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Influence of Shape on Heteroaggregation of Model Mi-
croplastics: A Simulation Study†

B. Ruşen Argun∗a and Antonia Stattb‡

Microplastics are a growing threat, especially in aqueous habitats. For assessing the influence on the
ecosystem and possible solution strategies, it is necessary to investigate the “fate” of microplastics
in the environment. Microplastics are typically surrounded by natural organic matter, which can
cause aggregation via favorable interactions. However, the effect of shape and flow conditions on
heteroaggregation is not well understood. We perform molecular dynamics simulations of different
microplastic particle shapes with smaller spherical organic matter. We find that mostly smooth
particles formed compact structures with large number of neighbors with weak connection strength
and higher fractal dimension. Microplastics with sharper edges and corners aggregated into more
fractal structures with fewer neighbors, but with stronger connections. We investigated the behavior
of aggregates under shear flow. The critical shear rate at which the aggregates break up is much
larger for spherical and rounded cube microplastics, the compact aggregate structure outweighs their
weaker connection strength. The rounded cube aggregate exhibited unexpectedly high resistance
against breakup under shear. We attribute this to being fairly compact due to weaker, flexible
neighbor connections, which are still strong enough to prevent particles to break off during shear
flow. Irrespective of stronger connections between neighbouring microplastics, fractal aggregates of
cubes break up at lower shear rates. We find that cube aggregates reduced their radius of gyration
significantly, indicating restructuring during shear, while most neighbor connections were kept intact.
Sphere aggregates, however, kept their overall size while undergoing local rearrangements, breaking
a significant portion of their neighbor interactions.

1 Introduction

The production and use of plastics has exploded in recent
decades1. The resulting macroscopic plastic waste accumulates
in landfills and the environment, which continues to degrade
into micro- and nanoscopic particles (MP/NP) through natu-
ral processes like mechanical, thermal, microbial degradation,
photodegradation, and biochemical mechanisms. Additionally,
micro- and nano-sized plastic particles can be discharged directly
as byproduct of laundry or as additive in personal care products,
causing an alarming and growing micro- and nanoplastic pollu-
tion in the environment2, especially in bodies of water3, but also
in soil4, air 5, and even in human blood 6. In fact, plastics pollu-
tion is now abundant7,8.
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This omnipresent pollution has been shown to be especially
threatening for marine ecological systems9–12. In an aquatic
ecosystem, their transport mechanisms, whether plastic parti-
cles are suspended, aggregated, or deposited at the bottom are
key points of interest to deepen our understanding about plas-
tics pollution and the resulting implications for the environment
and human health. These key points depend strongly on the
size at which plastic particle clusters are found in the environ-
ment, which in turn, is determined by their aggregation behavior.
Therefore, a significant portion of research efforts have been fo-
cusing on the aggregation to determine the fate of micro- and
nanoplastics in marine and freshwater environments13.

The concentration of micro- and nanoplastics in aqueous envi-
ronments is commonly small in comparison to the concentration
of other naturally occurring colloids, such as suspended particu-
late matter (SPM), natural organic matter (NOM) etc.14. Those
natural colloids can facilitate or hinder the aggregation of micro-
plastics due to their dominant concentration in environment.
Hence, heteroaggregation (i.e., aggregation of particles of differ-
ent species) is the prominent mechanism, rather than homoaggre-
gation (i.e., aggregation of particles of same species) to determine
the fate of microplastics in aqueous environment15. NOMs have
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been shown to sterically stabilize the MPs in various studies16–21,
and interestingly, they also have been shown to destabilize MPs
through bridging, depending on the specifics of the system con-
sidered16.

Several experimental challenges complicate the study of aggre-
gation behaviour of MP/NP in aquatic ecosystems. First, it is
difficult to separate and characterize MP/NP from environmen-
tal sources22, the bulk of existing prior work used manufactured
MP/NP either directly or after applying aging processes to make
them more realistic19. Spherical and mostly identical model mi-
croplastics might not accurately reflect the behavior of the mi-
croplastics found in nature. Second, the experimental parameter
space that needs to be considered is enormous. For example, the
effect of chemistry/surface functionalization20,23, size of the plas-
tic particles24, polydispersity of the particles19, ionic strength,
pH, salt type16 all play a role in aggregation behavior.

