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We use numerical simulations and linear stability analysis to study the dynamics of an active liquid
crystal film on a substrate in the regime where the passive system would be isotropic. Extensile
activity builds up local orientational order and destabilizes the quiescent isotropic state above a
critical activity value, eventually resulting in spatiotemporal chaotic dynamics akin to the one
observed ubiquitously in the nematic state. Here we show that tuning substrate friction yields
a variety of emergent structures at intermediate activity, including lattices of flow vortices with
associated regular arrangements of topological defects and a new state where flow vortices trap
pairs of +1/2 defect that chase each other tail. These chiral units spontaneously pick the sense of
rotation and organize in a hexagonal lattice, surrounded by a diffuse flow of opposite rotation to
maintain zero net vorticity. The length scale of these emergent structures is set by the screening
length lη =

√
η/Γ of the flow, controlled by the shear viscosity η and the substrate friction Γ, and

can be captured by simple mode selection of the vortical flows. We demonstrate that the emergence
of coherent structures can be interpreted as a phase separation of vorticity, where friction plays a
role akin to that of birth/death processes in breaking conservation of the phase separating species
and selecting a characteristic scale for the patterns. Our work shows that friction provides an
experimentally accessible tuning parameter for designing controlled active flows.

I. INTRODUCTION

The unique way in which active liquid crystals trans-
form energy into directed motion is responsible for a
number of phenomena not present in equilibrium, such
as self-sustained laminar flows [1, 2] and spatio-temporal
chaotic flows known as active turbulence [3].

Active turbulence is observed in a variety of systems,
from liquid crystalline fluids reconstituted from cell ex-
tracts to epithelial monolayers. It has been quantified
in active liquid crystals of cytoskeletal microtubule bun-
dles cross-linked by kinesin, a motor protein that con-
sumes ATP as it moves along the bundles, creating ex-
tensile stresses on the flow in which they are submerged
[4–8]. Active liquid crystals have been studied exten-
sively through continuum theories, and there is now a
large body of analytical and numerical work character-
izing their stability, dynamical regimes and interactions
with other immiscible species [9–16].

Controlling this chaotic spontaneous flow to create co-
herent structures holds the promise of engineering active
fluids for microfluidic applications and functional materi-
als capable of delivering directed mechanical forces [17].
Active liquid crystals have become promising candidates
for these applications [6, 8], as physical confinement,
substrate friction and substrate patterning allow control
of chaotic flow and development of coherent structures.
These effects have been mainly examined so far in regimes
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of parameters corresponding to the ordered nematic state
of the passive liquid crystal [18–24].

In this work, we examine numerically the effect of sub-
strate friction on two-dimensional active nematic liquid
crystals in a regime of parameters where the fluid is
isotropic when passive and we reveal the emergence of
new coherent structures. These include previously ob-
served [18, 25, 26] lattices of flow vortices with an associ-
ated regular arrangement of half integer disclinations and
a novel state where flow vortices trap pairs of +1/2 de-
fects forcing them to rotate and chase each other’s tail.
This state breaks the symmetry between positive and
negative vorticity, as the +1/2 pairs are all trapped in
vortices of the same sign and coherently rotate in the
same direction. The requirement of zero net vorticity
is mantained by diffuse counterrottaing flows that per-
meate the interstitial region between localized vortices.
Similar configurations of +1/2 pairs chasing each other’s
tails have been observed in active nematic trapped in
small circular wells [13], where the required net topo-
logical charge is +1, or in system with anisotropic and
spatially varying friction [27, 28]. Here, in contrast, both
the vortex lattice and the the coherent chiral motion of
defect pairs emerge spontaneously in unconfined bulk flu-
ids. These structures arise in a narrow range of activity
from the interplay between the tendency of the unbound
system to destabilize on length scales ∼ |α|−1/2, (where
α is the scale of the active stress, and the stabilizing
effect of substrate friction Γ that screens flows on scales
of the order of the viscous length lη =

√
Γ/η, with η the

shear viscosity. This length controls the size of the flow
structures in this intermediate activity regime. The nu-
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merical work is complemented by linear stability analysis
that identifies the length scales of the emergent struc-
tures, in excellent agreement with numerics. Finally, we
show that a simple ansatz for the lattice-like structure of
flow vortices naturally reproduces the associated defec-
tive nematic texture, demonstrating that the established
connection between flow and defect structures in these
active liquid crystals holds in the regime where the pas-
sive system is isotropic.

