Soft Matter

“) Soft Matter
-

Soft Confinement of Self-Propelled Rods: Simulation and
Theory

Journal: | Soft Matter

Manuscript ID | SM-ART-10-2023-001340.R1

Article Type: | Paper

Date Submitted by the

Author: 20-Jan-2024

Complete List of Authors: | Modica, Kevin; University of California Santa Barbara, Chemical
Engineering

Takatori, Sho; University of California Santa Barbara, Department of
Chemical Engineering

SCHOLARONE™
Manuscripts




Page 1 of 7

Soft Matter

ARTICLE TYPE

Soft Matter

Cite this: DOI: 00.0000/XXXXXXXXXX

and Theory'

Soft Confinement of Self-Propelled Rods:

Simulation

Kevin J. Modica® and Sho C. Takatori*¢

Received Date
Accepted Date
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external potential, including confining channels and arrays of harmonic traps. As a proof of concept,

we analyze the structure and dispersion of self-propelled rods under a soft, periodic one-dimensional

(1D) confinement potential and under a two-dimensional (2D) periodic radial harmonic trap. While

passive rods and polymers nematically order under 1D confinement, their diffusive transport along the

director is limited by thermal diffusion. In contrast, self-propelled rods can generate large convective

fluxes when combined with nematic ordering, producing a strong dispersion along the director. Com-
bining theory and simulation, we demonstrate that nematic alignment and self-propulsion generates
an exponential enhancement in active diffusivity along the director, in contrast to passive rods that
experience at most a 2-fold increase.

1 Introduction

Active rods, characterized by their anisotropic shape and nonequi-
librium motion, are a powerful model for describing the behavior
of biological constituents across a range of systems, from motile
bacteria to cytoskeletal filaments. "3 While self-propelled systems
are often studied for their collective behaviors, even dilute sys-
tems of active particles can present unexpected physics. Despite
significant prior work, predicting and controlling the transport
and structure of active rods remains an ongoing challenge.

One method to study and control active matter is through geo-
metric confinement. 41 Confinement introduces additional com-
plexities to the dynamics of active matter, as interactions with
boundaries profoundly influence the emergent properties of the
system.1220 For active rods, the proportion of normal and par-
allel alignment to the confinement direction is set by the compe-
tition between activity-induced boundary accumulation (normal
alignment) and entropy-mediated reorientation (parallel align-
ment).m

In addition to impenetrable walls, many systems exhibit a
softer form of confinement where escape is made possible (if
unlikely) by thermal fluctuations or active forcing. Actin and
microtubule filaments placed in shallow channels are known to
leave the confining channels when propelled by motor proteins,
requiring specific geometries to prevent escape. Optical and
acoustic tweezers provide another mechanism of weakly confin-
ing bacteria and active particles for measuring their motility. 3032
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Despite the wide prevalence of soft confinement on self-propelled
rods, the topic remains under-explored theoretically and in sim-
ulation. Existing work on anisotropic colloidal particles uses dy-
namical density functional theory (DDFT). While DDFT has
been used to model the mean-field interactions between particles,
in the presence of an external field, the user needs to convert the
local potential field acting across the mass density of the finite
body into a potential energy determined by the particle’s center
of mass position and orientation.

In this work, we demonstrate a framework for studying dilute
active rods in any periodic external field by converting a local po-
tential energy density into a position and orientation dependent
potential energy on the rod center of mass. We apply our frame-
work for the special case of a 1D periodic potential to illustrate
that soft confinement in channels increases the axial transport
even for dilute concentrations of swimmers when the rod length
is commensurate to the channel size. Lastly, inspired by optical
tweezers, we also apply our framework on a periodic array of har-
monic traps to demonstrate the utility of our approach to more
complex forms of soft confinement.