Numerical models and simulations of microplastics can comple-
ment experimental investigations. Large-scale models simulating
the transport of MPs inspired by previously developed engineered
nanoparticle fate models have been employed. Besseling et al. 25

used a hydrological model to simulate the fate and transport of
MP in river systems. Similarly, Domercq et al. 26 developed a
mass-balance transport model for MPs in various aqueous con-
ditions, and Bigdeli et al. 27 provides a review of several parti-
cle tracking modelling methods used for MPs in waters. These
models aim to determine the size distribution of MPs at various
environmental conditions, and provide insight on the distribution
and concentration of MPs for ecological studies. However, these
transport models alone can not accurately account for heteroag-
gregation, biofouling, and defragmentation, as these phenomena
depend on every single detail like chemistry, morphology of MPs,
NOMs, and solvent conditions. These effects must be resolved on
much shorter length and time scales.

Colloidal simulations provide the opportunity to systematically
study single effects caused by the many parameters involved in
the MPs heteroaggregation. Thus, these particle based simula-
tions can give further insights that can be challenging to resolve
in experiments. The insights are also needed for accurate large-
scale transport models. However, there are only few publications
investigating MPs heteroaggregation from a colloidal simulation
perspective. Clavier et al. 28 used Monte Carlo (MC) simulations
investigate heteroaggregation, showing that natural organic mat-
ter can bridge microplastics into large heteroaggregates or stabi-
lize them depending on the initial concentrations and solvent con-
ditions. A statistical thermodynamic heteroaggregation model29

shows that nano-micro contaminants under environmentally rele-
vant conditions do not heteroaggregate even with favorable bond-
ing energies and thus stay mostly suspended.

Due to experimental challenges, most work to date focused on
the investigation of spherical model micro- and nanoplastic par-
ticles. However, irregular shapes are most commonly found in
environmental systems13. Most notably, Pradel et al. 30 and Dong
et al. 31 have shown that non-spherical morphologies favor aggre-
gation.

Simulations of non-spherical colloidal of particles were per-
formed by several authors, commonly using composite particle

models32–34. The effect of shape on phase behavior was also
studied by finely tuning geometries of athermal colloids using MC
simulations35–37. Most prior simulation work focused on equilib-
rium behavior of shapes, where this work addresses the influence
of shape onto equilibrium and non-equilibrium behavior.

Realistic conditions are not necessarily quiescent, currents are
abundant in aqueous environments. However, restructuring and
breakup effect of aggregates due to flow is rarely considered ex-
plicitly in existing literature. Shear flow, for example, has a con-
siderable impact on behaviour of colloidal systems.38,39 It has
been shown that weakly bonded NP/MP aggregates can breakup
under shear flow under environmental conditions40. Shear flow
does not only break aggregates, but can restructure them41,42.
The balance between aggregation and breakup determined the
aggregate size distribution43. To our knowledge, prior studies fo-
cused on spherical model particles. In this work we’re integrating
shear flow into non-spherical colloidal simulations.

2 Model and Methods

To address the influence of shape on heteroaggregation, eight dif-
ferent microplastic (MP) particle shapes were modeled as groups
of smaller constituent beads, as listed in Table 1. Microplastics in
the environment may have irregular and asymmetric morpholo-
gies13 that do not correspond to any of the fairly regular MP
shapes used in this study. Instead of attempting to model all
possible shapes, this work focused on systematic variations that
might be helpful for understanding the effect of edges, corners,
or smooth surfaces of MPs on their heteroaggregation behavior.

Natural organic matter (NOM) particles were modeled as sin-
gle spherical beads of the same size as the constituent beads of
the MP shapes. MP shapes were held rigid during the simulation
using a rigidity constraint44,45. The unit of length and mass were
set by the individual beads of MPs and NOMs, which had size 1σ

and mass M = 1m.

The surface area Acenter and volume Vcenter of a shape was cal-
culated with respect to the dimensions given by the center loca-
tions of the constituent beads. However, the effective area Aeff
and effective volume Veff are more indicative for the aggregation
and shear flow behavior, as estimation for the hydrodynamic ra-
dius. Both Aeff and Veff were calculated by including the con-
stituent bead excluded volume by adding 0.3σ to each direction.
All eight MP shapes had similar effective volumes Veff of approx.
100σ3, resulting in different surface areas Aeff, as stated in table 1.
The small differences were caused by the limited resolution given
by the constituent bead size.

