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Non-Close-Packed Hexagonal Self-Assembly of Janus
Nanoparticles on Planar Membranes †

Yu Zhu,a Abash Sharma,a Eric J. Spangler,a and Mohamed Laradjia∗

The adhesion modes of an ensemble of spherical Janus nanoparticles on planar membranes are
investigated through large-scale molecular dynamics simulations of a coarse-grained implicit-solvent
model. We found that the Janus nanoparticles adhering to planar membranes exhibit a rich phase
behavior that depends on their adhesion energy density and areal number density. In particular,
effective repulsive membrane-curvature-mediated interactions between the Janus nanoparticles lead
to their self-assembly into an ordered hexagonal superlattice at intermediate densities and interme-
diate to high adhesion energy density, with a lattice constant determined by their areal density. The
melting behavior of the hexagonal superlattice proceeds through a two-stage melting scenario in
agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young classical theory of two-dimensional
melting.

1 Introduction

Recent studies have shown that nanoparticle (NP) assemblies
can potentially be used in a range of advanced applications
including energy harvesting,1 energy storage,2 non-linear op-
tics,3 biosensing,4 catalysis,5 imaging,6 and drug delivery.7 As-
semblies of NPs can be synthesized through either top-down
or bottom-up strategies. In top-down strategies, which include
electron-beam lithography8 and laser machining,9,10 a material
is typically ablated into the desired nanostructure. In contrast,
bottom-up strategies are based on the spontaneous self-assembly
of the NPs into specific structures. These self-assemblies re-
sult from effective interactions between the NPs mediated by
materials such as block copolymers,11 proteins,12,13 polypep-
tides,14 polysaccharides,15 liquid crystals,16 and RNA or DNA
strands.17,18 Nanoassemblies produced using bottom-up meth-
ods include dimers,19 trimers,20 tetramers,21 icosamers,22 pyra-
mids,23 tori,24 chiral structures,25,26 and hexagonal superlat-
tices.27

Many experimental and computational studies have demon-
strated that the adhesion of NPs with uniform surfaces to planar
lipid membranes or lipid vesicles leads to effective interactions
between them that are mediated by deformations in the mem-
brane curvature.28–36 These interactions often lead to the self-
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assembly of the NPs into in-plane linear chains or out-of-plane
tubular chains.28–30,32,33 These assemblies are characterized by
the NPs being in contact with each other. Since many advanced
applications require superlattices or clusters of NPs in which they
are not necessarily in contact with each other, it would be very
desirable to determine if lipid membranes can mediate the self-
assembly of NPs such that they are not in contact with each other.

Recent simulations showed that surface modification of NPs
into Janus NPs (JNPs), such as one moiety interacting attractively
with the lipid head groups and the other interacting repulsively
with the lipid membrane, causes repulsive membrane-mediated
interactions.37,38 More recently, we showed that due to this re-
pulsive interaction, the adhesion of many spherical JNPs onto a
lipid vesicle leads to their self-assembly into an array of highly or-
dered nanoclusters, with geometries determined by the number
of JNPs on the vesicle. Furthermore, the nanoclusters polyhedra,
whose vertices correspond to the JNPs centers and whose edges
are determined by connecting each JNP to its nearest neighbors,
satisfy the upper limit of Euler’s polyhedral formula,39 i.e., the
average number of nearest neighbors per JNP is maximized.40 In
particular, we showed that four, six, and 12 JNPs self-assemble
into Platonic solids corresponding to the regular tetrahedron, oc-
tahedron, and icosahedron, respectively. In contrast, eight and 20
JNPs do not self-assemble into their respective Platonic solids cor-
responding to the cube and dodecahedron since these polyhedra
do not obey the upper limit of Euler’s polyhedral formula.40 Fur-
thermore, we showed that the geometries of these nanoclusters
are preserved for a given number of JNPs as the vesicle’s diame-
ter, DLV , is increased, albeit the degree of fluctuations increases
with DLV .40
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The present work extends our recent study40 to the limit of a
large number of JNPs adhering to tensionless planar membranes
as a function of the JNPs’ number density and adhesion energy
density. The study is achieved through systematic molecular dy-
namics simulations of a coarse-grained implicit-solvent model
of self-assembled lipid membranes and tessellated nearly rigid
JNPs.38,40 The simulations show a rich phase behavior, which in-
cludes a disordered phase of dispersed JNPs on the membrane
at low values of the adhesion energy density, ξ , or low values
of the number density, ρ, and an ordered hexagonal superlattice
of the JNPs at high ξ and intermediate ρ, in which the JNPs are
apart from each other. The lattice constant of the self-assembled
hexagonal lattice is determined by ρ. By analyzing various struc-
tural quantities, we found that the hexagonal lattice melts as ρ is
decreased via an intermediate hexatic phase, in agreement with
the Kosterlitz-Thouless-Halperin-Young-Nelson (KTHNY) classical
theory of two-dimensional (2D) melting.41–44

2 Model and Methods

2.1 Modeling of the Lipid Bilayer and Janus Nanoparticles

In the present work, we use an implicit-solvent model of self-
assembled lipid membranes,45,46 in which a lipid molecule is
coarse-grained into a short, semi-flexible chain composed of one
head (h) bead and two tail (t) beads. The potential energy of the
lipid bilayer is given by

U({ri})=∑
i, j

Uαiα j
0

(
ri j
)
+∑

⟨i, j⟩
Uαiα j

bond
(
ri j
)
+ ∑

⟨i, j,k⟩
Uαiα jαk

bend
(
ri,r j,rk

)
, (1)

where ri is the coordinate of bead i, ri j = |ri − r j|, and αi = h or
t if i is a head or tail bead, respectively. The angular bracket in
the second summation of Eq. (1) denotes that i and j are bonded
and belong to the same lipid chain. The angular bracket in the
third summation denotes that i, j, and k are part of the same lipid
chain.

