain is motivated by the comparison carried out below with
a full numerical solution in the Q representation with the same
value of the anisotropy parameter ε. In the Q-tensor formula-
tion, the configuration with two disclinations is not stationary,
and hence allowing an unconstrained configuration relax leads
to disclination annihilation. This would prevent us from deter-
mining the constrained equilibrium configuration corresponding
to two immobile disclinations.

Figure 4a shows a colormap of θc, both in the far field and
near field limits. Near the disclination cores one may clearly see
the n = 1 and n = 3 mode contributions from Eqs. (25) and (26)
around the +1/2 and -1/2 disclinations respectively. The far field
appears to have six fold symmetry, consistent with a contribution
from n = 3. In order to quantify the contribution from the various
Fourier components to θc, we decompose the far field numerical
solution into angular Fourier modes,

θ
f

c (r,ϕ) = ∑
n

An(r)sin(nϕ) (31)

and fit each mode An(r) by a polynomial in 1/r, with a degree con-
sistent with Eq. (30). For example, A3 is allowed to have degree
1 and 3 in 1/r, while A2 is only allowed to have degree 2. Figure
4b shows the angular Fourier coefficients and the corresponding
fits. Both the n = 1 and n = 3 Fourier modes are consistent with
the prediction, while the n= 2 and n= 4 modes deviate somewhat
from the expected quadratic and quartic behavior. The linear de-
pendence of the n = 3 mode matches the prediction from eq. (30)
in both magnitude and sign.

The effect of adding cutouts to the integration domain around
disclination cores is to suppress the near field n = 1 and n = 3
mode contributions, as can be seen in Fig. 4d. This reduction
translates in the far field into a small reduction in the magnitude
of the n = 3 mode, and a noticeable reduction in the amplitude of
the n = 1 mode.

In agreement with the perturbative calculation of Sec. 4, these
numerical results show a different angular dependence of the
director angle that arises from disclination interactions in an
anisotropic medium. The n = 3 Fourier mode decays at the same
rate with distance as the n = 1 mode arising from the isotropic
solution, although it is a factor of ε/2 in magnitude smaller. De-
pending on the value of the anisotropy parameter, this term could
introduce a significant deviation relative to the isotropic interac-
tion terms, and must therefore be considered in, for example,
disclination ensemble dynamics in elastically anisotropic media.
Note also that the sign of the n = 3 far field term changes un-
der the transformation to a different disclination pair isomorph.
Hence, it is possible that the effective contribution from elastic
anisotropy could be smaller in an ensemble of defects containing
a distribution of isomorphs.
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(a)

(b)

(c)

(d)

Fig. 4 Perturbation director contribution θc corresponding to a disclination pair in an elastically anisotropic medium. (a), (c) Colormap of θc in the
far field (center) and magnified near field (left). The outer domain radius is 5,500, while near field magnified region width is 125. Figure (c) has cut
outs in the solution domain of radius 10 around each disclination, with θc = 0 fixed on their boundaries. (b), (d) Corresponding lowest Fourier modes
of θc as a function of 1/r in the far field. Curve fits are polynomials with degrees suggested by Eq. (30), and are represented by solid lines.

5.2 Q tensor representation

With our choice of elastic terms, Eq. (13), elastic anisotropy is
determined by the coefficients L2 and L3 while the Frank elastic
anisotropy is solely determined by ε. Given Eq. (14), we focus
on L2 = 0 and find that L3 = 0.3065 for ε = 0.1, a regime in which
Eq. (23) should hold. We note that the results are essentially
identical for any other L2 value, supposing that L3 is chosen to
maintain ε = 0.1. This is because the L2 term in eq. (14) may be
decomposed into gradients of the scalar order parameters and di-
rector. Since the disclinations are cut out, the scalar order param-
eter remains constant and uniform. The contribution from L2 to
the director is to introduce twist anisotropy which, in two dimen-
sions, is manifestly zero. We consider a disc of radius R = 5,500,
defect spacing d = 60, and defect cutout radius rcutout = 10. The
Maier-Saupe constant κ = 8.0, which corresponds to an equilib-
rium value of S0 = 0.6751.