Four shapes were cylindrical, with elliptic cross-sections of de-
creasing eccentricity; 0.88 for ellipse 1, 0.68 for ellipse 2, and
0, which corresponds to a regular cylinder with circular cross
section. We also simulated a thinner and taller cylinder, which
was denoted as rod. Additionally, cube, plate, rounded cube, and
sphere MP shapes were modeled. These eight shapes represent
archetypical geometries that allowed for systematic investigation
of the effect of shape, edges, corners, and smooth surfaces.

Each constitutive bead in a MP shape interacted separately with
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Table 1 Microplastics shapes, their surface area Acenter and volume Vcenter as calculated with respect to the dimensions given by the center of the
constituent beads, number of beads in each shape, and their dimensions. The effective area Aeff and effective volume Veff are also given.

Cube Plate Rod Ellipse 1 Ellipse 2 Cylinder Rounded Cube Sphere

# of beads 152 138 128 123 118 120 140 100
Dimensions
(center)

a = 4.15σ a = 1.8σ ,
b = 5.4σ ,
c = 6.3σ

L = 9.9σ ,
r = 1.45σ

L = 5.4σ ,
a = 2.85σ ,
b = 1.35σ

L = 5.4σ ,
a = 2.3σ ,
b = 1.68σ

L = 5.4σ ,
R = 2σ

a = 4.35σ ,
rcurv = 0.93σ

R = 2.6σ

Vcenter [σ
3] 71.5 61.2 65.4 65.3 65.6 67.9 74.1 73.6

Veff [σ
3] 107.2 99.4 101.0 97.9 97.0 99.7 104.9 102.2

Acenter [σ
2] 103.3 110.6 103.4 97.7 92.2 93.3 84.7 73.6

Aeff [σ
2] 135.4 145 137 125.3 120 120 110 105.6

a Morse potential

Vmorse(r) =D0

[
e−2α(r−r0)−2e−α(r−r0)

]
r < rcut

=0 . r ≥ rcut

All pair interactions were cut at rcut = 1.75σ , and are shown in
Fig. 1. The unit of energy was chosen to be ε. The Morse po-
tential was used with D0 = 0.001ε, α = 15σ−1 and r0 = 1.22σ ,
to model the repulsive interactions between same species, i.e.,
NOM-NOM and MP-MP. A short range attraction between MP con-
stituent beads and NOM beads was modeled with α = 10σ−1,
where attraction strength at r0 = 1.065σ was given by D0 = 2ε.
The choice of parameters for all pair interactions led to a similar
excluded volume, when considering the repulsive part at r ≤ 1σ .
This set of pair interactions promoted heteroaggregation as the
single aggregation mechanism in the system, and no homoag-
gregation between just MPs or just NOMs was observed in any
simulation.

2.1 Quiescent Aggregation

Heteroaggregation of MPs with NOMs was simulated using
the open-source molecular dynamics (MD) software package
HOOMD-blue v2.9.446–48. A time step of 0.005 τ was used,
where τ = σ

√
m/ε was the unit of time. A constant tempera-

ture of T = 1ε/kB was maintained using a Langevin thermostat
with a friction coefficient of 1 m/τ applied to all beads. Instead of
strong inter-particle bonds, a rigidity constraint was employed to
keep MP shapes undeformed throughout the simulation44,45 for
computational efficiency.

It was not computationally feasible to perform MD simulations
at the environmentally relevant low MP concentrations49. To
mimic the low concentrations of MPs as found in aqueous envi-
ronments, MPs-NOMs were added sequentially to the box, while
the MPs were allowed to aggregate during the simulation. Simu-
lations were initialized with 2 MPs and 250 NOMs in a cubic box

with side length L = 20σ . After each cycle of 1000τ, the cluster-
ing algorithm DBSCAN50 (with a neighbor distance cutoff of 1.5σ

and minimum number of 2 for core points) was used to to check
whether all the of MPs in the box had aggregated into a single
cluster. If they were clustered, an additional MP shape and 125
NOMs were added into the box randomly without overlap, and
the next cycle of 1000τ started. If the MPs were not clustered, no
particles were added and the simulation was continued for an-
other 1000τ before checking again. During this sequential aggre-
gation scheme, the number density of MPs (ρMP = 0.00025σ−3)
and NOMs (ρNOM = 0.03125σ−3) were kept constant by appropri-
ate increases of the box size as new particles were added to the
box. The aggregation was continued until each cluster reached a
size of 70 MPs, which was large enough to investigate differences
in structure and stability. Overall, 10 heteroaggregates were ob-
tained independently to increase statistics for each of the shapes
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Fig. 1 Morse potential for MP constituent bead and NOM interactions.
The parameters were D0 = 0.001ε, α = 15σ−1, and r0 = 1.22σ for MP-MP
and NOM-NOM interactions and D0 = 2ε, α = 10σ−1, and r0 = 1.065σ

for MP-NOM interaction.
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listed in Table 1.