2  Model and Methods

In the overdammped limit, the motion of self-propelled rods fol-
lows the Langevin equation with no inertia. The rod is treated as
a rigid body that propels by an active force directed along the long
axis. The active, Brownian, and external forces and torques are
summed to generate translational and rotational motion. To sim-
ulate a dilute system, the self-propelled rods do not interact with
each other (i.e., the rods are “ideal”). The evolution equation for
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the ith rod’s center of mass is:

dr; A
—L = /2Drn;(t) + -4 L (1a)
it Mty
do; Lo
— =/2Dg&i (1) + +—. (1b)
dt gg

where {r and g are the translational and rotational drag coeffi-
cients, F is the swim force, F# is the force on the rod center
of mass from the external potential, and L is the torque on the
rod center of mass from the external potential. The swim force
F¢ = Up{ru; is of constant magnitude, with the direction set by
the rod orientation unit vector u; = cos (6;)é, +sin (6;)é, in 2D. Fi-
nally, the translational and rotational diffusion coefficients are Dy
and Dy, with (n;, &) as random variables with zero mean and a
variance consistent with the fluctuation-dissipation theorem.

As a complementary description of the Langevin equation, the
probability distribution f(r,0,t) of a self-propelled Brownian rod
at position r, orientation angle 6 and time ¢ confined in 2-
dimensions follows the Smoluchowski diffusion equation:

df(r,8,1) Jd . _
ST AV It 5 2de =0 (2a)
Jr = {Uouf—D(u)~ (Vf+fV {kBLT}ﬂ (2b)
0 Jd [V
Jo =—Dg (aigf—’_f% {kBiT}) 29

The Smoluchowski equation can be derived by noise averaging
the Langevin equation for the rod.B637/ 1t describes the normal-
ized probability density f of rods moving at constant velocity Uy
due to a force acting along its center of mass and oriented along
its long axis in direction u. The rods undergo Brownian motion
with a (potentially orientationally dependent) translational dif-
fusion tensor D(u) and rotational diffusion constant Dg. kgT is
the thermal energy, and V is the potential energy of the entire
body in the presence of an external field. J7 and Jg represent the
translational and angular flux, with the translational gradient op-
erator V= %éx + a%éy. For the purpose of this study, interactions
between rods are neglected to probe the dilute limit.

When studying anisotropic particles, Eq.[2]is complicated by the
calculation of the constituent’s potential energy given a potential
energy field ¢ and mass distribution p

V(r,0) = / o (r—s)p(s)ds. 3)

The mass distribution p is zero everywhere except in the region
r+s where r is the rod center of mass, s = su is the displacement
along the rod long axis in direction u from the rod center, with
distance spanning from s = —Lg,;/2 to s = Lg,q/2 (see Supple-
mentary Information Section I.7).

To find an analytical expression for V, one would traditionally
perform a multipole series expansion on ¢. This Taylor series
expansion about the rod center is slow to converge when the po-
tential energy changes rapidly relative to the length of the rod.
In fact, a multipole series of a periodic monochromatic field with
wavelength A diverges for 27Lg,; > A. To overcome this chal-
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Fig. 1 Schematic of active rods in a monochromatic potential energy
field ¢. The rods are modelled in simulation as a rigid assembly of coarse-
grained beads. Left: Simulation snapshot of self-propelled rotors in the
potential field, colored by their direction. Right: Schematic demonstrat-
ing the rotors are composed of spherical point masses that are pushed
by random forces, active forces along the rod contour, and the potential
energy field. In all simulations, the rod is composed of 21 coarse-grained
beads separated by bond length ¢. In the dilute limit, the beads are
point masses and do not interact with each other. Therefore, the rod
diameter is zero, and the aspect ratio Lg,q/droq = °°.

lenge, we have instead chosen to expand ¢ as a Fourier series
and compute the Fourier coefficients (rather than the multipole
moments) of V(r,0). We compute the convolution in Eq. |3|as a
product in Fourier space:

Vnm(e) = énmpnm(ey (4)

The Fourier transform of the line density p,,, can be derived
analytically as described in Supplementary Information Section
L7, allowing us to determine an expression for the center of mass
potential directly:

V(r,0)= Z Gume™> ™ Tsine (TLgogKum - 1) . 5)
n,m
The wavevector is defined as K, = leéx + Lﬂyéy. This method
converges rapidly for periodic potentials with a low-wavenumber
power spectrum. The sinc(7LgyyKnm - u) term comes from the
Fourier transform of the segment density for a rod®® and couples
the orientation of the rod to the potential energy.