Because of the large size of the computational domain, a direct
solution of the minimization problem (Eq. (19) with ∂tQ = 0) is
difficult. We instead iterate Eq. (19) in time until a stationary
configuration is reached. As initial condition we choose,

Q(t = 0) = R(θc)Qiso RT (θc) (32)

where R is a rotation matrix about the ẑ axis by angle θc, which is
the numerical solution to Eq. (23) with disclination cutouts fixed
at zero. We define Qiso = S(r1,r2)

(
n̂iso ⊗ n̂iso − 1

3 I
)

with S(r1,r2) =

S0

(
2

1+e−r1 + 2
1+e−r2 −3

)
and n̂ =

[
cosθiso sinθiso 0

]T
. Figure 5

shows θc as calculated from the Q tensor representation com-
pared to θc from Eq. (23) within the cutout domain. θc is well-
defined in this case because the director remains in the x-y-plane,
as has been verified.

6 Isolated disclination motion far from a dipole

To give a suggestion for a potential experimental avenue which
may be explored to verify the far-field dipole director profile, we
derive the equation of motion of an isolated disclination under
the influence of a dipole using the Halperin-Mazenko formalism
developed in Ref.43. The calculation is done in 2D, though the re-
sults are similar to a previous calculation done in 3D33. For this,
we assume a disclination director profile of qϕ, and a scalar or-
der parameter which decreases linearly to zero at the disclination
core. Further, we assume that the director field of the isolated
disclination superposes with the ambient director field created by
the dipole, and neglect distortions to the dipole profile that would
arise from interactions with the isolated disclination.
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Fig. 5 Dotted and dashed lines: Far field angular Fourier components of
the eigenvector angle of Q for the largest eigenvalue (the uniaxial director
from Q). For the purposes of the comparison, the isotropic solution (22)
has been subtracted. Solid lines: numerical solution of Eq. (23) (in the
director representation.

For a given ambient director angle field θ produced by the
dipole, the velocity of a test disclination is determined by the
disclination density current which is derived in Appendix E. For
a +1/2 disclination, the defect velocity is

v+ = (4+2L2)∇
⊥

θ −2L3 [cos(2θ)x̂+ sin(2θ)ŷ] (33)

with ∇⊥ = ∂yx̂−∂xŷ, while for a −1/2 disclination, it is

v− =−(4+2L2)∇
⊥

θ (34)

Because θ is small in the far field, the contribution from the
L3 term in Eq. (33) gives a nearly uniform contribution to the
velocity in the −x̂ direction for both the isotropic and anisotropic
parts of the dipole director profile. By contrast, the first term
in Eq. (33) gives qualitatively different behavior from these two
parts. To see this, we calculate the following explicitly:

∇
⊥
(

1
r

sin(nθ)

)
=

1
r2 (ncos(nϕ)r̂+ sin(nϕ)ϕ̂ϕϕ) (35)

This field is plotted in Fig. 6 with n = 1 for the isotropic con-
tribution and n = 3 for the anisotropic contribution. For an
isotropic dipole profile, one would expect a disclination in the
upper half plane to move mostly in the azimuthal direction, while
the anisotropic dipole profile would tend to cause the disclina-
tion’s path to fluctuate in the radial direction. We speculate that
this fluctuation is measurable, and should vary linearly with ε. A
material for which ε is tunable, such as the biopolymer suspen-
sion in Ref.44, could give a quantitative measure of the magnitude
of this fluctuation in ε.

7 Conclusions
We have presented an analysis of the radial and angular de-
pendencies of the orientation order parameter around both an
isolated disclination and a disclination dipole in an elastically
anisotropic nematic. In the former case, a singular potential the-
ory in the Q tensor order parameter representation of the ne-
matic shows that the order parameter approaches isotropy near

the core: The eigenvalues of the Q tensor become axisymmet-
ric, in agreement with the elastically isotropic case. We provide
a scaling law which shows that the zeroth order angular Fourier
of the retardance goes to zero linearly with the radial distance r′,
while the next order Fourier mode decreases quadratically.