In Eq. (1), Uαβ

0 is a soft two-body potential between beads of
types α and β , and is given by

Uαβ

0 (r) =



(
uαβ

M −uαβ
m

)
(rm−r)2

r2
m

+uαβ
m if r ≤ rm,

−2uαβ
m

(rc−r)3

(rc−rm)3 +3uαβ
m

(rc−r)2

(rc−rm)2 if rm < r ≤ rc,

0 if r > rc,

(2)

where uαβ

M > 0 and uαβ
m ≤ 0 for any pair (α,β ). uαβ

m = 0 implies
an entirely repulsive interaction between α and β , with a cutoff
distance rm. uαβ

m < 0 implies a short-range attraction between i
and j for rm < r ≤ rc. uhh

m = uht
m = 0 and strong enough negative

values of utt
m ensure that the lipid chains self-assemble into stable

bilayers.46 rm also sets the size of a bead.

Consecutive beads in a lipid chain are connected by Uαiα j
bond in

Eq. (1), which is given by

Uαiα j
bond(ri j) =

kαiα j
bond
2

(
ri j −bαiα j

)2
, (3)

Table 1 Model interaction parameters.

Parameter Value

uhh
M , uht

M 100ε

utt
m 200ε

uhh
m , uht

m 0

utt
m −6ε

unah
M 200ε

unah
m −E

unbh
M , unbt

M , unat
M 100ε

unbh
m , unbt

m , unat
m 0

unana
M , unanb

M , unbnb
M 200ε

unana
m , unanb

m , unbnb
m 0

kht
bond, ktt

bond 100ε/r2
m

khtt
bend 100ε

knn
bond 1200ε/r2

m

knc
bond 45ε/r2

m

knnn
bend 250ε

rc 2rm

bht , btt 0.7rm

bcn D/2

where kαiα j
bond is the bond stiffness coefficient, and bαiα j is the pre-

ferred bond length between beads i and j. We note that i and j
also interact with each other through Uαiα j

0 .
Lastly, to account for the semi-flexibility of a lipid chain,

its three beads interact as well through a three-body potential
Uαiα jαk

bend , in Eq. (1), that is given by

Uαiα jαk
bend

(
ri,r j,rk

)
=

kαiα jαk
bend

2

(
cosϕ0 −

ri j · rk j

ri jrk j

)2
, (4)

where khtt
bend is the bending stiffness coefficient, and ϕ0 is the pre-

ferred splay angle of the lipid chain, taken to be 180o.
JNPs are constructed as spherical tessellated shells in order

to reduce their number of degrees while accounting for their
Janusity. This is achieved by constructing a JNP as an icosahe-
dron mesh followed by three subsequent triangulations, resulting
in 642 nodes (beads of type n) and 1280 elementary triangles.47

The nodes are then projected onto a sphere of diameter D, with
the same center as the original icosahedron. Neighbouring beads
of the JNP are connected by harmonic springs with the potential
given by Eq. (3) with a bond stiffness knn

bond and a preferred bond
length bnn. To provide further rigidity to the JNP, the three-body
interaction, given by Eq. (4) with a bending stiffness coefficient
knnn

bend, is added to every connected triplet of beads. The preferred
values of the bond length, bnn, and bond angle, ϕnnn

0 , for a given
JNP depend on the location of the beads on the JNP’s surface and
are determined from the initial configuration of the JNP follow-
ing projection of the thrice-tessellated icosahedron on a sphere.38

Since JNPs are hollow in this model, the two-body and three-body
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interactions are insufficient to provide them with high rigidity un-
less knn

bond and knnn
bend are very high. However, this is not desirable

since it would require very small time steps. This problem is mit-
igated by inserting an additional bead of type c at the center of a
JNP and bonding it to all n beads of the JNP, by the harmonic po-
tential given by Eq. (3), with a bond stiffness kcn

bond and a preferred
bond length bcn = D/2.

A JNP is composed of two types of beads. These correspond
to na-beads, which interact attractively with the h-beads through
Eq. (2), i.e., with unah

u < 0, and nb-beads, which interact repul-
sively with the h-beads, i.e., with unbh

m = 0. Since these JNPs are
not amphiphilic, both na and nb-beads interact repulsively with
the lipid t-beads, i.e., unat

m = unbt
m = 0. This choice of interactions

ensures that only na-beads tend to adhere to the membrane. To
prevent aggregation of the JNPs in the solvent, beads belong-
ing to different JNPs interact with each other repulsively through
Eq. (2), i.e., unana

m = unbnb
m = unanb

m = 0. In the remainder of the ar-
ticle, we will use the term Janusity (J) to define the area fraction
of a JNP that interacts attractively with the lipid head groups, i.e.,
J = d/D, where d is the height of the spherical cap that interacts
attractively with the lipid head beads. Fig. S1 (ESI†) depicts an
equilibrated JNP with J = 0.5.