Although Egs. [2][5]are true for any periodic potential, we will fo-
cus on a particular case of active rods confined in a 1D monochro-
matic potential field as shown in Fig. In this field, the rod
potential energy is

V(x,0) = —Acos (%) sinc (%COSW)) . (6)

We compare the solutions to the Smoluchowski equations to
discrete simulations of thin rods using Brownian dynamics (BD)
simulations. The rods are composed of coarse-grained beads sep-
arated by distance ¢ connected by rigid body constraints. Each
bead on the rigid rod feels the potential energy field ¢, and the
resultant forces and torques move the rod center of mass and ro-
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tate the body. The center of mass potential energy in this discrete
system is slightly modified from the continuum limit (see Sup-
plementary Information Section 1.7), but Eq. [5|is suitable within
error for our results when Lg,;/0 2 10. For the following results,
we set Lg,;/0 = 21. As mentioned in Fig. 1} this study is focused
on dilute systems and as such the coarse-grained beads are point
masses that have no interparticle interactions. Therefore, the rod
diameter is zero, and the aspect ratio Lg,q/dgoq = -

Based on the form of the external potential, and ignoring any
directional dependence to the translational drag D) ~ D, = Dr,
there are four dimensionless groupings present in the system: the
ratio of rod length to the confinement wavelength Lg,; /A, the ra-
tio of active run length to the rod length Uy/(DgLg,q), the transla-
tional diffusivity over the rotational diffusivity D7 /(DgL% ,), and
the trap strength divided by the thermal energy A/(kgT). For all
systems discussed, we choose D7 /(DgL% ;) = 1/6, following the
traditional scaling of rotational diffusion for a thin rod in dilute

conditions. =7

In addition to solving the steady state Smoluchowski equation
in a periodic unit cell, we utilize the mechanics of generalized
Taylor dispersion theory to calculate the long-time self-diffusivity
of the dilute rods in confinement.?*! For brevity, we save the
mechanics of the derivation and solution to the dispersion equa-
tions for Supplementary Information Section IL.7.

We implemented our simulations using HOOMD-blue, a molec-
ular dynamics (MD) simulation package in Python.42 We in-
tegrate the Langevin equation using a timestep size of Ar =
0.016%/Dr for at least 2+ 107 timesteps. Numerical solutions to
the field equations were conducted using spectral methods imple-
mented in Dedalus.*3

3 Results and Discussion

To compare the effect of confinement on passive and active rods,
we plot the component of the normalized nematic tensor aligned
orthogonal to the external field (Q,,) in Fig.|2|a) and b). The an-
gled brackets indicate the ensemble average of the quantity over
all particles and timesteps (Nygmpies) for BD simulations. For the
solutions to the Smoluchowski equation, the angled brackets indi-
cate the expected value calculated by integrating the probability
distribution.

1 Nmmples

(Qyy)sim = (2 sin(6;) — 1) (72)

N, samples i

@ liveory = [ F(0)2sin%(0) ~1)arde (7)

These values are equivalent at steady state.