As an alternative approach, Monte Carlo (MC) Simulations
with cluster moves were used to obtain aggregates. The re-
sulting clusters were more fractal, less compact, and had less
bonded neighbors. This indicated that they were not efficiently
equilibrated, despite the use of several highly efficient cluster
moves51,52. Additionally, straightforward MD simulations that
contained all shapes from the beginning at random initial condi-
tions were performed. Similarly to the MC simulations, the ag-
gregates obtained could not be equilibrated within a reasonable
simulation time, especially for shapes with pronounced edges and
corners, like cubes.

Aggregate structure was evaluated with two quantities: bonded
neighbor number (BNN) and the average connection strength
(ACS). BNN was defined as the average number of MPs that each
MP in an aggregate was bonded to by at least one NOM (i.e., #
of bonded MP neighbors, where a bond was an NOM that was
in attraction with both of MPs). For this calculation, the bonding
cutoff was 1.4σ , where the NOM-MP attraction is close to zero
(see Fig. 1). Higher BNN indicated a more compact aggregate
with more nearest neighbors, indirectly indicating the fractal di-
mension of the aggregate. The average connection strength was
given by the average number of NOMs that were bridging two
neighboring MPs in a aggregate. ACS served as a measure of ef-
fective attraction/bond strength between neighboring MPs of an
aggregate.

2.2 Aggregates Under Shear Flow

In conditions relevant to the environment, the MPs aggregates
could be subjected to flow, which may break them into smaller
fragments. To study these effects systematically, shear flow with
a constant velocity gradient between two walls was used, where
the top wall moves in +x and the bottom wall in −x. Since the
length scale of the aggregates is relatively small, turbulent flow
was not considered to be relevant38. Multi-particle collision dy-
namics (MPCD)53, a standard mesoscale simulation method, was
used to incorporate a background fluid and hydrodynamic inter-
actions into the simulation. We refer the reader to54–57 for details
on MPCD. MPCD was used with the stochastic rotation dynam-
ics (SRD) collision rule53, as implemented in HOOMD 2.9.458.
MPCD treats the solvent explicitly as point-like particles with
unit mass m. The number density of solvent particles ρ was set
to 5σ−3 and correspondingly, the mass of NOMs and MPs con-
stituent beads was set to M = 5m to ensure proper solute-solvent
coupling55. Since no dynamical quantities were calculated from
the quiescent cluster aggregation simulations, the change in mass
and simulation method did not cause any inconsistencies. The
solvent particles in MPCD were simulated in two steps: a stream-
ing step where they moved ballistically and a collision step, where
they were also coupled with MD particles (i.e., MPs and NOMs).
The collision period was set to 20, i.e., λ = 0.02τ, and the colli-
sion angle was set to 130◦. MD particles were simulated using
the standard velocity-Verlet algorithm with ∆t = 0.001τ and a tree
neighbor list47, and they interacted with the solvent beads only
during the collision step.
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Fig. 2 Average Connection Strength (ACS) as function of bonded nearest
neighbors (BNN) for heteroaggregates of all different MP shapes (sphere,
soft cube, rod, cylinder, ellipse 1 & 2, plate, and cube) as indicated by
the legend. The dashed line is a guide to the eye.

A theoretical prediction of the Schmidt number Sc can be cal-
culated for MPCD solvents, since the viscosity can be determined
readily55. For the parameters used in this study, the Schmidt
number was ∼ 250 which was sufficient to approximately re-
produce the properties of water-like fluids, which typically have
Sc = 102 −103 55.