For the case of a disclination dipole, we have presented ana-
lytical perturbative solutions in the director representation in the
limit of weak anisotropy (small elastic constant ε). Solutions are
given for the nematic orientation angle both near one of the discli-
nations in the dipole, and in the far field. Particularly noteworthy
is the far field dependence in which the n = 1 angular Fourier
mode of the isotropic limit is supplemented by an n = 3 mode as a
leading order term due to anisotropy. The predictions agree very
well with numerical calculations in both the director field and
Q-tensor representations of the nematic. We speculate that the
difference in the dipole director profile due to anisotropy can be
experimentally observed through the motion of a test disclination
under the influence of the dipole.
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A Numerical method for an isolated disclination in
the director representation

The numerical solution of Eq. (3), the one dimensional profile of
the director θ , as a function of polar angle ϕ is computed by using
the Finite Element framework deal.II40,41. The equation is solved
by iteration with a Newton-Rhapson method on the domain ϕ ∈
[0,2π]. The endpoints are fixed at 0 and 2πq to maintain azimuth
continuity. The equation residual is defined as,

R(θ)=
d2θ

dϕ
−ε

[
d2θ

dϕ2 cos2(θ −ϕ)+

(
2

dθ

dϕ
−
(

dθ

dϕ

)2
)

sin2(θ −ϕ)

]
(36)

A Gateaux derivative is introduced,

dR(θ)δθ =
d

dλ
R(θ +λ δθ)

∣∣∣∣
λ=0

=
d

dϕ

(
p(ϕ)

d δθ

dϕ

)
+

(
q1(ϕ)+

d
dϕ

q2(ϕ)

)
δθ

(37)
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Fig. 6 ∇⊥θ calculated for θ = 1
r sin(ϕ) (left) and θ = 1

r sin(3ϕ) (right). Color plot is normalized.

with

p(ϕ) = 1− ε cos2(θ −ϕ)

q1(ϕ) =

[(
dθ

dϕ

)2
−4

dθ

dϕ
+2

]
2ε cos2(θ −ϕ)

q2(ϕ) =
dθ

dϕ
2ε sin2(θ −ϕ)

(38)

Also define:

q3(ϕ) =

[(
dθ

dϕ

)2
−2

]
sin2(θ −ϕ) (39)

so that we may write the residual as:

R(θ) =
d

dϕ
p(ϕ)− (q2(ϕ)+q3(ϕ)) (40)

An iteration in Newton-Rhapson method then reads:

dR
(

θ
(n)
)

δθ
(n) =−R

(
θ
(n)
)

θ
(n+1) = θ

(n)+α δθ
(n)

(41)

with damping parameter α ≤ 1. To solve with the finite element
method, we take the inner product with a test function η and

integrate by parts:

⟨η ,dR(θ)δθ⟩=−⟨η ,R(θ)⟩

=⇒
〈

η ,
d

dϕ

(
p

d δθ

dϕ

)
+

dq2

dϕ
δθ

〉
+ ⟨η ,q1δθ⟩

=−
〈

η ,
d p
dϕ

〉
−⟨η ,q2 +q3⟩

=⇒ −
〈

dη

dϕ
, p

d δθ

dϕ
+q2 δθ

〉
−
〈

dη

dϕ
,q2

d δθ

dϕ

〉
+ ⟨η ,q1 δθ⟩

=

〈
dη

dϕ
, p
〉
−⟨η ,q2 +q3⟩

(42)

The test functions are zero on the boundaries so that the surface
integrals vanish. Approximating δθ = ∑ j δθ j η j with test func-
tions η j given by piecewise polynomial Lagrange elements, and
enforcing eq. (42) for each test function ηi gives a linear system
in δθ j. We iterate until the L2 norm of the residual is less than
some desired threshold. For the simulations run in this paper, the
domain is broken into 210 evenly-spaced segments, we use first
degree Lagrange elements, and the residual L2 norm tolerance is
set to 10−10. We use the UMFPACK direct sparse matrix solver
since, in one dimension at this size, performance is not an issue.

B Numerical method in the Q-tensor representation

In order to solve Eq. (19) numerically we also use the deal.II
finite element framework40,41. This library has the benefit of im-
plementing adaptive mesh refinement, as well as being massively
parallelizeable via MPI, allowing for very large scale computa-
tions. To solve all linear systems in our implementation, we use
the Trilinos linear algebra library via deal.II45. The code devel-
oped is available in the GitHub repository46. To integrate eq.
(16), consider that the variation of the free energy is given ex-
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plicitly by:

δF(Q,∇Q) =
d

dτ
F(Q+ τ δQ,∇Q+ τ∇δQ)

∣∣∣∣
τ=0

=
∫

Ω

[
∂ f
∂Q

δQ+
∂ f

∂ (∇Q)
∇δQ

]
dV

=
∫

Ω

[
∂ f
∂Q

−∇ · ∂ f
∂ (∇Q)