As the potential strength A/(kgT) increases, the rods experi-
ence an aligning torque due to their finite length. The potential
energy is minimized when all monomers on the rod are located at
x = 0; therefore, energy is minimized at the expense of rotational
entropy by the rotation of the entire rod. In addition to large
potential strengths (A > kgT), Q), is maximized when the rod
length increases relative to the wavelength; the energy penalty
increases as more of the rod density is moved further from the
potential energy minimum. Both active and passive rods exhibit
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Fig. 2 Softly confined active rods exhibit significant nematic ordering and
dispersion in a direction orthogonal to confinement. Panels (a) and (c)
are passive whereas panels (b) and (d) are self-propelled rods with activity
Up/(DgLroa) =3.5. Panels (a) and (b) show the axial component of the
traceless ensemble averaged nematic tensor. Panels (c) and (d) show the
components of the effective diffusivity scaled by the bulk diffusivity in the
absence of confinement. While the diffusivity across confining channels
(Dyxx/Dy) decreases for both active and passive rods, the active rods
exhibit enhanced diffusivity in the direction orthogonal to confinement
(Dyy/Dy) as rod length and field strength increase. Markers are from
Brownian dynamics simulations, solid lines are numerical solutions to the
Smoluchoski and dispersion theories. Error bars are standard error of the
mean calculated from three independent simulations and when not visible
are smaller than the marker size. Dotted lines in panels (c) and (d) are
the Kramers' escape solution for diffusivity of a point particle.

increased nematic ordering as the field strength and rod length
increase. Compared to the passive rods, self-propelled rods at the
activity studied exhibit slightly less nematic order at the same trap
strength due to their increased ability to escape the trap basin and
reorient at a more favorable location.

In Fig. [2| ¢) and d), we calculate the long time self diffu-
sivity of the confined active rods scaled by the bulk diffusivity
in the absence of external fields, Dg/Dy. The bulk diffusivity,
Dy = Dr +U}/(2Dy), is defined as the sum of the Stoke-Einstein-
Sutherland diffusivity D7 and the “swim diffusivity" U? /(2Dg) for
active species. In the absence of confinement Dg = Dy. This
normalization isolates the impact of the activity-confinement cou-
pling, instead of capturing the well studied enhancement in bulk
diffusivity due to activity.

We plot the components of the diffusivity aligned with the ex-
ternal field, Dy, /Dy, and orthogonal to the external field, D, /Dy,
for passive and active rods. For passive rods, Dy./Dy decreases
following a standard Kramers’ escape process (dashed black line).
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Fig. 3 1D monochromatic potentials increase active rod dispersion
orthogonal to confinement by preventing reorientation. As rod length
increases, the activation barrier against rotation grows. Data points are
measured from Brownian dynamics simulations and the solid lines are
numerical solutions to the full dispersion theory. The dotted lines are
predictions from Eq. with n=2. Activity Up/(DgLgoq) = 3.5 Error bars
are from three independent simulations and when not visible are smaller
than the marker size.

Kramers’ theory#4# indicates that the effective diffusivity scales
linearly with the curvature of the potential well and exponentially
with the activation energy barrier to hopping. Note that when
the rod length is comparable to the wavelength Lg,,/A = 1, the
scaled diffusivity is slightly higher due to the coupling between
the density and higher order moments (e.g. nematicity) from the
potential. Long rods near the top of the trap are able to reorient
so that part of their mass density is in the next basin, creating a
weaker activation barrier to escape. In contrast, the scaled dis-
persivity perpendicular to the field Dy, /Dy remains unaffected by
confinement. Transport in the axial direction follows a 1D ran-
dom walk at its bulk diffusivity Dy, = Dy. For the purpose of
this work, we ignored any orientation dependence to the Stokes-
Einstein-Sutherland diffusivity, but at most that would modify the
results by a factor of two for an infinitely long and thin rod.

For active rods in Fig. [2| d), the effective diffusivity between
channels (Dy,/Dy) decreases as rod length increases. The active
forcing is powerful enough to overcome the external field in all
cases F /F&" = (UokgT /Dr)/(A/A) > 1; however, the large ne-
matic order present as Lg,;/A increases prevents reorientation
and inhibits facilitated active escape.

Most surprisingly, the axial diffusivity of active rods in confine-
ment increases by many orders of magnitude such that D,, /Dy >
1. Rod alignment via the external potential couples with per-
sistent self-propulsion to increase the dispersion. At strong field
strengths and long rod lengths, the rods align nematically inside
the channel field, moving ballistically until an energetically un-
likely reorientation effect occurs. The time between direction re-
versals is increased by the potential barrier, leading to exponen-
tially longer ballistic runs.