One can draw a suggestive parallel between the emer-
gence of coherent structures observed here and motility
induced phase phase separation (MIPS) in the absence
of number conservation [29]. In MIPS a conserved den-
sity of Active Brownian Particles spontaneously under-
goes bulk phase separation into a dense liquid and an
active gas [30–33]. Breaking mass conservation arrests
phase separation and stabilizes low wavelength modes,
yielding regular arrays of dense droplets or rings with a
characteristic steady state length scale [29]. Similarly,
our system can be thought of as undergoing phase sep-
aration into regions with opposite sign of vorticity. In
absence of substrate friction, when momentum is con-
served, vortical phase separation spans the entire system
and the scale of the vortical flows is set by the system
size, as shown in Fig. 1(b). Substrate friction breaks
momentum conservation and screens flows on scales lη,
effectively arresting vortical phase separation. The result
are ordered micro phase-separated states with rectangu-
lar and distorted hexagonal lattices of flow vortices, in
which pairs of +1/2 defects chase each other, as hinted
previously with effective theories of active flows [34].

In the remainder of this paper, we first introduce the
model we use to get all of our results, following previ-
ous continuum theories of active liquid crystals [2]. We
then show that a linear stability analysis properly cap-
tures the behaviour of the system as the isotropic state
becomes unstable due to active flows. We show that the
length scales predicted by this analysis for the emerging
structures are in excellent agreement with the length-
scales we observe numerically. Finally, we will show that
the lattice structures for the vorticity can be captured
following previous work on nonequilibrium hydrodynam-
ics, by which we can construct stream profiles that are
static solutions to the linear Stokes’ flow, and properly
reproduce the observed vorticity profiles, as well as the
texture of the liquid crystal in said lattice states.

II. HYDRODYNAMIC MODEL

We consider a familiar model for a two-dimensional
active liquid crystal on a substrate. The state of the sys-
tem is described in terms of the velocity field, v, and
the nematic tensor, Q ≡ S(nn − I/2). Here, the direc-
tor n is a unit vector identifying the direction of order
and S is the nematic order parameter, with I the iden-
tity tensor. The dynamics is governed by the following
equations, used before to describe active liquid crystals

with substrate friction [24]

DtQ =λD+Q · ω − ω ·Q+ γ−1H, (1a)

ρDtv =η∇2v −∇P − Γv +∇ · σ, (1b)

where Dt = ∂t + v · ∇ is the material derivative. The
first term on the right hand side of Eq. (1a) tends to
align the nematic director with the local strain rate D =
(∇v + ∇vT )/2, with λ the flow alignment parameter.
The second and third terms capture co-rotation of the
director with the local vorticity ω = (∇v−∇vT )/2. The
last term describes relaxation to minimize the Landau-de
Gennes free energy,

FLdG =

∫
r

a

2
Tr(Q2) +

b

4
Tr(Q2)2 +

K

2
(∂iQjk)

2, (2)

with H = −δFLdG/δQ and γ a rotational viscosity. The
free energy captures an order-disorder transition upon
tuning the parameter a, with b > 0. For a > 0 the
ground state is an isotropic fluid with S = 0. For a < 0
the equilibriumn state is nematic with S =