To create the linear shear flow profile, the periodic boundaries
in +z and −z directions were replaced with repulsive walls that
move at constant speeds varied between 0.003 and 0.1 στ−1 to
create different shear rates. A constant fluid velocity gradient in z
direction was established by imposing a no-slip bounce back col-
lision rule for the solvent particles colliding with a wall. We also
used virtual filler with MPCD particles at a density of 5σ−3 in the
walls, which is known to improve the no-slip wall boundary con-
dition59,60. It is important to note that the final box size was large
enough to ensure that the clusters were sufficiently far away from
the walls to prevent any interaction between aggregate and walls.
Since the rigidity constraint that was used in the MD simulations
of aggregation is not easily compatible with MPCD, a harmonic
bond potential with a large stiffness of k = 4000ε/σ2 was used
between neighboring MP beads of the same shape to ensure the
rigidity of MP shapes61.

3 Results and Discussion

3.1 Structure of Aggregates in Equilibrium
First, we investigated the structure of aggregates in equilibrium
as obtained by the simulations described in Section 2.1. The av-
erage number of bonded neighbor MPs (BNN) and the average
connection strength (ACS) between neighbors in the aggregates
of different shapes were measured for each shape and plotted in
Fig. 2, where the results were averaged over 10 heteroaggregates
of each shape, with resulting error bars of the size of the sym-
bols in the figure. The inverse correlation between the number of
neighbours BNN and connection strength ACS is evident. At one
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end, heteroaggregates of spherical MPs have the highest num-
ber of neighbors of around 8 and lowest connection strength of
around 3.5, i.e, the MPs in a cluster have many loosely connected
neighbors. At the other end, heteroaggregates of cubes and plates
have the highest connection strength of approx. 12 and lowest
number of neighbors around 3, i.e, the MPs in a cluster have
very few strongly connected neighbors. Interestingly, the prod-
uct of connection strength ACS and average number of neighbors
BNN was approximately the same for all shapes, independently of
shape. The geometry of cubes and plates allow MPs to be bridged
across their flat faces, which can accommodate a higher num-
ber of NOMs compared to curved surface of spheres, leading to
higher ACS. Once two flat surfaces were bridged by a large num-
ber of NOMs, it was unlikely for that connection to be broken or
rearranged during the rest of the simulation. Between two MPs
that were connected across flat surfaces surrounded by edges and
corners, an effective resistance against rotation and torsion was
created, that effectively hindered the restructuring of aggregates
of cubes and plates into more compact geometries. However, due
to their curved surface, spheres usually do not have more than ap-
prox. 4 NOMs bridging them (see Fig. 2), thus allowing for easier
restructuring into more compact aggregates, which also explains
why they have a higher number of neighbors in an aggregate.
Typical snapshots of sphere, rounded cube, cube and rod MP ag-
gregates were shown in Fig. 3.

Fig. 3 Snapshots of typical heteroaggregates of MP (a) spheres, (b)
rounded cubes, (c) cubes and (d) rods. MP constituent beads are shown
in blue, NOMs are red.

To focus on the effect of edges and corners, we simulated
rounded cube MPs which were obtained by smoothing out the
edges and corners of a cube while keeping some amount of the
flat faces intact. The resulting structure of rounded cube aggre-
gates were similar to spheres. In fact, they were more similar to
spheres than all other shapes investigated here, as shown in Fig.2,
underscoring the importance of edges and corners, rather than

just flat faces. The other four shapes (3 cylinders and rod) have an
amount of edges and corners between the sphere and cubes, and
as a result their BNN and ACS was found to be between spheres
and cubes. The resulting heteroaggregates of those four shapes
were very similar, a typical example for rod aggregates is shown
in Fig.3(d). The effect of shape was most prominent when com-
paring substantially different geometries like spheres and cubes.
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plate

cube

Fig. 4 Fractal dimension d f of aggregates with different shapes (as
indicated by the legend) as function of BNN. The dashed line is a guide
to the eye.

A popular way to quantify the aggregate structures is their frac-
tal dimension, d f

41. Here, d f was defined as the exponent relat-
ing the size of the aggregate R to the number of particles in the
aggregate N

N = k0(R/a)d f , (1)

where a = 2.9σ is the effective size of the MP, i.e, the radius of a
corresponding sphere with same volume. The parameter k0 is a
proportionality prefactor. Here, we set the prefactor k0 to be unity
for simplicity. Commonly, the value of k0 is found to be close to
one in three dimensions62.