To understand the cause of the increase in dispersion, we can
examine the energetics of direction reversal for confined rods. At
strong field strengths, A > kg7, the rod number density is fo-
cused primarily in the center of the channel. A rod sitting in
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the center oriented vertically (6 = n/2) has an activation energy
barrier to change direction to 6 = 37 /2, which for Lg,;/A <1 is
the energy needed to rotate through the completely horizontal
state: Eg ;o =A [1 — sinc (% ] This activation energy deter-
mines the frequency of direction reversal. The activation bar-
rier exponentially lowers the effective rotational diffusion coef-
ficient (Dg ); however, due to the coupling between orientation
and persistent self-propulsion, the reduced rotational diffusion in-
creases the effective translational diffusion.

We propose that when the rod is strongly confined, the effective
translational diffusivity of an active rod in an external potential
may be approximated as

DE,Y)’/D() ~e?% ~ enEa_w/kBT7 (8)

where E, ,,, is the activation barrier to for the rod to rotate and re-
verse polarity. And n is a factor depending weakly on rod length.
Over the course of our study, we found n ~ 2, but it is not neces-
sarily constant for all systems.

In Fig.[3), we compare the effective diffusivity from our Brow-
nian dynamics simulations (via slope of the mean-squared dis-
placement) with our proposed theoretical model in Eq.|8] When
confinement strength is weak (A < kgT), the effective diffusivity
is equivalent to the bulk diffusivity. As the confinement strength
increases to A > kT, the effective diffusivity increases exponen-
tially, based on the formation of an activation barrier to rotation
Dg yy ~ 1/Dg g ~ e*. Across an order of magnitude of rod lengths,
we obtain proficient agreement between the simulation data and
our proposed theoretical model, Eq.

oL@ ]
< 4f !k
2 - -
re———— —l 1 I ———
0.5Fb) 111"
- | Lrea
g 0.0 ==
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—0.5F .
) ) ) 4 0.25
6 (© 1
g 4r ]
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0 e

—0.50 —0.25 0.00 0.25 0.50
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Fig. 4 Steady state moments of the probability distribution found nu-
merically via Eq.[2|for a 1D monochromatic potential ¢ = —Acos(27x/1).
Active rods at potential strength A/(kgT) = 10 and activity Uy/(DgLges) =
3.5. (a) Rod number density (1) across the channel increases due to the
large nematic preventing active escape. (b) Rod polar order against the
channels (my) exhibits a maximum at intermediate Lg,;/A because the
maximum restoring force (A/A4) and active force balance before succumb-
ing to nematic reorientation. (c) Rod nematic order in the channels (Q)y)
increases as Lg,q/A grows due to the increased barrier to reorientation.
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Fig. 5 (a) An optical trap potential energy field ¢(r) defined as a radially harmonic trap with curvature k, width W,,,, and depth A¢ = %KW2
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(b)-(g) Moments of the steady-state probability distribution for rods in an array of optical traps in two dimensions. Upper panels (b,c and d) are for
passive (not self-propelled) rods in a harmonic trap, lower panels (e,f and g) are for self-propelled rods with activity set as Uy/(DgLgoq) = 1.0. Panels
(b) and (e) are the number density of rods, center panels (c) and (f) are the polar order of rods in the x-direction, and bottom panels (d) and (g) are
the nematic order in the y-direction. The circular dashed line represents the edge of the trap. The trap width W;,, = 0.5 and trap depth A¢ = 2kgT

gives a curvature k = 641!, For this example, rod length Lg,q = 0.251.

Our Smoluchowski formulation allows for a detailed view of
the local rod structure found via the probability distribution. In
Fig.[4h) - ¢), we calculate the local density, polarity, and nematic-
ity fields across a single channel at a fixed potential strength
of A/(kgT) = 10. The local density (n(x) = [[ f(x,y,6)dyd6) in-
creases as Lg,q/A increases. For low Lg,;/2, the active force is
easily able to overcome the potential energy barrier and there is
a broad density distribution. At large Lg,;/A, the small wave-
lengths lead to large gradients of the potential energy creat-
ing a restoring force similar in magnitude to the active force
A/A =~ 0.48Uy(kgT /Dr) (for Lg,q = A). Additionally, the strong
torques at large Lg,;/A prevents rod orientation (and therefore
self-propulsion) out of the basin.