√
−2a/b. Fi-

nally, K is a stiffness constant that characterizes nematic
elasticity, assumed for simplicity to be isotropic.
The velocity is governed by the Navier-Stokes equa-

tion, Eq. (1b), with viscosity η, density ρ and the con-
dition of incompressibility ∇ · v = 0 that determines the
pressure P . The third term on the right hand side of
Eq. (1b) is the frictional force from the substrate, with
Γ a friction per unit area. Finally, the liquid crystalline
degrees of freedom create a stress σ = σe + σa on the
flow that includes the elastic stress

σe = −λH+ (Q ·H−H ·Q) , (3)

and the active stress σa = αQ that describes the effect
of active force dipoles on the fluid. Here we consider the
case of extensile active stresses, corresponding to α < 0,
as appropriate for instance for microtubule-kinesin sus-
pensions.
We focus below on the case a > 0, which corresponds

to the situation where the passive liquid crystal is in the
isotropic state. We rescale lengths with the nematic cor-
relation length ℓc =

√
K/a, times with the nematic corre-

lation time τc = γ/a, and stress with the typical nematic
relaxational stress a. Unless otherwise specified, all nu-
merical results are presented in dimensionless units. We
use the following values of parameters: ρ = 0.04, η = 1,
λ = 0.7, b = 1000, and vary α, and Γ. We have ob-
served that the coherent structures described below occur
in the isotropic regime of the passive liquid crystal and
are most easily observed close to the critical point related
to the isotropic/nematic transition, i.e. a = 0. This can
also achieved by setting b ∼ O(1) and choosing a small
positive value of a. Choosing b ≫ a overdamps the ac-
tive liquid crystal, but does not increase the correlation
length lc, which should diverge at the critical point. To
observe the coherent structures reported here, lc must re-
main smaller than the screening length lη, which sets the
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length scale of the structures themselves. We have ob-
served that the interval of activities in which we observe
these coherent structures becomes wider if the system is
placed closer to the critical point by increasing lc (for in-
stance by increasing K) without making it greater than
lη. The structures can, however, also be observed away
from the critical point.

We have integrated numerically Eqs. (1a) and (1b) in
a periodic square box of size L× L. The default system
size is L = 64, but we have also investigated other values
of L. Finite difference is used to discretize the system
on a uniform square grid with a grid size of 0.5. To
integrate in time, we use the Runge–Kutta–Chebyshev
scheme, which provides enhanced numerical stability and
allows for a large time step ∆t = 0.1. All simulations are
initialized with zero velocity and a nearly zero nematic
tensor with a small random perturbation.

III. SPATIO-TEMPORAL PATTERNS
INDUCED BY ACTIVITY: NUMERICAL

RESULTS

The variety of spatiotemporal structures obtained
upon varying activity and substrate friction is shown in
Fig. 1. At low activity (not shown in the figure), the sys-
tem is homogeneous with no flow and zero nematic order
(S = 0). Increasing activity destabilizes the isotropic
state and drives local nematic order that eventually or-
ganizes in a variety of coherent structures. Some of these
structures, specifically the rectangular lattices in the sec-
ond column of figure 1, have been observed before in ac-
tive liquid crystals coupled to phase separating fields [18].
We show here that these regular lattices of flow vortices
and nematic texture are also found without coupling to
additional fields, but rather emerge spontaneously from
the interplay of active stresses and flow screening.

For vanishing substrate friction, flow structures evolve
with increasing activity in a manner similar to what ob-
served in the well-studied nematic state, as shown in the
top row of Fig. 1 and studied before [35–38]. The pat-
terns are controlled by the interplay of the system size L
and the active length lα ∼

√
K/|α|. Just above the crit-

ical activity for the instability of the isotropic quiescent
state, where lα ≫ L, we observe system-spanning struc-
tures consisting of two parallel bands, with opposite flow
directions and a zigzag nematic orientation (Fig. 1(a)
[18, 35, 39]. At higher activity, the bands are replaced
by two system-spanning vortices, separated by large re-
gions of nematic order interrupted by pairs of topological
defects. Figure 2 highlights that in this regime flow struc-
tures are indeed controlled by the system size, scaling up
to span the whole system for L up to L = 256.
Surprisingly, this state displays stable +1 defects.