The interaction parameters used in the present study are shown
in Table 1. The simulations are performed at kBT = 3.0ε. With
these parameters, the bending modulus of the bare bilayer, ex-
tracted from the spectrum of its height fluctuations, κ ≈ 30kBT .46

This value is comparable to that of a DPPC bilayer in the fluid
phase.48 From comparison of the thickness of the present model
bilayer in the fluid phase, which is very close to 4rm, with that of
a typical fluid phospholipid bilayer (≈ 4nm),49 the small length
scale rm ≈ 1nm. In the remainder of the article, all length scales
are then expressed in nanometers.

The interaction between a JNP and the lipid membrane is char-
acterized by the adhesion energy density ξ = |Eadh|/Aadh, where
Eadh is the net interaction energy between the NP and the mem-
brane and Aadh is the area of JNP adhering to the membrane. A
JNP na bead adheres to the membrane if it is within the inter-
action range rc. Aadh is then the total area of the NP times the
fraction of contact beads of the NP. Details of the calculation of
ξ are found in ref.38 and50, and the dependence of ξ with the
interaction parameter E is shown in Fig. S2 (ESI†).

The degree of wrapping of a JNP by the lipid membrane is de-
fined by

W =
1
2
(1− cosθ), (5)

where the wrapping angle θ ∈ [0,π] is calculated as follows:
For each azimuthal angle ϕ ∈ [0,2π), around the z-axis, a lati-
tude angle θmax(ϕ) is determined as the maximum latitude an-
gle of lipid head beads within the interaction range rc from the
NP’s surface (see inset (1) of Fig. 1) . The wrapping angle θ

is then defined as the average of θmax over ϕ. W is shown
as a function of ξ , in Fig. 1, for the case of 20-nm JNPs with
J = 0.5 and 1. This figure shows that in the case of a uniform
NP (J = 1), W increases until complete wrapping and endocyto-
sis at ξ ≈ 1.5kBT/nm2. However, in the case of J = 0.5, W in-
creases rapidly with ξ as long as W ≲ J, which corresponds to

0 2 4 6 80

0.2

0.4

0.6

0.8

1

1
0.5

J

!
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2

Fig. 1 Degree of wrapping W , defined by Eq. (5), versus ξ for different
values of the Janusity J obtained from a simulation of a single 20-nm
JNP on a planar tensionless lipid bilayer. Pink and green data points
correspond to J = 0.5 and 1, respectively. The pink dashed line and
the green solid line are guides to the eye in the case of J = 0.5 and
1, respectively. The red dashed line indicates a value of the degree
of wrapping W = 0.5. Inset (1): Schematic definition of the degree of
wrapping. Inset (2): Configuration of a JNP, with J = 0.5, and the
membrane at ξ = 4.11kBT/nm2.

ξ ≲ 1kBT/nm2. This is followed by a much weaker increase in W
with ξ for 1kBT/nm2 ≲ ξ ≲ 2kBT/nm2. W becomes almost inde-
pendent of ξ at higher values of ξ . The intervals ξ ≲ 1kBT/nm2,
1kBT/nm2 ≲ ξ ≲ 2kBT/nm2 and ξ ≳ 2kBT/nm2 are termed the
regimes of low, intermediate and high values of ξ , respectively.

2.2 Numerical Approach
The simulations are conducted through a hybrid approach, in
which molecular dynamics is used to move the beads and
Metropolis Monte Carlo is used to adjust the simulation box, with
periodic boundary conditions along the three axes. More specif-
ically, we use molecular dynamics with a Langevin thermostat to
move all beads,51

ṙi(t) = vi(t), (6)

mv̇i(t) = −∇iU ({ri})−Γvi(t)+σΞi(t), (7)

where vi is the velocity of bead i and m is its mass (with the same
value for all beads). Γ is a bead’s friction coefficient (also with
the same value for all beads), and σΞi(t) is a random force act-
ing on i originating from the heat bath. Ξi(t) is a random vector
that obeys ⟨Ξi(t)⟩= 0 and its components obey ⟨Ξ(µ)

i (t)Ξ
(ν)
j (t ′)⟩=

δµν δi jδ (t − t ′), where µ and ν = x, y or z. The dissipative and ran-
dom forces are interrelated through the dissipation-fluctuation
theorem, which leads to Γ = σ2/2kBT , where kB is Boltzmann’s
constant and T is temperature. Eqs. (6) and (7) are integrated
using the velocity-Verlet algorithm52 with Γ =

√
6m/τ and a time

step ∆t = 0.02τ, where τ = rm(m/ε)1/2.
The simulations are performed in the NV T γ ensemble, where
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Fig. 2 Phase diagram of the JNPs arrangement on a tensionless planar membrane, showing the monomeric disordered phase (open blue triangles),
monomeric hexagonal phase (solid blue triangles), in-plane chains phase (solid pink circles), tubes phase (orange triangles), and endocytosis phase
(green diamonds). Snapshots (a) to (e) correspond to (ρ(×10−4 nm−2), ξ (kBT/nm2)) = (4.66, 0.425), (3.576, 0.748), (4.66, 0.748), (5.13, 4.818), and
(4.66, 4.818), respectively.