In this study, we found that the fractal dimension of an aggre-
gate was linearly correlated with the average number of neigh-
bors, as shown in Fig. 4. The aggregates of cubes have the lowest
d f of approx. 1.8, whereas spheres have a fractal dimension of
approx 2.5. The low d f for cubes is close to values expected from
diffusion limited cluster aggregation (DLCA)62, where clusters
modeled by random growth and attachment with no restructur-
ing. The lack of restructuring in cube and plate heteroaggregates
explains the observed fractal dimensions close to typical DLCA
aggregates.

Rods also exhibited a lower d f of around 2.1, due to their asym-
metric shape. The preferences of rod MP to align parallel in aggre-
gates contributed to their lower fractal dimension. For aggregates
as small as the ones studied here, with N = 70, it is not straight-
forward to disentangle those two contributions or to fit the pref-
actor k0 accurately. Restructuring in sphere and rounded cube
heteroaggregates led to higher d f values. There are limited stud-
ies on the aggregation of non-spherical particles, showing that
shape of the primary particle can have an impact on the aggre-
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Fig. 5 Rate of Breaking as function of number of bonded neighbours,
BNN. The dashed line is a guide to the eye.

gate structure, and the estimated fractal dimensions63–66 are in
the same range as the results presented in Fig. 4.

The simulations performed here did not model realistic aggre-
gation kinetics directly. However, the results presented in this
work allow for some speculations. The aggregation rate should be
proportional to both collision frequency and collision efficiency,
and d f affects both those quantities67. Aggregates of lower d f

will have larger effective sizes as they grow, leading to potentially
more collisions with other aggregates. As we have shown here,
MPs with flat surfaces (i.e., cubes and plates) had lower fractal
dimensions, whereas spherical MP aggregates were compact and
have much higher fractal dimensions. In addition to size consid-
erations, the hydrodynamic repulsion forces can be reduced be-
tween two fractal aggregates as they come in contact, due to their
open structure. This effect could increase collision efficiency, i.e.
the fraction of aggregate collisions that lead to further aggrega-
tion. Thus, by increasing both frequency and efficiency of colli-
sion, a lower d f can have a compounding effect on aggregation
rate. Therefore, the results presented here point towards faster
aggregation of cubes and plates compared to rounded cubes and
spheres, due to their difference in fractal dimensions.

3.2 Aggregates under Shear Flow

In the previous section, structural properties of equilibrated clus-
ters were investigated. Here, we study the stability of the same
clusters under shear flow using MPCD. A priori, it is not obvious
whether a compact cluster with many loosely connected neigh-
bors or a cluster with fewer, but strongly connected neighbours
would be more stable under shear flow. To investigate this, a
shear rate of 7.14 ·10−4τ−1 was applied to all clusters of different
MP shapes.

The rate of breaking, i.e., the fraction of the ten clusters of
each MP shape that broke up into smaller clusters (where the
largest cluster had less than 90% of the initial cluster particles)
was plotted in Fig. 5 for all shapes. At this particular shear rate,
almost all cube and plate MPs heteroaggregates break up under
shear. In contrast, aggregates of sphere and rounded cube MPs
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Fig. 6 Rate of breaking as function of shear rate for different shapes, as
indicated in the legend. The solid lines are tanh fits.

were resistant against the flow and did not show any breakup at
this particular shear rate.

Among the measures to quantify the structure of heteroaggre-
gates, BNN correlated most with the resistance against breaking
of an aggregate, as evident in Fig. 5. With this data, it is clear that
aggregates with higher number of neighbors broke up less. On
the other hand, a similar observation cannot be made for connec-
tion strength. Clusters of cubes and plates have higher effective
connection strength among their MPs (see Fig.2), however, they
broke up more frequently. The rate of breaking is also not corre-
lated with the aspect ratio of the shape, as evident by comparing
rods and cylinders. Overall, we conclude that a higher number
of neighbors provided more stability against shear breakup than
few strong connections between neighbors did.

To investigate their behavior under shear further, a limited
number of shapes were investigated with varying shear rates. Ag-
gregates of cubes, cylinders, rounded cubes, and spheres were
subjected to a range of shear rates, since they were representing
archetypal clusters: open, fractal cluster with few, strongly con-
nected neighbors, compact clusters with many weakly connected
neighbors, and cylinders in between, with a highly asymmetric
MP shape. The goal was to determine the critical shear rate at
which each cluster started breaking.