]
δQdV +

∫
∂Ω

[
ννν · ∂ f

∂ (∇Q)

]
δQdS

(43)

where f is the free energy density. Here we take ννν ·∂ f/∂ (∇Q) = 0
as a boundary condition which corresponds to zero normal config-
uration force at the boundary. Additionally, to ensure that ∂tF ≤ 0
always, we must take:

∂Q
∂ t

=− ∂ f
∂Q

+∇ · ∂ f
∂ (∇Q)

(44)

One may understand this as taking the time evolution in the direc-
tion of the variation δQ where the variation is chosen to make δF
negative definite. To simplify the exposition, take T Q = −∂ f/∂Q
and T ∇Q = ∂ f/∂ (∇Q). Finally, T = T Q +∇ ·T ∇Q. These are given
explicitly by:

T Q
i j = κQi j −Λi j −

L3

2

(
(∂iQkl)

(
∂ jQkl

)
− 1

3 |∂kQlm|2 δi j

)
(45)

T ∇Q
ki j = ∂kQi j +

L2

2
(
∂iQ jk +∂ jQik − 2

3 ∂lQlkδi j
)
+L3Qkl∂lQi j (46)

We note that the divergence is contracted over the k index.

To discretize eq. (19) in time, we use a Crank-Nicolson method:

Q−Q0

δ t
= 1

2 (T +T0) (47)

where Q0 and Q are the Q-configurations at the previous and cur-
rent timesteps respectively, δ t is the timestep, and T and T0 are
evaluated at Q and Q0 respetively. Because T is nonlinear, we
define a residual:

R = Q−Q0 − 1
2 δ t (T0 +T ) (48)

To solve for the configuration when R = 0, we use a Newton-
Rhapson method. The Gateaux derivative then reads:

dRδQ =
d

dτ
R(Q+ τ δQ,∇Q+ τ∇δQ)

∣∣∣∣
τ=0

= δQ− 1
2 dT δQ

(49)

Explicitly, this yields:(
dT Q

δQ
)

i j
= κδQi j −dΛi j −L3

(
(∂iδQkl)

(
∂ jQkl

)
+(∂iQkl)

(
∂ jδQkl

)
− 2

3 (∂kQlm)(∂kδQlm)δi j

)
(50)(

dT ∇Q
δQ
)

ki j
= ∂kδQi j +L2

(
∂iδQ jk +∂ jδQik

)
+2L3

(
δQkl∂lQi j +Qkl∂lδQi j

) (51)

where dΛi j is given by:

dΛi j =
d

dτ
Λi j(Q+ τ δQ)

∣∣∣∣
τ=0

=
d

dτ

[
Λ(Q)+ τ

∂Λi j

∂Qk
δQk +O(τ2)

]
τ=0

=
∂Λi j

∂Qk
δQk

(52)

The Taylor series expansion of Λ about Q involves the directional
derivative in the direction of δQ. Since Q and δQ are restricted to
the submanifold of traceless, symmetric tensors, this directional
derivative can be accomplished by differentiating Λ with respect
to the degrees of freedom of Q and dotting into the degrees of
freedom of δQ. This set of degrees of freedom is arbitrary, but
we note that the space of traceless, symmetric tensors is five-
dimensional. Newton’s method then reads:

dRδQ =−R

Q → Q+α δQ
(53)

where we indicate that the next iteration is updated by adding
α δQ with 0 < α ≤ 1 some stabilization constant.

To discretize in space, we find the weak form of this equation by
taking the inner product with some symmetric, traceless tensorial
test function Φ:

⟨Φ,dRδQ⟩=−⟨Φ,R⟩ (54)

Approximating δQ in our space of test functions gives:

δQ = ∑
j

δQ jΦ j (55)

where δQ j are a set of scalars, and Φ j are a finite element basis.
Asserting that eq. (54) be true for a finite number of test functions
Φi yields a finite linear system in δQ j:

∑
j

[〈
Φi,dT Q

Φ j

〉
−
〈

∇Φi,dT ∇Q
Φ j

〉]
δQ j =

〈
Φi,T Q

〉
−
〈

∇Φi,T ∇Q
〉

(56)
Note that we have integrated by parts and taken the boundary
terms to zero, due to the zero configurational force condition.

