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Structure of jammed ellipse packings with a wide
range of aspect ratios
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Motivated in part by the recent observation of liquid glass in suspensions of ellipsoidal colloids,
we examine the structure of jammed two-dimensional ellipse packings over a much wider range
of particle aspect ratios (α , the ratio of the major and minor axis lengths) than has been previ-
ously attempted. We determine the jamming densities φJ(α) to high precision, and find empirical
analytic formulae that predict φJ(α) to within less than 0.1% for all 1 ≤ α ≤ 10, for three differ-
ent particle dispersities. Then we explore how these packings’ local structural order varies with α.
We find that the densest packings possess unusually-well-defined nearest-neighbor shells, includ-
ing both a higher fraction fZ=6 of particles with exactly six contacts and a previously-unreported
short-range order marked by “kinetically suppressed” regions in their positional-orientational pair
correlation function g(r,∆θ). We also show that the previously-reported approach to isostaticity
(coordination number ZJ → Ziso ≡ 6) with increasing α is interrupted and then reversed as local
nematic order increases: ZJ(α) drops towards 4 as ellipses are more often trapped by contacts
with a parallel-oriented neighbor on either side and a perpendicularly-oriented neighbor on ei-
ther end. Finally we show that φJ/φs (where φs is the saturated RSA packing density) is nearly
α-independent for systems that do not develop substantial local hexatic or nematic order during
compression.

1 Introduction
Most real granular materials are composed of aspherical, shape-
anisotropic particles. Theoretical efforts aiming to explain the
various ways in which constituent-particle anisotropy affects sys-
tems’ jamming phenomenology have focused primarily on simple
models in which the degree of anisotropy can be controlled by
varying one parameter: the aspect ratio α. The variation of jam-
ming phenomenology with α is the simplest for high-symmetry
convex shapes, and as a consequence, the theoretical study of
anistropic-particle jamming began with ellipses and ellipsoids.1–3

Jamming of low-aspect-ratio ellipses has been extensively stud-
ied1–6 and is now fairly well understood. In particular, for
α − 1� 1, the linear increase in φJ [φJ(α)−φJ(1) ∼ (α − 1)] has
been explained in terms of particles’ ability to pack more effi-
ciently than disks by rotating away from contacts,1,2 and the
singularity in the average coordination number ZJ of marginally
jammed states [ZJ(α)−ZJ(1)∝

√
α−1] has been explained by the

divergence in the number of quartic modes as α → 1.2,4 On the
other hand, while these early studies explained the most essen-
tial features of the variation of low-aspect-ratio ellipses’ jamming
phenomenology with α, they did not establish precise analytic
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formulas for φJ(α) or ZJ(α), or examine the local structural or-
dering of jammed packings in much detail.

Recent experiments have demonstrated the existence of a “liq-
uid glass” state in both quasi-2D7–9 and 3D10,11 suspensions of
ellipsoidal colloids. In a liquid glass, particles rotations’ are ar-
rested but they remain free to translate within locally-nematic
precursor domains. By definition, this state occupies packing frac-
tions φ that are between systems’ orientational and translational
glass transitions, i.e. all φ rot

g (α) ≤ φ ≤ φ trans
g (α). Liquid glasses’

existence was predicted nearly 25 years ago by mode coupling
theory12 and confirmed nearly 10 years ago by Monte Carlo sim-
ulations of hard ellipses,8 yet they remain poorly understood.
The well-established, intimate connection between the glass and
jamming transitions13,14 suggests that at least some of ellipses’
liquid-glass physics is controlled by their jamming phenomenol-
ogy. However, jamming of ellipses with α that are sufficiently
large for systems to form the (essential) locally-nematic precur-
sor domains as systems are being compressed has been almost
completely neglected by theorists. Only Ref.3 examined ellipses
with α > 2.5, and no studies have examined systems with α > 5.

In this paper, we examine the structure of jammed two-
dimensional ellipse packings over a much wider range of aspect
ratios (1≤ α ≤ 10) than has previously been attempted. All of our
results for α <∼ 3 are consistent with previous studies,1–6 but we
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go beyond previous work by (1) identifying novel, nearly-exact*

analytic expressions for φJ(α) and (2) performing a detailed char-
acterization of jammed states’ local structural order.

We show that the primary signature distinguishing jammed
ellipse packings with α ' αmax [where αmax is the aspect ra-
tio at which φJ(α) is maximized] from those with lower φJ is
that the former possess unusually-well-defined nearest-neighbor
shells, including both a higher fraction fZ=6 of particles with ex-
actly six contacts and a previously-unreported short-range order
marked by “kinetically suppressed” regions† in the positional-
orientational pair correlation function g(r,∆θ). These shells’ ex-
cellent commensurability allows minimization of intermediate-
range density fluctuations and hence maximization of φJ. For
α > 3, we show that ZJ drops slowly towards 4 with increasing
α, as local nematic order increases and ellipses are more often
trapped by contacts with a parallel-oriented neighbor on either
side and a perpendicularly-oriented neighbor on either end. This
result stands in stark contrast to the one that might have been
expected from Refs.1–6, which suggested limα→∞ ZJ = 6. We also
show that the ratio φJ(α)/φs(α), where φs(α) is ellipses’ random
sequential adsorption (RSA) density,‡ is nearly constant for sys-
tems that do not develop substantial local hexatic or nematic or-
der during compression. Finally we relate the functional form
of our analytic expressions for φJ(α) to both previously known
physics and the structural trends reported below, and discuss how
our results may prove useful for the further development of first-
principles theories of anisotropic-particle jamming.