γ is the surface tension, set to 0 since we focus on tensionless
membranes in this work . N is the total number of beads in the
system, and V = LxLyLz is the system’s volume. The lipid mem-
brane is overall parallel to the xy-plane. The Metropolis Monte
Carlo scheme is used to adjust the system size along the xy-plane.
Namely, for every 8 time steps, new values of the linear system
sizes L′

x = Lx +Λx and L′
y = Ly +Λy are attempted, where Λx and

Λy are small random perturbations in the interval (−0.1rm, 0.1rm).
Attempted new coordinates of all beads correspond then to x′i =

xi

(
L′

x
Lx

)
, y′i = yi

(
L′

y
Ly

)
and z′i = zi

(
LxLy
L′

xL′
y

)
. The attempt is then ac-

cepted or rejected through the Metropolis rejection criterion with
the effective Hamiltonian H = Unet ({ri})+ γLxLy, where Unet is
the net potential energy of the system. The simulations are per-
formed on tensionless membranes, γ = 0. In all simulations, if
not specified, the number of lipid chains in the system is 199172.
This corresponds to a linear size of the bare tensionless bilayer
about L(0)

x = 253.6 nm. The JNPs diameter D = 20 nm, and their
Janusity J = 0.5. The number of JNPs, n, is varied between 10
and 38. In the simulations, the JNPs are initially placed slightly
above the equilibrated lipid membrane at random positions. The
JNPs quickly adhere to the planar membrane. The system is typ-
ically equilibrated over a large number of steps (typically around
1.5 × 106 τ), and the results are collected once equilibrium is
reached over a time scale ranging between 2×106 and 2×107 τ.

3 Results

3.1 Phase Diagram

An extensive set of simulations was performed, using the model
and approach in Section 2, to determine the adhesion modes of
many spherical JNPs on a tensionless lipid membrane. Fig. 2 de-
picts the obtained phase diagram in terms of the adhesion energy
density, ξ , and the JNPs areal number density, ρ = n/A , where
n is the number of JNPs adhering to the membrane, and A is
the projected area of the bare tensionless membrane. This figure
demonstrates several adhesion modes. Namely, at low values of
ξ or low values of ρ, the JNPs are dispersed into a monomeric
disordered phase. Snapshot (a) in Fig. 2 depicts an example of
this structure. At low values of ξ and intermediate values of ρ,
the JNPs self-assemble into in-plane linear chains, with an exam-
ple shown by snapshot (b) in Fig. 2. This phase is the result of
the increased degree of wrapping of the JNPs with ξ , as shown in
Fig. 1, and by their increased crowding with ρ. Further increased
crowding, as ρ is further increased at low values of ξ , leads to the
self-assembly of a fraction of the JNPs into out-of-plane chains co-
existing with in-plane chains, as shown by snapshot (c) in Fig. 2.

At high values of ρ and intermediate to high values of ξ , the
increased degree of wrapping of the JNPs by the membrane and
increased crowding leads to their aggregation into compact clus-
ters and their endocytosis, as shown by snapshot (d) in Fig. 2.

The absence of aggregation at low values of ρ, regardless of
ξ , is inferred from free energy calculations using the weighted
histogram analysis method (WHAM), in conjunction with many
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umbrella sampling simulations of two JNPs with the following
bias potential,53

U (d)
bias(R12) =

k(d)bias
2

(R12 −dbias)
2, (8)

where R12 = |R2 − R1|, with R1 and R2 being the coordinates
of the center beads of JNPs 1 and 2, respectively. k(d)bias is var-
ied between 3.33 and 33.3kBT . The reaction coordinate, d, is
the distance between the JNPs’ centers, and dbias is the preferred
distance between them. The step in dbias is chosen to be small
enough to ensure an appreciable amount of overlap between con-
secutive umbrella sampling histograms of the distance between
the JNPs centers d. We note that the orientations of the JNPs in
the umbrella sampling simulations are not constrained. Fig. 3(A)
shows that this free energy decreases monotonically with d, which
implies that in the dilute regime, the membrane induces a re-
pulsive interaction between the JNPs, regardless of the adhesion
energy density. Furthermore, Fig. 3(A) shows that the effective
interaction between two JNPs becomes increasingly more repul-
sive with increasing ξ . It is interesting to note that a closer look
at the free energy at low values of ξ shows the existence of a
small local minimum at d ≈ DNP + 1 nm, as demonstrated by the
inset of Fig. 3(A). However, the free energy of the dimerized state
is higher than that of the undimerized states. Furthermore, the
energy barrier from the dimeric state to the monomeric state at
low values of ξ is only a few kBT s. Therefore, the dimeric state at
low values of ξ can only be transient.

To confirm the free energy calculations discussed above, we
calculated the fraction of time, χd , during which at least a sin-
gle pair of JNPs form a dimer. In other words, χd is the frac-
tion of snapshots in which at least one dimer exists. Fig. 3(B),
which depicts χd versus ξ at a low density corresponding to
ρ = 2.33× 10−4nm−2, demonstrates that the JNPs dimerize only
at low values of ξ . The fraction of time of dimerization is, how-
ever, zero at ξ ≳ 1kBT/nm2. This finding nicely confirms the free
energy shown in Fig. 3(A). The inset of Fig. 3(B) shows that the
rate of dimerization increases with the JNPs’ density at low val-
ues of ξ , although most of the JNPs remain non-dimerized. How-
ever, at high adhesion energy density, the JNPs do not dimerize.
This implies that, at high adhesion energy density, the membrane-
mediated repulsion between JNPs is strong enough to prevent
their clustering, even at intermediate densities. As the density
is further increased, increased crowding of the JNPs eventually
leads to their clustering and their endocytosis.

It is interesting to note that both the free energy and χd ,
shown in Fig. 3, indicate that the metastable dimeric state oc-
curs in the regime where the degree of wrapping of a JNP is
dominated by ξ , as demonstrated by Fig. 1. Within the regime
where the Janusity dominates the degree of wrapping, the effec-
tive membrane-curvature mediated interaction between the JNPs
is entirely repulsive.