While +1 defects are generally unstable at finite activ-
ity and decay into pairs of +1/2 defects, we observe here
that there is a range of activity where the nematic order
is enslaved to the flow and +1 defects can be trapped at

the center of flow vortices, as seen in Fig 2.

Further increasing activity yields lα ∼ L and promotes
defect pair unbinding. The defects unbind in the large
shear rate regions at the boundaries between opposite
vorticity and organize in lanes that slide past each other
(Fig. 1(c,d) and SI video 1). Further increasing activity,
yields lα ≪ L. Unbound defect pairs then proliferate,
rendering the system’s dynamics chaotic and leading it
into active turbulence (Fig. 1(e) and SI videos 2 and 3).

Introducing friction screens the flows and yields a va-
riety of regular emergent structures on scales set by the
viscous length lη. These include: defect-free bands of op-
posite flowing material (Fig. 1(f,k)), rectangular lattices
of flow vortices with defects arranged in static patterns
in the high shear rate regions between vortices of oppo-
site sign (Fig. 1(g,h,l,m)), and states of nearly hexag-
onal vortex lattice that trap pairs of +1/2 defects. At
the highest activity eventually flows become spatiotem-
porally chaotic and defects proliferate. The defect sep-
aration and the scale of vortical flows are again largely
controlled by the viscous screening length, as suggested
by experiments [22, 40].

The nearly hexagonal arrangement of vortices shown
for instance in Fig. 1(i) has the interesting property that
all vortices rotate in the same direction, with pairs of
+1/2 defects trapped in each vortex and rotating to chase
each-other tails. It is a state of spontaneously broken
symmetry, as the system will randomly choose either
a CW or CCW direction for all defect pairs to rotate
around, while surrounded by a continuous space of the
opposite vorticity. The total vorticity throughout the
system remains zero, as it must be for incompressible
Stokes’ flow. The localized vorticity of the “chiral blobs”
trapping defect pairs is thus compensated by vorticity
of opposite sign created in the high shear regions where
the isolated −1/2 defects are located. Interestingly, the
rotation of defect pairs is synchronized, giving rise to
propagating waves (see video 5).

States with a similar chiral structure to the one found
here have been observed before deep in the nematic re-
gion of chiral active liquid crystals [41], where chirality is
explicitly broken in the free energy. Here, in contrast, the
system breaks this symmetry spontaneously, choosing a
spinning direction. In addition, unlike previous work, or-
dered states are found here in the isotropic regime of the
passive liquid crystal for intermediate activities, before
reaching active turbulence. The range of activity over
which ordered structures appear is admittedly narrow,
which may have prevented their experimental observa-
tion so far.

Another type of emergent structures observed in our
frictional film resemble a space-extended version of the
Ceilidh dancing state [12] found in active nematics con-
fined to a channel, where defects march forward while
exchanging partners (SI video 4). Physical confinement,
however, requires fine tuning of the channel width such
that it can only fit two defects. Here, in contrast, the size
selection is intrinsic as it is provided by the flow screening
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FIG. 1. Structures observed by increasing substrate friction Γ (top to bottom) and activity α (left to right respectively),
as indicated by the arrows. The color represents the vorticity, the lines indicate the nematic director, the dots and arrows
indicate, respectively, −1/2 and +1/2 defects, with the arrows pointing in the direction of the polarization of the +1/2 defects.
Colorbars have not been added to avoid clutter, since each frame has a different vorticity. The first row shows the behavior
for Γ = 0, where the scale of the observed structures is controlled by the system size, for |α| = 3.6, 3.62, 5, 8, 50. The second
row corresponds to Γ = 0.01 and |α| = 4.23, 4.5, 4.8, 5, 8. The third row is for Γ = 0.15 and |α| = 6.46, 6.5, 8, 10, 15. Defects are
denoted by red arrows (+1.2) and magenta dots (−1/2). As we increase activity, the system transitions from a uniform state
to a band state (first column), then vortex lattices (columns 2-4) and finally to states of active turbulence (column 5).

length.