In our actual simulations, we take the finite element basis func-
tions Φ to be piecewise scalar Lagrange polynomials φ(x) multi-
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plied by constant tensor basis elements X:

X1 =

1 0 0
0 0 0
0 0 −1

X2 =

0 1 0
1 0 0
0 0 0

X3 =

0 0 1
0 0 0
1 0 0



X4 =

0 0 0
0 1 0
0 0 −1

X5 =

0 0 0
0 0 1
0 1 0


(57)

In section 5.2 we use this method with δ t = 0.1, and iterate for
50,000 time steps. The tolerance for the residual is an L2 norm of
the finite element vector of 1e−10. In section 3 we instead solve
for ∂Q/∂ t = 0 to find the equilibrium state. For this, the zeros of
T are found using a Newton-Rhapson method, and the L2 norm
tolerance of the residual is 1e−10.

C Numerical method for a disclination pair in the
director representation

Equation (23) is a straightforward Poisson equation, so taking the
right-hand side to be g(x,y) we may write the weak form as:

⟨∇φ ,∇θc⟩−⟨φ ,n ·∇θc⟩∂Ω
=−⟨φ ,g⟩ (58)

where here φ is a test function, ⟨,⟩ is the L2 inner product over
the domain, and ⟨,⟩∂Ω

is the L2 inner product over the boundary.

Because we cannot solve numerically on an infinite domain, we
seek a finite domain and boundary conditions which correspond
most closely with our infinite-domain analytic solution. For both
the Q-tensor and director model, we enforce zero normal config-
urational stress:

N · ∂ f
∂ (∇θ)

= 0 (59)

where f is the Frank free energy density. Explicitly, the configu-
rational stress in an anisotropic medium is:

∂ f
∂ (∇θ)

= ∇θ + εC(θ) (60)

where we have defined:

C(θ) =

[
sin2θ

(
∂yθ
)
+ cos2θ (∂xθ)

sin2θ (∂xθ)− cos2θ
(
∂yθ
)] (61)

To first order, the zero-configurational stress condition reads:

∇θiso + ε∇θc + εC(θiso) = 0 (62)

Order by order, we note:

∂θiso
∂ r

∣∣∣∣
r=R

=
q12d sin(ϕ)

d2 +4dRcos(ϕ)+4R2 −
q22d sin(ϕ)

d2 −4dRcos(ϕ)+4R2 (63)

where R is the radius of the circular domain. This goes as d/R2,
and so goes to zero in the limit that d/R ≪ 1. The first order
anisotropic correction boundary term then goes as:

N ·∇θc =−N ·C(θiso) (64)

Given these two conditions, the zero configurational stress is met

up to first order.

For the finite element simulation, we use first order La-
grange elements as test and shape functions, and solve iteratively
with the Conjugate gradient method with convergence tolerance
10−12. As a preconditioner, we use the Trilinos ML Algebraic
Multigrid method.

D Proof of perturbative solution for isolated discli-
nation from Dzyaloshinskii solution

The Dzyaloshinskii solution is given by:

ϕ = p
∫

θ−ϕ

0

√
1+ ε cos2x

1+ p2ε cos2x
dx (65)

with p2 < 1/|ε| and is defined so that θ is single-valued:

π = (q−1)p
∫

π

0

√
1+ ε cos2x

1+ p2ε cos2x
dx (66)

We will show that eq. (5) follows from eq. (65) given a perturba-
tive expansion eq. (4).

Taking µ = θ −ϕ, (65) becomes:

ϕ = p
∫

µ

0

√
1+ ε cos2x

1+ p2ε cos2x
dx (67)

Then the fundamental theorem of calculus gives:

dϕ

dµ
= p

√
1+ ε cos2µ

1+ p2ε cos2µ
(68)

For |ε| < 1 we have that dϕ

dµ
̸= 0. If |ε| = 1 the solution is a step

function which is well-known and may be handled separately, so
we take |ε|< 1. Then the inverse function theorem gives us:

dµ

dϕ
=

1
p

√
1+ p2ε cos2µ

1+ ε cos2µ
(69)

We may perturbatively expand θ as:

θ = qϕ + εθc +O(ε2) (70)

so that µ is given by:

µ = mϕ + εθc +O(ε2) (71)

with m = q−1. Then we may substitute into (69) and expand to
get:

dθc

dϕ
=

1−mp
ε p

− p2 −1
2p

cos2mφ (72)

The solution is then:

θc =
1−mp

ε p
ϕ − p2 −1

4mp
sin2mφ (73)

To find p we enforce that θc(0) = θc(2π) = 0. This yields:

p =
1
m

(74)
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Plugging this back in for θc yields:

θc =
q(2−1)
4(1−q)2 sin2(1−q)ϕ (75)

E Calculation of disclination velocity in the dipole
far-field

For simplicity, we derive the disclination velocity using the 2D
Q-tensor:

Q =

[
Q11 Q12

Q12 −Q11

]
(76)

A similar calculation was done in Ref.33 in 3D which reduces to
this result for the quasi-2D case.