Since dimers are mostly unstable at low densities, the presence
of chains and tube phases at higher densities (ρ ≳ 2.5×10−4 nm−2

must be due to many-body effects. To infer that JNPs form chains
at intermediate values of ξ (pink symbols) rather than more com-
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Fig. 3 (A) Free energy versus distance between two JNPs for different
values of adhesion energy density. The horizontal dashed line corresponds
to a free energy equal to 0. Insert: Zoom-in of the free energy for
ξ = 0.75kBT/nm2. (B) Fraction of time, χd , during which there is at
least a single dimer in the system, versus adhesion energy density at
a low density corresponding to ρ = 2.33× 10−4 nm−2. (Inset) χd versus
density at a low and high value of the adhesion energy density. Note that
at high values of the adhesion energy density, the JNPs do not dimerize
at these densities.

pact clusters, we performed WHAM calculations of a chain of
three JNPs with indexes 1, 2, and 3. The center beads of JNPs
1 and 2 are connected by a stiff harmonic spring with a spring
constant equal to 333.3kBT to keep the distance between con-
nected JNPs about DNP + 1 nm. The centers of JNPs 2 and 3 are
similarly linked. These artificial spring bonds are necessary since
the simulations are performed on three JNPs only adhering to a
large membrane, that is, at a low value of ρ, and as we have seen
earlier, the JNPs do not cluster at such low densities. This WHAM
calculation is based on the following bias potential,

U (a)
bias (r1,r2,r3) =

k(a)bias
2

(cosθ − cosθ0)
2 , (9)

where k(a)bias = 333.3 or 500kBT , and the reaction coordinate, θ =

cos−1 (R12 ·R32/R12R32), is the bond angle of the three JNPs. θ0 is
the preferred bond angle, and is varied between π/3, which corre-
sponds to a tight equilateral aggregate and π , which corresponds
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Fig. 4 Free energy versus the bond angle of three JNPs, which are
linked by harmonic springs, as explained in the text. The bond angle is
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energy equal to 0. (a), (b), and (c) are top view snapshots of the trimers
obtained from the biased simulations, with a preferred bond angle equal
to π/3, π/2 and almost π, respectively. (d) is a side view snapshot
corresponding to (c).

to a linear aggregate. We note that the orientation of the JNP,
as opposed to the orientation of the springs connecting them, is
not fixed, and can vary due to the membrane fluctuations in each
bias simulation. Therefore, we only focus on the bond angle of
three NPs at this moment. Fig. 4 shows that this free energy is
minimized at θ ≈ π. This implies that when three JNPs aggregate
at intermediate densities, they prefer to form a chain rather than
a compact equilateral triangle. The fact that the self-assembly of
the JNPs into linear aggregates does not occur at low densities
underscores the non-additive nature of the effective membrane-
induced interaction between JNPs. This is not surprising since
membrane deformations, induced by adhering JNPs, extend over
length scales larger than the size of a JNP. As a result, the de-
formation of the membrane caused by a pair of JNPs leads to an
effective interaction with a third JNP that is not merely the sum
of the effective interactions due to individual JNPs of the pair.

For ρ ≳ 4.4× 10−4 nm−2 and ξ ≈ 0.75kBT/nm2, the JNPs self-
assemble into tubules consisting of three linear chains apposed
to each other, as shown by snapshot (c) in Fig. 2. These tubular
chains occur at relatively high densities, as a result of crowding
of the linear chains and their merger, as shown by Movie 1, tubu-
lar chains form as a result of merger of three linear chains. We
note that the structure of these tubules differs from that of spher-
ical NPs with uniform surfaces, which can form tubules with two
apposed chains.54 This is because tubes of two apposed chains
require a relatively large degree of wrapping in the transverse di-
rection compared to the case of three apposed chains. Since the
NPs in the current study are Janus, transverse wrapping becomes
limited by the Janusity. As such, a configuration of three apposed
chains becomes more favorable.
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Fig. 5 (A) Top and side views of equilibrium configurations of the mem-
brane with adhering JNPs for four density values at ξ = 4.11kBT/nm2.
(a) to (d) correspond to ρ = 2.33× 10−4, 3.11× 10−4, 3.58× 10−4 and
4.66× 10−4 nm−2, respectively. (B) The RDF, g(r), of the JNPs cen-
ters of mass at ξ = 4.11kBT/nm2 and densities corresponding to snap-
shots (a)-(d) in (A). The dashed black line corresponds to the RDF at
ρ = 4.66× 10−4 nm−2 and ξ = 0.43kBT/nm2, and demonstrates the very
disordered structure of the JNPs at low adhesion energy density. (Inset)
Centers beads of the JNPs connected to their nearest neighbors, using
the Delaunay triangulation at ρ = 4.66×10−4 nm−2 and ξ = 4.11kBT/nm2.
(C) The distance between nearest neighbor JNPs (position of the first
peak of the RDF) versus density. The solid line is a fit with the equation
r1 = α

√
1/ρ −a, where α and a are positive constants.
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Fig. 6 (Top panel) Top and side views of equilibrium configurations of the
membrane with uniform NPs for three density values at ξ = 0.43kBT/nm2.
The area of the bare membrane is 16040nm2 for the three snapshots.
The radial distribution function of the uniform NPs’ centers of mass at
different values of ρ at ξ = 0.43kBT/nm2.