As mentioned in the Introduction, the emergence of co-
herent flow structures at finite flow screening length can
be interpreted as a form of phase separation of vorticity,
analogue to MIPS in systems with birth and death [29].
This is supported by Fig. 3 that shows how in the ab-
sence of substrate frictions regions of positive and neg-
ative vorticity coarsen in time until flow consists of two
oppositely rotating system-spanning vortices. The dy-
namics resembles qualitatively the coarsening dynamics
of a conserved field undergoing bulk phase separation.
Substrate friction plays a role similar to birth/death in
MIPS by arresting phase separation [29]. Friction breaks
momentum conservation and selects the size of the flow
vortices. When the flow screening length is comparable
to the active length of the unscreened system, the size of
emerging structures is cut off though a mechanism that
can be thought as a form of micro phase separation of
vorticity. We will draw this parallel in a quantitative
manner in the following section through linear stability
analysis of the dynamics.

IV. LINEAR STABILITY ANALYSIS

The phase separation-like dynamics of vorticity can be
understood qualitatively by examining the linear stabil-
ity of the isotropic state. To do so, we linearize Eqs. 1a
and 1b about Q = v = 0 and Fourier transform in
space. It is useful to introduce the components of Q
parallel and perpendicular to the wavevector q, given
by Ψ∥ = qiqjQ̂ij(q) and Ψ⊥ = ϵijqiqkQ̂jk(q), where

Q̂ij(q) =
∫
ddreiq·rQij(r) is the Fourier transform of the

order parameter. These components decouple and their
dynamics is given by

∂tΨ∥ = −a+Kq2

γ
Ψ∥ , (4a)

∂tΨ⊥ = −a+Kq2

γ
Ψ⊥ − λq2

2
ω̂ , (4b)

where ω = ∂xvy − ∂yvx is the flow vorticity. The parallel
component Ψ∥ is always stable, so we ignore it in what
follows. To close Eq. (4b), we consider the Stokes limit
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(a)

(b)

(c)

FIG. 2. The steady state flow structures for Γ = 0 and differ-
ent system sizes: (a) L=64, (b) L=128, (c) L=256 show that
in absence of friction the scale of emergent structures is con-
trolled by the system size. All parameters except system size
are the same across all three frames. The color indicates the
vorticity and the lines indicate the orientation of the nematic
director.

FIG. 3. Coarsening of vortices in time at L = 256 in absence
of friction. The four panels, starting at the top and from left
to right, correspond to: (a) t = 7, (b) t = 10, (c) t = 40,
and (d) t = 144. The color indicates vorticity and the lines
indicate the orientation of the nematic director.

for the flow, and drop all nonlinear terms. Taking the
curl of Eq. (1b) and transforming to Fourier space gives
the vorticity in Fourier space, ω̂,

ω̂ =
α+ λ(a+Kq2)

Γ + ηq2
Ψ⊥ . (5)

FIG. 4. This plot shows sketches of the dispersion relation
below and above the critical activity αc for the cases of no
friction (a), and finite friction (b). Plot c) shows the critical
activity |αc| as a function of friction Γ, while d) shows the
most unstable mode as a function of Γ, where the value of α for
each point is the one shown in c) for that friction. The points
are results of numerically integrating equations ??, while the
lines are the predictions of equations 9 and 10.