Interestingly, the polarity in the x-direction (m,(x) =
JJ f(x,y,0)cos(6)dydd) increases non-monotonically as a func-
tion of wavelength. When Lg,,;/2 is small, the aligning torques
on the rods are weak, and the self-propelled rods behave as
active spheres, orienting against restoring forces. The polar-
ity should increase with the restoring force, but eventually the
torques on the rods dominate and prevent alignment with the x-
axis (normal to the soft confinement). Finally, the nematic order
(Qyy(x) = [ f(x,y,0)(2sin?(0) — 1)dyd8) increases with Lg,q/A as
large gradients in potential energy along a single filament length
rotate the particle.

Although we focused on the special case of a 1D sinusoidal po-
tential, our spectral formulation (Eq.[5) is universal for any well
behaved periodic potential energy field. To demonstrate the ap-
plication of our framework towards more complex potentials, we
solved the steady-state probability distribution of a rod in a lattice
array of radially parabolic potentials, inspired by an array of opti-

cal traps.4! Optical traps do not necessarily have a parabolic pro-
file for anisotropic colloidal particles*Z; however, this model pro-
vides a useful demonstration of the range of energy fields made
possible to study.

In Fig. [Bh), we show a schematic of a parabolic potential de-
scribed by the trap curvature x, width W, and depth A¢ =
%Kmep. This parabolic trap biases the rod density to the cen-
ter, but may also impact the (local) polarity and nematicity of the
rods, especially with activity. We cut off the parabolic potential at
the width W,,,, to create a finite activation barrier to escape, we
then tile the potential in a square lattice to measure properties of
the entire suspension as opposed to motion within a single stiff
trap. In Fig.[5b)-g), we show the density, x-direction polarity, and
yy-direction nematicity for both passive and self-propelled rods,
respectively. In Fig.[5p) and e), the number density is maximized
at the center of the trap. However, the addition of activity al-
lows for particles to more easily escape from the harmonic trap,
as previously shown for spherical active particles.21:48721

Self-propulsion adds an orientation-dependent force to the
translational flux, thereby coupling the polar order to potential
and concentration gradients in a way not present for passive rods.
As shown in Fig.[5k) and f), this coupling generates local polar or-
der from the propulsive force “pushing" against the energy barrier,
which corresponds to a maxima in polar order in locations where
the potential energy gradient is the strongest.

The isotropic nature of the trap prevents global orientational
ordering vertically or horizontally; however, the rods will tend to
align in such a way that they “hang" over the edge, thereby lower-
ing their potential energy. This creates the quadrupolar structure
present in Fig.[5d) and g). This effect is modified for active parti-
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cles because the polar order induced by pushing against the trap
feeds into the local nematic order in regions of high restoring
force.

4 Conclusions

This work presents a general method to study anisotropic active
rods in two dimensions under a range of periodic external fields.
Extensions to this work include the study of rods in three dimen-
sional confinement, where the Fourier transform of the rod den-
sity (sinc(TLgyqKn,m - 0)) remains the same provided that u is now
the unit vector in spherical coordinates.

Extending this work to concentrated suspensions of active rods
is possible using a modification to the Smoluchowski equation
to incorporate a mean-field model.2722553 However, mean-field
models are only valid in the regime of low rod density, weak
interparticle interactions, and small density correlations, so phe-
nomenological hydrodynamic models are often used to study con-
centrated active nematic systems.3 For example, recent theoret-
ical work by Gulati et. al.2% on concentrated suspensions of polar
fluids confined between walls demonstrates that by controlling
the wall anchoring and the activity, one can transition between
no flow, laminar, shear banded, and vortex lattice flow types. We
believe that the machinery of Eq. |5| can also extend these phe-
nomenological methods by enabling the addition of a variety of
periodic potentials to rod models.