3.2 Hexagonal Ordering of the Janus Nanoparticles

An exciting feature of the phase diagram in Fig. 2, is the pres-
ence of an ordered phase (solid blue triangles), in which the JNPs
form a hexagonal lattice, with an example snapshot shown in
Fig. 2(e). This phase occurs at intermediate values of the density
and over a wide range of values of the adhesion energy density
at which the degree of wrapping of each JNP is controlled by the
Janusity, as shown in Fig. 1. The emergence of the hexagonal
phase with increasing density is demonstrated by snapshots (a-c)
in Fig. 5. The radial distribution function (RDF), g(r), of the JNPs
centers of mass, at ξ = 4.11kBT/nm2 and ρ = 4.66× 10−4 nm−2,
exhibits three well-defined peaks, with the ratio between the po-
sitions of the second and first peaks, r2/r1 = 1.74, and that be-
tween the third and first peaks, r3/r1 = 2.02, are very close to
those of an ideal hexagonal lattice, corresponding respectively
to

√
3 and 2. In contrast, the RDFs at lower densities, namely

at ρ = 2.33 × 10−4 nm−2 and ρ = 3.11 × 10−4 nm−2, shown in
Fig. 5(B), exhibit broader peaks in line with the disordered na-
ture of these structures. Fig. S3 (ESI†) indicates that the depen-
dence of the RDF of the hexagonal structure at a given density is
weak. This is simply because, at high ξ , the degree of wrapping
is determined mainly by the Janusity.

Since the JNPs are dispersed over the whole membrane, due to
the effective repulsive interaction between them, the average dis-
tance between nearest neighbor JNPs, i.e., the position of the first
peak of the RDF, is given by r1 = α

√
A0/n. Here, A0 is the mem-

brane’s projected area, and α is some dimensionless positive pro-

portionality constant. Since the degree of wrapping of the JNPs
at high adhesion energy density is determined by their Janusity,
A0 = A − na, where A is the projected area of the bare mem-
brane, and a is the loss in projected area per JNP due to wrapping.
a should be independent or weakly dependent on the JNP density.
Therefore, the length scale r1 = α

√
1/ρ −a. Fig. 5(C) shows that

this relation fits well the value of r1 found in the simulations,
regardless whether the JNPs are in the disordered or hexagonal
phase. Therefore, due to the effective membrane-mediated re-
pulsion between the JNPs, the lattice constant of the hexagonal
phase is determined by their number density.

Hexagonal self-assembly of the JNPs occurs at 3.55 ×
10−4 nm−2 ≲ ρ ≲ 5 × 10−4 nm−2 and ξ ≳ 2kBT/nm2. For ρ ≳
5 × 10−4 nm−2, the membrane cannot accommodate all JNPs,
which adhere to it into a hexagonal superlattice since this lattice
would have a small lattice constant. Therefore, the membrane
must be highly curved in the interstitial regions. The resulting
excess curvature energy is relieved by the aggregation of a frac-
tion of the JNPs into small clusters, including trimers, tetramers,
etc., and their endocytosis. This reduces the lateral density of the
remaining non-endocytosed JNPs on the membrane, which are
self assembled into a hexagonal lattice, as shown by an example
snapshot in Fig S4 (ESI†).

We emphasize that earlier molecular dynamics simulations of
spherical NPs with uniform surfaces adhering to planar lipid
membranes32,54 showed that the NPs can self-assemble into lin-
ear chains. Two-dimensional self-assembly of uniform NPs into
hexagonal lattices was observed by Šarić and Cacciuto.29 How-
ever, in their study, membranes are modeled as dynamically tri-
angulated surfaces with conserved topology, and the hexagonal
lattices are observed either at high adhesion energy density, at
which the NPs would endocytose, or at values of the bending
modulus that are much higher than that of a typical lipid mem-
brane in the fluid phase. Furthermore, their free energy calcula-
tions show that the NPs’ linear assembly is more stable than the
hexagonal self-assembly.29 Hexagonal self-assembly of uniform
spherical NPs was not observed in molecular dynamics simula-
tions, where endocytosis is allowed32,54

Hexagonal self-assembly of uniform spherical NPs is possible at
high densities and low values of the adhesion energy density, at
which the NPs are weakly wrapped, as shown by snapshot (c) in
Fig. 6 at ρ = 2.24× 10−3 nm−2 and its corresponding RDF in the
same figure. However, this self-assembly results from the NPs’
crowding, as demonstrated by the fact that the RDF’s first peak
is at r1 ≈ D+1 nm and is akin to the hexagonal ordering of hard
disks. Furthermore, the large overlap between the second and
third peaks of the RDF at high densities implies that the hexag-
onal lattice, in this case, is not as ordered as that of the Janus
NPs (Fig. 5). Fig. 6 shows that the hexagonal order is lost with
decreasing density. The Janus character of JNPs is, therefore, a
necessary ingredient for their self-assembly into hexagonal super-
lattices.