Substituting Eq. (5) in Eq. (4b), we finally arrive at the
linearized equation for ∂tΨ⊥ = iΩ(q)Ψ⊥, with

iΩ(q) = −a+Kq2

γ
− λq2

2

α+ λ(a+Kq2)

Γ + ηq2
. (6)

It is evident that an extensile stress α < 0 is the only
thing that can render ∂tΨ⊥ positive for some wavevectors
q, thus destabilizing the isotropic state [8, 35, 38]. The
nature of this activity-driven instability depends on the
interplay of the two dissipation mechanisms controlled
by substrate friction and viscosity. It is instructive to
first analyze the limiting cases Γ → 0 and η → 0. When
Γ = 0, the dispersion relation of the mode controlling to
dynamics of Ψ⊥ is given by

iΩ(q)|Γ=0 = −
(
ã

γ
+
αλ

2η

)
− K̃

γ
q2. (7)

where ã = a
(
1 + λ2γ

2η

)
and K̃ = K

(
1 + λ2γ

2η

)
. Given

that the shear viscosity η and nematic rotational viscosity
γ can be assumed to be of the same order, the dimension-
less factor γλ2/2η will just be of order unity. It is evident
that in this limit extensile activity can change the sign of
the relaxation rate at q = 0, effectively driving the system
into the nematic state, as evident from the large ordered
regions shown in Fig. 1(b). The dispersion relation is
shown in Fig. 4(a). This is a type-III instability accord-
ing to the classification of Refs. [42, 43], with system-size
spanning emergent structures. Such long-wave instabil-
ity is commonly seen in phase separating systems with-
out conserved mass, such as the Allen-Cahn model, and
signals coarsening of structures over time, corresponding
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here to the development of bulk regions of positive and
negative vorticity.

Substrate friction changes the nature of this instability,
which can be seen in the η = 0 limit of equation (6)

iΩ(q)|η=0 = −a
γ
−
(
K

γ
+
αλ+ aλ2

2Γ

)
q2 − Kλ2

2Γ
q4. (8)

In this case activity renormalizes the stiffness K, render-
ing it negative above a critical value. As discussed in
detail in Ref. [35], the system is unstable above the crit-

ical activity α0
c = Γ

(√
K/γλ2 +

√
a/2Γ

)2

in a band of

wavenumbers. Coherent structures emerge at a charac-
teristic length scale corresponding to the most unstable

mode q0c = l−1
c

(
2Γl2c/γλ

2
)1/4

, in a process qualitatively
resembling an initial spinodal decomposition, which is
then arrested on length scales comparable to 1/q0c by fric-
tional dissipation that screens the flows. The dispersion
relation of the modes has the same structure as shown in
Fig. 4(b) at finite viscosity.
In the presence of both viscosity and substrate friction

the critical activity αc and most unstable mode qc at
onset can be found from Eq. (6), by solving the coupled
equations Ω(qc) = 0 and [∂qΩ(q)]q=qc = 0, with the result

αc = λa+ λa
2η

λ2γ

[
1 +

l2c
l2η

+
lc
lη

√
1 +

λ2γ

2η

]
(9)

and

q2c = (lclη)
−1

(
1 +

λ2γ

2η

)−1/2

, (10)

For vanishing friction the instability occurs at αc(Γ =
0) = aλ (1 + 2η/(λγ)) with qc = 0 [35]. Substrate friction
shifts the instability to higher values of activity and yields
a finite length scale ∼ q−1

c for emergent structures.
We have validated the linear theory by measuring the

critical activity αc and the wavenumber qc of the emerg-
ing patterns from simulations. Figures 4(c,d) show excel-
lent agreement between simulations and the linear pre-
dictions of equations (9) and (10). In particular, the lin-
ear stability analysis captures the observed dependence
of the length scale of the emerging structures with fric-
tion, qc ∼ Γ1/4. Interestingly, increasing activity does
not change much the characteristic length scale of the
patterns, which is mainly controlled by lη, as evident
from Fig. 1.

V. VORTEX LATTICES

Vortex lattices similar to what we have observed in the
previous section have been studied before in the context
of nonequilibrium hydrodynamics [34, 44]. These previ-
ous studied offer a path to an analytical description of
these lattices that we offer in this section.