Conflicts of Interest

There are no conflicts of interest to declare.

Acknowledgements

We wish to acknowledge Dr. Joseph Barakat for helpful discus-
sions that in part inspired this work and for his mentorship in
implementing numerical and analytical methods in practice for
studying interesting transport problems. Research was sponsored
by the U.S. Army Research Office and accomplished under coop-
erative agreement W911NF-19-2-0026 for the Institute for Col-
laborative Biotechnologies. K.J.M. is supported by the National
Science Foundation Graduate Research Fellowship under Grant
No. 1650114. S.C.T. is supported by the Packard Fellowship in
Science and Engineering. Use was made of computational fa-
cilities purchased with funds from the National Science Founda-
tion (CNS-1725797) and administered by the Center for Scien-
tific Computing (CSC). The CSC is supported by the California
NanoSystems Institute and the Materials Research Science and
Engineering Center (MRSEC; NSF DMR 2308708) at UC Santa
Barbara.

Notes and references

1 A.Be’er and G. Ariel, Movement Ecology, 2019, 7, 9.

2 M. Bér, R. Grof8mann, S. Heidenreich and F. Peruani, Annual
Review of Condensed Matter Physics, 2020, 11, 441-466.

3 S. J. Kron and J. A. Spudich, Proceedings of the National
Academy of Sciences, 1986, 83, 6272-6276.

4 R. Voituriez, J. F. Joanny and J. Prost, Europhysics Letters
(EPL), 2005, 70, 404-410.

6| Journal Name, [year], [vol.], 1

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

Page 6 of 7

H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler and
R. E. Goldstein, Phys. Rev. Lett., 2013, 110, 268102.

E. Lushi, H. Wioland and R. E. Goldstein, Proceedings of the
National Academy of Sciences, 2014, 111, 9733-9738.

K.-T. Wuy, J. B. Hishamunda, D. T. N. Chen, S. J. DeCamp,
Y.-W. Chang, A. Fernandez-Nieves, S. Fraden and Z. Dogic,
Science, 2017, 355, eaal1979.

S. Chen, P. Gao and T. Gao, Journal of Fluid Mechanics, 2017,
835, 393-405.

A. Opathalage, M. M. Norton, M. P. N. Juniper, B. Langeslay,
S. A. Aghvami, S. Fraden and Z. Dogic, Proceedings of the Na-
tional Academy of Sciences, 2019, 116, 4788-4797.

Z. You, D. J. G. Pearce and L. Giomi, Science Advances, 2021,
7, 10694.

C. G. Wagner, M. M. Norton, J. S. Park and P. Grover, Phys.
Rev. Lett., 2022, 128, 028003.

A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans and
F. Sagués, Nature Communications, 2018, 9, 3246.

D. Needleman and Z. Dogic, Nature Reviews Materials, 2017,
2, 17048.

C. Bechinger, R. D. Leonardo, H. Lowen, C. Reichhardt,
G. Volpe and G. Volpe, Reviews of Modern Physics, 2016, 88,
045006.