To further characterize the nature of the phase transition from
the disordered monomeric phase to the hexagonal phase, we cal-
culated the six-fold bond-orientational order parameter, defined
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Fig. 7 Six-fold bond-orientational order parameter, ψ6, defined in
Eq. (10), as a function of the density of the JNPs at different values
of ξ .

as

ψ6 =
1
n

n

∑
j=1

⟨|φ6 j|⟩, (10)

where the brackets indicate an ensemble average, and

φ6 j =
1
n j

n j

∑
k=1

e6iθ jk (11)

is the local bond-orientational order parameter. In Eq. (11), the
sum is over all the n j nearest neighbors of JNP j, obtained from
the 2D Delaunay triangulation based on the JNPs’ center beads.
θ jk is the angle between an arbitrary reference axis on the xy-
plane and the vector R jk connecting the center bead of JNP j
with that of its kth nearest neighbor. Fig. 7 shows that ψ6 is low
for all density values at ξ = 0.43kBT/nm2. This is expected since
for low values of the adhesion energy density, the JNPs are in the
disordered state, as shown by the phase diagram in Fig. 2. In
contrast, ψ6 increases monotonically with ρ for ξ ≳ 1.5kBT/nm2,
and is close to 1 at high densities, which is indicative of the JNPs
being crystallized into a hexagonal superlattice. It is interesting
to note that the dependence of ψ6 on ξ , at intermediate to high
values of ξ , is weak. As stated earlier, this is because in this range
of values of ξ , the Janusity dominates the degree of wrapping.

Since the JNPs adhering to a planar lipid membrane form a
quasi-2D monolayer, one expects that their phase transition from
the hexagonal phase to the disordered phase, with decreasing
density, proceeds through a two-stage melting scenario via two
continuous transitions, with an intermediate phase known as
the hexatic phase, in line with the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory.41–44 The crystalline phase should
exhibit long-range bond-orientational order but only quasi-long-
range translational order, in line with the Mermin-Wagner the-
orem.55,56 The quasi-long-range translational order of the crys-
talline phase is due to thermally induced dislocation defects,
which are bound in pairs. The first step of melting proceeds
through the dissociation of these dislocation pairs resulting in
an intermediate phase, known as the hexatic phase that retains

quasi-long-range bond-orientational order but lacks long-range
translational order. The hexatic phase is characterized by the
presence of bound disclination pairs. With a decrease in the den-
sity, these disclination pairs unbind, leading to the transition of
the hexatic phase into the disordered (isotropic) phase, which
lacks both translational and bond-orientational order. The na-
ture of the melting transition of the JNPs system can, therefore,
be inferred from either the long wavelength decay of the transla-
tional or the bond-orientational correlation functions. However,
an unambiguous characterization of the long-wavelength decay
of these correlation functions would require simulations of very
large membranes with a large number of adhering JNPs, which is
not achievable with current computational resources. Instead, we
quantified the melting behavior of the JNPs’ hexagonal phase with
decreasing density through two quantities corresponding to the
dynamical 2D Lindemann parameter and the bond-orientational
autocorrelation function.

The 2D dynamical Lindemann parameter, which is a measure
of the relative neighbor-neighbor displacement, introduced by Be-
danov and Gadiyak57 and later modified by Zahn et al.,58 is de-
fined as

γL(t) =
1

2r2
1
⟨[∆Rrel(t)]

2⟩

=
1

2r2
1

〈
1

∑
n
j=1 n j(t0)

n

∑
j=1

n j(0)

∑
k=1

[
R jk(t + t0)−R jk(t0)

]2
〉
, (12)

where j and k are nearest neighbor JNPs at time t0, as deter-
mined from the 2D Delaunay triangulation at t0, and R jk(t) =
R j(t)−Rk(t), where R j(t) and Rk(t) are the coordinates of the
center beads of JNPs j and k, respectively, at time t. In the crys-
talline phase, γL(t) converges asymptotically to a constant value
since particles are bound in this phase. In the liquid phase, how-
ever, the positions of initially neighboring particles become uncor-
related at late times, leading to a divergence of γL. At the melting
point, γL(t) approaches a critical value γc

L ≈ 0.03358. Fig. 8(A) de-
picts γL(t) of the JNPs for different values of the density ρ. This
figure shows that for low values of ρ, γL diverges, indicating a
disordered liquid phase. However, at ρ ≳ 3.5×10−4 nm−2, γL con-
verges to a constant that increases with ρ but is smaller than γc

L.
This indicates that the melting of the JNPs’ hexagonal crystal must
happen at some density 3.11×10−4 nm−2 < ρ∗ < 3.58×10−4 nm−2.

While the dynamical Lindemann criterion, discussed above, is
used to determine the melting transition of the hexagonal crystal,
it cannot be used to determine the transition from the hexatic
phase to the liquid phase. This transition is inferred from the
bond-orientational autocorrelation function, defined as,

g6(t) =
1
n

n

∑
j=1

⟨φ∗
6 j(t + t0) ·φ6 j(t0)⟩, (13)

where φ6 j was defined in Eq. (11). Fig. 8(B) shows g6(t) in
a double logarithmic plot for different density values at ξ =

4.11kBT/nm2. This figure shows that g6(t) exhibits three distinct
regimes. At low densities (ρ ≲ 2.0×10−4 nm−2), g6 decays expo-
nentially. This implies that the JNPs are in a disordered (liquid)
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Fig. 8 (A) The dynamic Lindemann parameter for different density val-
ues versus time. (B) The bond-orientational autocorrelation function for
different density values. The slope of the dashed black line in (B) corre-
sponds to the transition from the hexatic to the liquid phase, as predicted
by KTHNY theory.