The emergence of lattice structures of flow vortices can
also be rationalized in terms of linear hydrodynamics.
The combination of Eqs. (4b) and (5) implies that the
relaxation rate of vorticity fluctuations is determined by
the same dispersion relation that controls Ψ⊥, given by
Eq. (6). Expanding the mode for q ≪ l−1

η gives a sim-
ple linear equation commonly seen in models of pattern-
formation, ∂tω̂ = iΩ4(q)ω̂, with

iΩ4(q) = −
[
τ−1
c + k2q

2 + k4q
4
]
+O(q6), (11)

where k2 = K/γ + λ(α + aλ)/(2Γ) and k4 = (−αηλ +
KΓλ2 − aηλ2)/(2Γ2) both depend on activity. Such an
equation has been used as a minimal model to study
emergent structures and dynamics in active fluids, where
it has been shown to support various time-independent
solutions in the form of vortex lattices [34] when k2 < 0.
This explains the origin of the periodic structures ob-
served in our simulations. Specifically, an extensile ac-
tive stress combined with flow alignment can give rise to
a negative effective stiffness [35] - effectively a negative
effective viscosity when applied to flow. Since modes are
always damped at very small and large q, at the onset of
instability only a small interval of wavenumbers become
unstable (Fig. 4(b)) near the wavenumber of the most un-
stable mode qc (Eq. (10)), which therefore controls the
scale of the periodic structures observed.
To find the static solutions that correspond to vortic-

ity lattices, we use the following ansatz for the stream
function ψ, defined by ω = −∇2ψ, in polar coordinates
[34]

ψ(r, θ) =

∫
dϕψ̂(ϕ)eiqr cos(θ−ϕ). (12)

Different lattices can be constructed by choosing ψ̂(ϕ)
to be the sum of different modes in the unit circle. For
instance, we can form the band configuration by choos-

ing two symmetric modes, i.e. ψ̂ = δ(ϕ) − δ(ϕ − π),
which, in Cartesian coordinates, gives a band solution
ψ(x, y) = cos(qx). To build a square lattice, we choose

four modes along the unit circle ψ̂(ϕ) = δ(ϕ − π/4) +
δ(ϕ−3π/4)+δ(ϕ−5π/4)+δ(ϕ−7π/4), giving the stream
function for the square lattice ψ4(x, y) = cos(kx) cos(ky).
Similarly, if we choose six equidistant points, we obtain
the stream function for the hexagonal lattice ψ6(x, y) =

cos
(√

3x/2
)
cos (y/2)− cos(y)/2. These three main con-

figurations are plotted in Fig. 5, corresponding to the
ones observed numerically for low activity in figure 1.
When inserted in Eq. (1a), and assuming a static

state, in which DtQij = 0, the stream functions gener-
ated by this method also reproduce the liquid crystalline
textures observed numerically and shown in in Fig. 1.
The solution is trivial in the case of bands, as has been
found before [39], with the director oriented 45 degrees
with respect to the bands, and rotated 90 degrees from
band to band. For the structures shown for instance
in Fig. 1(g,h), the defects are organized in a rectangu-
lar, rather than square lattice with D4 symmetry. A
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FIG. 5. Different states that can be built as static vorticity
structures from solutions of Eq. 12, corresponding to those
observed numerically, for both finite Γ and a (see Fig 1). The
amplitude in this plot has been chosen to be 1, as it is arbi-
trary when built from equation (12).

FIG. 6. Nematic texture generated by the ansatz ψ4 and
ψ6 for the streamfunction described in the main text. The
color represents the vorticity. Here the dots denote the −1/2
defects, while the arrows represent the polarization of the
+1/2 defects. The parameter l has been chosen as l = 2 and
l = 1.1 for the rectangular and hexagonal lattices respectively.

perfectly square lattice of vorticity will not therefore re-
produce the observed liquid crystal texture. We adjust
the stream function corresponding to a square lattice by
using two different wavevectors along orthogonal coordi-
nate directions, i.e., ψ4 = cos(k1x) cos(lk1y), where the
parameter l ̸= 1 describes the ratio between the two axis’
wavelengths. The velocity calculated from this stream
function as vi = ϵij∂jψ is inserted in Eq. (1a), which
is then solved numerically with DtQij = 0. This gives
the nematic texture shown in Fig. 6a), with +1/2 defects
aligned across the direction of shorter wavelength of vor-
ticity, and −1/2 defects across the direction of longer
wavelength, in agreement with what obtained from sim-
ulations.