The elastic free energy is as in Eq. (13). Because Q only has
2 degrees of freedom, we may introduce a complex phase-field ψ

defined as:
ψ = Q11 + iQ12 = Sei2θ (77)

with S the scalar order parameter and θ the director angle. Addi-
tionally we introduce a complex derivative:

∂z =
1
2
(
∂x − i∂y

)
(78)

as well as ψ and ∂z the complex conjugates of the phase field and
complex derivatives respectively. The elastic free energy may then
be written as:

Fel = 2L1 |∇ψ|2 +4L2 |∂zψ|2 +4L3 [ψ (∂zψ)(∂zψ)+ψ (∂zψ)(∂zψ)]

(79)
with | · |2 the complex square and |∇ψ|2 = ∂xψ∂xψ +∂yψ∂yψ. The
time evolution is given by the negative of the variational deriva-
tive of the free energy. To determine the disclination velocity, we
only need the contribution from the elastic part of the free energy:

−δFel
δψ

= (4+2L2)∂z∂zψ +2L3

[
ψ

(
∂

2
z ψ

)
+ψ

(
∂

2
z ψ

)
+(∂zψ)2

]
(80)

where we have nondimensionalized according to Eq. (18).

The disclination velocity as calculated in Ref.43 is given by:

v =
J

2q

∣∣∣∣
x=x0

(81)

with J the disclination current defined to be:

J = ∂tψ∂zψ −∂tψ∂zψ, (82)

q the disclination charge, and x0 the disclination position. A test
defect of charge q =±1/2 which is embedded in nematic orienta-
tion field θ(z,z), the ψ field near the disclination center at z = 0
may be parameterized as follows:

ψ = |z|
(

z
z

)q
ei2θ , (83)

in the assumptions that: i) |ψ| decays linearly to zero at the defect
core, ii) the test disclination director profile is as in the isotropic
case (i.e. qϕ), and iii) the director profile of the disclination su-
perposes with the ambient orientation field. Under the first as-

sumption, terms which involve only gradients of ψ survive, while
terms involving ψ alone – such as the bulk free energy – vanish
at the disclination core. This calculation reveals the leading order
effect of anisotropy on on the disclination motion. In general, the
disclination current is given by:

J = (4+2L2) [(∂z∂zψ)∂zψ − (∂z∂zψ)∂zψ]

+2L3

[
(∂zψ)2

∂zψ − (∂zψ)2
∂zψ

] (84)

Evaluating the paramterisation for q = +1/2 from Eq. (83), we
find that ψ ≈ ze2iθ , such that the corresponding disclination cur-
rent becomes:

J(+)(z = 0) =
[
−i(8+4L2)∂zθ −2L3ei2θ

]
z=0

(85)

which, in real coordinates, is equivalent to

J(+)(r = 0) = (4+2L2)∇
⊥

θ −2L3 [cos(2θ)x̂+ sin(2θ)ŷ]
∣∣∣
r=0

(86)

with ∇⊥ = ∂yx̂−∂xŷ. In polar coordinates it reads: ∇⊥θ = 1
r

∂θ

∂ϕ
r̂−

∂θ

∂ r ϕ̂ϕϕ. Similarly, for q=−1/2, Eq. (83) reduces to ψ ≈ ze2iθ , which
leads to the disclination current:

J(−)(r = 0) = (4+2L2)∇
⊥

θ

∣∣∣∣∣
r=0

. (87)

Changing coordinates to correspond with Fig. 3 the first term of
the disclination current may be represented as:

∇
⊥

θ ∼ 1
r2 (ncos(nϕ)r̂+ sin(nϕ)ϕ̂ϕϕ) (88)

with n = 1 for the isotropic contribution and n = 3 for the
anisotropic contribution.
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