state at low densities. In contrast, g6 converges to a constant
value at ρ ≳ 3.5×10−4 nm−2, which indicates that the JNPs are in
the crystalline hexagonal phase at high densities. This range of
densities over which the JNPs are self-assembled into a hexagonal
lattice agrees with that obtained from the Lindemann parameter,
shown in Fig. 8(A). Interestingly, Fig. 8(B) shows a regime, at in-
termediate densities, e.g., ρ = 2.33×10−4 nm−2, in which g6 seems
to decay algebraically, i.e., g6(t) ∼ t−ηr . This hints at the exis-
tence of a phase that exhibits quasi-long-range bond-orientational
order, i.e., the hexatic phase. KTHNY theory predicts that the
spatial bond-orientational correlation function decays exponen-
tially, g6(r) ∼ t−η6,r , with ηr where η6,r = 2η6,t .43,59 Further-
more, KTHNY’s theory predicts that the exponent η6,r = 1/4 at
the hexatic-liquid transition, and this exponent decreases to zero
within the hexatic phase as the hexatic-crystal transition is ap-
proached. Fig. 8(B) shows that at ρ = 2.33×10−4 nm−2, the expo-
nent of the algebraic decay of η6,t ≈ 1/8, which in fair agreement
with KTHNY theory. This indicates that the hexatic-isotropic tran-
sition probably occurs at ρ ≈ 2.3×10−4 nm−2, although more sim-
ulations would be needed to determine the density corresponding
to this transition accurately. Nevertheless, our aim is to demon-

strate that the JNPs exhibit a hexatic phase at intermediate den-
sities. It is noted that the calculations of both Lindemann pa-
rameter and bond-orientational autocorrelation functions require
very long, computationally expensive simulations. As a result, the
data shown in Fig. 8(A) and (B) do seem to deviate from their
expected behavior at large t values (t ≳ 4000τ). This is attributed
to poor statistics.

4 Conclusions
Using molecular dynamics simulations of a coarse-grained
implicit-solvent model, we showed that Janus nanoparticles ex-
hibit a range of phases on planar lipid membranes. These corre-
spond to a disordered phase, in which the JNPs are apart at low
values of the adhesion energy density, ξ , or number density, ρ.
At low values of ξ , the JNPs self-assemble into linear chains at
intermediate ρ, then into tubular chains at higher values of ρ. At
high values of ρ and intermediate to high values of ξ , a fraction
of the JNPs are endocytosed. The most striking structure exhib-
ited by the JNPs on lipid membranes is an ordered self-assembled
hexagonal lattice at intermediate values of ρ and intermediate
and high values of ξ . This phase occurs when a JNP’s degree of
wrapping becomes mainly controlled by its Janusity. The lattice
constant of the hexagonal phase is determined by the JNPs’ num-
ber density on the membrane. The nature of the melting behav-
ior of the hexagonal lattice, with decreasing density, is inferred
from several quantities, including the 2D Lindemann parameter
and the bond-orientational autocorrelation function. Owing to
the quasi-2D nature of the system, we found that the hexagonal
lattice melts through a two-stage scenario with decreasing ρ, in
agreement with the KTHNY theory of 2D melting. Namely, the
hexagonal lattice first melts into a hexatic phase, characterized
by a power-law decay with time of the autocorrelation function.
With a further decrease of the density, the hexatic phase melts
into the disordered liquid phase, which is characterized by an ex-
ponential decay of the autocorrelation function.

The emergence of the ordered hexagonal lattice of the JNPs
on the membrane, with a lattice constant that is determined by
their density, is due to a repulsive interaction between the JNPs
that is mediated by the curvature of the membrane, as shown by
the free energy calculation using the weighted histogram analy-
sis method. This hexagonal lattice is simply the asymptotic limit
of the highly ordered nanoassemblies of Janus NPs on lipid vesi-
cles, recently observed by us.40 There, we found that the JNPs
self-assemble into highly ordered polyhedra on vesicles, includ-
ing three Platonic solids, with geometries that satisfy the upper
limit of Euler’s polyhedral formula.

We note that the present study is focused on JNPs with one spe-
cific diameter, corresponding to 20 nm, and one specific Janusity,
corresponding to 0.5. The effect of the diameter should be rel-
atively minimal, except that the adhesion strength values in the
phase diagram of Fig. 2 will be shifted to lower values with in-
creasing diameter38,40. The Janusity is also expected to affect the
phase diagram. Namely, we expect the transition density from the
liquid to the hexagonal phase to increase with the Janusity. We
plan to investigate these effects systematically in the future. The
collective behavior of the JNPs at intermediate values of the adhe-
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sion strength, namely the aggregation of the JNPs into linear in-
plane or tubular chains, remains intriguing and begs for further
investigation. This behavior is outside the scope of the present
study. Due to the relatively large size of the JNPs (diameter of
20 nm) in the current study, simulations of membranes with a
large number of JNPs would require a substantial computational
effort beyond our capabilities. However, we believe that our re-
sults will remain valid for large systems. Future larger-scale sim-
ulations are warranted to validate the observed hexagonal order
of the JNPs and the presence of a hexatic phase at intermediate
densities.

The self-assembly of these JNPs on planar membranes is fun-
damentally different from that of uniform spherical NPs, which
do not exhibit hexagonal order,54 except at high values of ρ and
low values of ξ . This structure is however the result of crowding
of the NPs on the membrane. In the case of NPs with uniform
surfaces, decreasing their density on the membrane leads to the
melting of the hexagonal lattice.

To our knowledge, experimental studies investigating the ad-
hesion of hydrophilic JNPs to lipid membranes have yet to be
conducted. Such studies would be instrumental in validating our
computational results. The results of the present study, in combi-
nation with those in Ref.40 are very exciting and open up a door
for the potential use of planar lipid membranes and lipid vesicles
as a medium for bottom-up nanofabrication of ordered structures.
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28 A. Šarić and A. Cacciuto, Phys. Rev. Lett., 2012, 109, 188101.
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