The shape of the MP also has a significant effect on the critical
shear rate of the heteroaggregates of size 70 MPs. The critical
shear rates to break 50% of all clusters were obtained from hy-
perbolic tangent fits

f (s) =
1
2

[
tanh

(
s− cs

d

)
+1

]
,

resulting in critical shear rates of cs = 3× 10−4τ−1, 6× 10−4τ−1,
1.64×10−3τ−1, and 2.36×10−3τ−1 , for cubes, cylinders, spheres,
and rounded cubes, respectively. As shown in Fig. 6 the shear rate
that was needed to break aggregates of spherical MPs was approx.
five times higher than the one for cubes. Interestingly, this critical
shear rate is not a simple linear function of either BNN, ACS, or
d f . While the critical shear rate is overall positively correlated
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Fig. 7 Radius of gyration Rg as function of time at shear rates
1.36 × 10−4τ−1 (cube and cylinder) and 7.85 × 10−4τ−1 (sphere and
rounded cube) averaged over 10 aggregates. The shaded area indicates
the variance in the averaged data.

with BNN, the rounded cube exhibited unexpectedly stable be-
havior against breaking up under shear, leading to a much higher
critical shear rate. We attribute this to a favorable combination
of compactness (i.e., high d f ≳ 2.3) due to weak flexible neighbor
connections, i.e. BNN and ACS around 6.5, that are still strong
enough to prevent MP breaking off during shear.

To investigate if and how aggregates restructure under shear
flow, we performed MPCD simulations with heteroaggregates of
cubes and cylinders at shear rate 1.36× 10−4τ−1 and for spheres
and rounded cubes at 7.85× 10−4τ−1 respectively. These shear
rates represent the highest shear where none of the ten aggre-
gates broke up, instead restructuring of the aggregates was ob-
served. The cube MP heteroaggregates restructured under shear
flow, as shown by the significant decrease of about 10% in the
aggregate radius of gyration, Rg, in Fig. 7. Spheres on the other
hand behaved differently, since they already start as fairly com-
pact aggregates in equilibrium, there was not much possibility
to restructure into a less fractal structure (i.e., decrease Rg). In-
stead, oscillatory fluctuations of Rg around the mean equilibrium
Rg,τ=0 were observed, indicating that no large scale restructuring
occurred. Those oscillatory fluctuations are caused by the ag-
gregates tumbling in the shear flow. Cylinder and rounded cube
aggregates show about 5% decrease of their size.

Fig. 7 suggests that the overall structure of the more compact
sphere MP heteroaggregates were changed significantly less than
the fractal cube aggregates, as indicated by changes in Rg. How-
ever, on a local, smaller scale the opposite behavior is observed.
To measure local rearrangements, we defined a preserved bond
as a NOM connection that persisted since the equilibrium config-
uration at τ = 0. The resulting fraction of preserved bonds over
time during shear flow is plotted in Fig. 8. The fraction of pre-
served bonds between sphere MPs decayed much quicker com-
pared to all other shapes. This suggests that, internally, there
was significantly more restructuring of bonds in sphere MP het-
eroaggregates, where about half of all bonds were changed after
approx. 40000τ. The bonds between two MP cubes were difficult
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Fig. 8 Preserved bond fraction cube and sphere aggregates during re-
structuring at shear rates 1.36×10−4τ−1 and 7.85×10−4τ−1 respectively,
averaged over 10 aggregates. The shaded area indicates the variance in
the averaged data.

to change due to their higher ACS. More than 90% of initial bonds
were preserved after 80000τ, with cylinder and rounded cube ag-
gregates in between, where about 80% of bonds were preserved.

Another indication for the difference in internal restructuring
can be obtained from the fluctuation of angles formed by bonded
triplets in the aggregates. Higher fluctuation of angles indicated
a stronger internal restructuring for sphere MP aggregates. We
calculated the standard deviation for each angle that was intact
after 20000τ, and found that, on average, the standard deviation
for the angles of sphere aggregates is about 1.4 times higher than
cubes.

Combining the observations made based on Rg and preserved
bonds, we can conclude that shear flow was able to easily break
the weaker bonds between sphere MPs without breaking up the
entire heteroaggregate, i.e, minor local rearrangements, whereas
the cube heteroaggregates globally restructured into more com-
pact aggregates while preserving about 90% of all bonds, i.e., a
few bonds were broken to allow for entire sections or chunks of
the aggregate to move. The rounded cube and cylinder aggre-
gates exhibit restructuring behavior between those two extreme
cases. While we assume the details of the restructuring to be de-
pendent on the shear rate, the general trends are expected to hold
over a range of weak shear rates.