S. P. Thampi, Current Opinion in Colloid & Interface Science,
2022, 61, 101613.

K. J. Modica, A. K. Omar and S. C. Takatori, Soft Matter, 2023,
19, 1890-1899.

J. Elgeti and G. Gompper, EPL (Europhysics Letters), 2013,
101, 48003.

Y. Fily, A. Baskaran and M. F. Hagan, Soft Matter, 2014, 10,
5609-5617.

F. Smallenburg and H. Léwen, Phys. Rev. E, 2015, 92, 032304.
W. Yan and J. F. Brady, Soft Matter, 2018, 14, 279-290.

H. H. Wensink and H. Léwen, Physical Review E, 2008, 78,
031409.

J. Elgeti and G. Gompper, EPL (Europhysics Letters), 2009, 85,
38002.

G. Li and J. X. Tang, Phys. Rev. Lett., 2009, 103, 078101.

A. Zottl and H. Stark, Journal of Physics: Condensed Matter,
2016, 28, 253001.

Z. Wang, Y.-F. Chen, H.-Y. Chen, Y.-J. Sheng and H.-K. Tsao,
Soft Matter, 2018, 14, 2906-2914.

J. Clemmens, H. Hess, J. Howard and V. Vogel, Langmuir,
2003, 19, 1738-1744.

J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K. F.
Bohringer, C. M. Matzke, G. D. Bachand, B. C. Bunker and
V. Vogel, Langmuir, 2003, 19, 10967-10974.

R. Bunk, J. Klinth, L. Montelius, I. A. Nicholls, P. Omling,
S. Tagerud and A. Ménsson, Biochemical and Biophysical Re-
search Communications, 2003, 301, 783-788.

R. Bunk, M. Sundberg, A. Mansson, L. A. Nicholls, P. Omling,
S. Tagerud and L. Montelius, Nanotechnology, 2005, 16, 710~
717.

A. Ashkin and J. M. Dziedzic, Science, 1987, 235, 1517-1520.



Page 7 of 7

31
32

33

34
35
36

37

38
39
40

41

Soft Matter

S. C. Takatori, R. De Dier, J. Vermant and J. F. Brady, Nature
Communications, 2016, 7, 10694.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding and
Y. R. Chemla, Nature Methods, 2009, 6, 831-835.

H. H. Wensink, H. Lowen, M. Marechal, A. Hartel, R. Wit-
tkowski, U. Zimmermann, A. Kaiser and A. M. Menzel, The
European Physical Journal Special Topics, 2013, 222, 3023-
3037.

R. Wittkowski and H. Léwen, Molecular Physics, 2011, 109,
2935-2943.

H. Hansen-Goos and K. Mecke, Phys. Rev. Lett., 2009, 102,
018302.

A. Baskaran and M. C. Marchetti, Phys. Rev. E, 2008, 77,
011920.

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
(International Series of Monographs on Physics), Oxford Uni-
versity Press, 1988.

M. Doi, T. Shimada and K. Okano, The Journal of Chemical
Physics, 1988, 88, 4070-4075.

J. F. Morris and J. F. Brady, Journal of Fluid Mechanics, 1996,
312, 223-252.

R. N. Zia and J. F. Brady, Journal of Fluid Mechanics, 2010,
658, 188-210.

J. M. Barakat and S. C. Takatori, Physical Review E, 2023, 107,
014601.

42

43

44

45

46

47

48

49

50

51

52

53

54

J. A. Anderson, J. Glaser and S. C. Glotzer, Computational
Materials Science, 2020, 173, 109363.

K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet and B. P.
Brown, Phys. Rev. Res., 2020, 2, 023068.

H. Kramers, Physica, 1940, 7, 284-304.

H. Brinkman, Physica, 1956, 22, 29-34.

H. Brinkman, Physica, 1956, 22, 149-155.

J. L. Abbott, J. A. Spiers, Y. Gao, D. G. A. L. Aarts and
R. P. A. Dullens, Journal of Physics D: Applied Physics, 2019,
52, 024002.

A. Pototsky and H. Stark, EPL (Europhysics Letters), 2012, 98,
50004.

A. Geiseler, P. Hianggi and G. Schmid, The European Physical
Journal B, 2016, 89, 175.

D. Wexler, N. Gov, K. O. Rasmussen and G. Bel, Phys. Rev. Res.,
2020, 2, 013003.

E. Woillez, Y. Kafri and N. S. Gov, Phys. Rev. Lett., 2020, 124,
118002.

A. Baskaran and M. C. Marchetti, Phys. Rev. Lett., 2008, 101,
268101.

M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys., 2013, 85,
1143-1189.

P. Gulati, S. Shankar and M. C. Marchetti, Frontiers in Physics,
2022, 10, 1.

Journal Name, [year], [vol.], 1 |7