Likewise, to obtain the hexagonal lattice struc-
ture shown in Fig. 1(i,n) we use a stream function
with hexagonal and two different wavevectors, ψ6 =
cos

(
k1
√
3x/2

)
cos (lk1y/2) − cos(lk1y)/2. Inserting the

velocity field generated by this stream function into
Eq. (1a) and solving numerically yields the liquid crys-
tal texture observed in simulations, with pairs of +1/2
defects trapped within each vortex, and −1/2 defects
trapped at the stagnation points where opposite vortici-
ties meet, forming a hexagonal lattice around each flow
vortex (see Fig. 6b). The fact that we can reproduce

the nematic texture from a simple ansatz for the vortical
flows demonstrates the direct connection between flow
and texture that allows us to tune flows by controlling
defects.
Finally, we stress that although the rectangular lat-

tice is a static solution to equations (??), the hexago-
nal lattice is not. In the hexagonal case, the +1/2 are
motile and continuously spin chasing each other tail. The
stream function would then be a time-dependent version
of ψ6, in which the wavevectors make the lattice contin-
uously rotate as seen in video 5. We leave the full char-
acterization of these dynamical states for future work.

VI. DISCUSSION AND CONCLUSION

The capability of producing diverse forms of collective
motion is a distinct feature of active matter. Here we
have demonstrated that activity and substrate friction
can be used as handles for generating highly organized
and controllable structures in the isotropic phase of ac-
tive liquid crystals. These coherent structures exist in an
intermediate range of activity, out of which the system
becomes either isotropic quiescent or chaotic and require
that the nematic coherence length lc that controls spatial
variations of the order parameter be smaller than or at
most comparable to the screening length of the flow lη.
The range of activity where we observe coherent structure
is wider when the system is close to the passive critical
point. This can be achieved, while maintaining lc < lη by
either increasing the nematic stiffness K or the nonlinear
damping b. Tuning substrate friction allows us to change
the characteristic scale of the flow and associated texture
continuously, as well as the symmetry of the vortex lat-
tice, with self-organized structures that resemble those
found in phenomenological models of active pattern for-
mation [37]. This tunability may provide a path for the
application of active fluids to microfluidics for instance
by tuning friction as realized in Ref. [27].
Perhaps the most intriguing structure is the lattice of

rotating chiral blobs that trap pairs of topological defects.
Each of this chiral units exhibit a structure that resem-
bles that of nematic liquid crystals confined to circular
wells. In our case confinement is effectively provided by
the screening length lη, hence is emergent.
The behavior observed here can be interpreted in anal-

ogy with MIPS as a phase separation of vortical flow. In
the absence of friction, the system organizes in system-
spanning counter-rotating vortices through a dynamics
that resembles spinodal decomposition. Substrate fric-
tion screens the flow and breaks momentum conservation,
arresting this vortical phase separation and organizing
the system in ordered flow structures. Friction therefore
plays a role very similar to that of the breaking of mass
conservation in MIPS [29].
It would be interesting to examine the coarsening of

vortices over time to extract scaling laws analogue to
those that hold in equilibrium phase separation, as well
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as study the dynamics and stability of the defect/vortex
lattices. Another direction left for future studies is the
role of confinement provided either by physical bound-
aries or deformable interfaces. The interplay between ac-
tivity, flow screening and boundaries could lead to even
richer behaviors that could be exploited to create smart
functional materials.
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