From the data obtained by the shear MPCD simulation, it
was evident that compact heteroaggregates were more resistant
against shear flow in general, and consequently, and we can spec-
ulate that they may attain larger absolute sizes before they break
up due to shear. For this reason, we would expect average aggre-
gate sizes of sphere MPs at steady state to be much higher com-
pared to fractal heteroaggregates of cubes. The stability under
shear flow appears to be determined by a combination of com-
pactness and bonded neighbor strength and number of neighbors.

4 Conclusions and Outlook
In this work, we provide insights about the impact of shape on
the fate of MPs and NOM heteroaggregates in the environment, a
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parameter which is often overlooked in literature and difficult to
quantify. We found that the MP shape determined the structure of
the heteroaggregates, where edges and corners led to more open,
fractal clusters with less bonded MP neighbors, but with increased
connection strength between each neighboring MP shape. More
spherical MP shapes led to compact clusters with weaker connec-
tions between neighbors. Based on the difference in respective
fractal dimensions, we speculate that cubes and plates should ag-
gregate faster compared to rounded cubes and spheres.

We also investigated the stability and restructuring of heteroag-
gregates of different MP shapes under shear. We showed that, in
general, a higher number of neighbors and a more compact aggre-
gate (e.g., sphere MPs heteroaggregates) provided more stability
against shear breakup than strong connections between neigh-
bors in a fractal aggregate (e.g., cube or plate MPs heteroaggre-
gates). Consequently, the critical shear rate for breakup changed
with the shape as well, where we found that heteroaggregates
of cube and cylinder MPs break up at lower shear rates than
sphere heteroaggregates. A notable exception to this trend is
the rounded cube MP shape, that exhibited an unexpectedly high
stability against breakup under shear. We attribute this to be-
ing fairly compact, due to weaker flexible neighbor connections
that allow restructuring, but are strong enough to prevent break-
ing. This result also highlights that measuring a single aggregate
property might not be sufficient to describe their non-equilibrium
behavior in detail.

This work was focused on systematic variations of aggregate
properties and stability under shear as function of shape, there-
fore we have not investigated extremely irregular shapes that can
be present in the environment13. Future work will include more
irregular shapes and heteroaggregation of MP with mixed shapes
to investigate the effect of heterogeneity in shapes.

In addition to aggregate breakup and restructuring, sedimen-
tation plays a key role in determining the fate of MPs in water26.
It is possible that through fractal dimension, the shape of MPs
could have an impact on the sedimentation behaviour of aggre-
gates due to shape drag and other effects of hydrodynamics on
settling dynamics68–70.

Thus far, we have used simple pair interactions, i.e. Morse
potentials between the constituents in the system. Those pair in-
teractions do not explicitly consider any chemical details beyond
generic attraction and repulsion, making the results presented
here generically applicable, with the clear limitation of specificity.
In the future, (extended) DLVO theories can be used with spe-
cific chemistries and solvent conditions to obtain more realistic
potentials. It is also possible to work with more accurate em-
pirical potentials obtained by potential of the mean force (PMF)
calculations from experimental results71. There is also room for
improvement regarding the functional form of the used potentials
as well. In addition to pair potentials solely based on distance as
used in this study, tangential contact potentials and roughness
related interactions between colloidal particles can play a signif-
icant role in particle behavior72. Because tangential potentials
can provide resistance against bending and torsion, they can in-
fluence the aggregation process and aggregate behaviour under
shear flow. We speculate that addition of roughness and friction

will reduce the restructuring of clusters into more compact struc-
tures during aggregation, and will overall result in more fractal
aggregates. Improvement of the simple model presented here is
left for future work.

The simple model system used in this study illustrates the im-
portance of shape of microplastic particles in their aggregation
behavior and stability under shear. Overall, edges and corners
lead to less stable, more fractal aggregates. The unexpected sta-
bility of rounded cube MP aggregates illustrates that for predict-
ing the stability under shear flow, aggregate size, i.e., d f is not
sufficient and more work is needed to fully understand the inter-
nal rearrangements of these heterogeneous clusters under shear.
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