2 Methods
To facilitate comparison of jammed and saturated-RSA ellipse
packings, we examined the same set of 81 different particle as-
pect ratios (over the range 1 ≤ α ≤ 10) considered in Ref.16. To
understand the effects of particle dispersity, we employed three
different probability distributions for the ellipses’ inital minor-axis
lengths σ :

Pmono(σ) = δ (σ − .07)

Pbi(σ) =
δ (σ − .05a)

2
+

δ (σ − .07)
2

Pcontin(σ) =

{ 7
4σ2 , .05≤ σ ≤ .07

0 , σ < .05 or σ > .07

, (1)

where δ is the Dirac delta function and σ is expressed in arbitrary
units of length. Pmono yields monodisperse systems, Pbi yields the

* Here we describe an expression as “nearly exact” if it agrees with all available data
to within the statistical uncertainty on that data, which in this case is ∼ 0.1%.

† As will be discussed in Section 3.2, these regions correspond to configurations which
are sterically allowed (i.e. compatible with 2-body hard-particle impenetrability con-
straints) yet are strongly suppressed by collective many-body effects that occur dur-
ing compression.

‡ This is the maximum density at which impenetrable ellipses of aspect ratio α can be
packed under a protocol that sequentially inserts them with random positions and
orientations. 15

50:50 bidisperse mixtures of large and small particles with size
ratio Rlarge/Rsmall = 1.4 that have been the standard model for
studies of granular materials for the past 25 years,17,18 and Pcontin

yields continuously-polydisperse systems in which equal areas are
occupied by particles of different sizes.§

For each α and particle dispersity, 100 jammed packings were
prepared using the following procedure: N = 1000 nonoverlap-
ping ellipses of aspect ratio α were placed with random positions
and orientations in square L×L domains, with L = 36.1818

√
α.¶

Periodic boundary conditions were applied along both directions,
so these initial states had packing fractions below 0.01. Jammed
states were obtained using a Monte Carlo (MC) particle-growth
algorithm. Each MC cycle consisted of:

1. Attempting to translate particle i by a random displace-
ment of maximum magnitude 0.05 f along each Cartesian
direction and rotate it by an angle of maximum magnitude
(10 f/α)◦,

2. Repeating step 1 for i = 1,2, ...,N, and

3. Increasing all particles’ σ by the maximum possible factor
consistent with hard-particle constraints, i.e. the factor that
brings one pair of ellipses into tangential contact.

This implementation of step (3) preserved the particle dispersi-
ties defined in Eq. 1. The move-size factor f was set to 1 at the
beginning of the runs, and multiplied by 3/4 whenever 100 cy-
cles had passed without a successful translation/rotation attempt.
Runs were terminated and the configurations were considered
jammed when f dropped below 10−9, the minimum value al-
lowed by our double-precision numerical implementation of this
algorithm. Throughout this process, inter-ellipse overlaps were
prevented using Zheng and Palffy-Muhoray’s exact expression20

for their distance of closest approach dcap.
Since this protocol attempts to move only one particle at a time,

it produces packings which are locally rather than collectively or
strictly jammed.21 In other words, while vanishingly few parti-
cles in these packings (aside from the rattlers) can be moved or
rotated while fixing the positions and orientations of all other par-
ticles, one might be able to increase their density using collective,
multi-particle MC moves or by allowing the cells to undergo shear
deformation.22 Also note that our protocol generates ellipse pack-
ings that are closer to the MRJ23 (fast particle growth) end of the
spectrum. Increasing particles’ σ by a smaller factor during step
(3) or repeating steps (1-2) multiple times during each MC cycle
would produce denser, more-ordered packings.

We characterized the structural order of the jammed packings
using several commonly employed metrics:

In addition to ZJ, we examined the fractions fZ=6 ( fZ=4) of
particles that have exactly six (four) contacts. These quantities
couple intimately to ellipse packings’ structural order. For ex-
ample, fZ=6 = 1 in the triangular lattice (the densest crystalline

§ Note that choosing P(σ) ∝ σ−d , where d is the spatial dimension, apparently opti-
mizes glass-formability for a wide variety of interparticle force laws. 19

¶ This choice of L makes the final σ values satisfy 1 <∼ σ <∼ 1.4 for all α.
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packing of both disks and ellipses) and in “ideal amorphous” disk
packings where high φ are obtained by allowing particles’ radii to
vary,24 while fZ=4 = 1 in “checkerboard”-like phases formed by
perpendicularly-oriented, short single-layer lamellae25 as well as
in collectively-jammed rectangular ellipse lattices.2

Local nematic order was characterized using the standard order
parameter

S =
1

18N

N

∑
i=1

18

∑
j=1

3cos2(∆θi j)〉−1
2

≡ 3〈cos2(∆θ)〉−1
2

, (2)

where ∆θi j is the orientation-angle difference between ellipses i
and j, and the average is performed over the 18 nearest neighbors
of each ellipse. Here 18 was chosen because it corresponds to
the total number of first, second, and third nearest neighbors for
particles in a triangular lattice; this choice makes S a measure
of mid-range nematic order. S is 1 for a perfectly-nematically-
ordered and zero for an orientationally-disordered material. To
gain additional insight into connections between the variations
of S and φJ with α, we examined spatial fluctuations of the local
packing fraction over the same length scale used to calculate S:

δφ =
√
〈φ 2〉−〈φ〉2. (3)

Here φ is the packing fraction within randomly located circular
“windows” of radius R, where R is chosen to make the average
window contain 19 particles.||

Local hexatic order was characterized using the Steinhardt-
like27 order parameter

Ψ6 =
1

6N

N

∑
i=1

∣∣∣∣∣ 6

∑
j=1

exp(6iΘi j)

∣∣∣∣∣ . (4)

Here Θi j is the angle between the vector~ri j connecting ellipses i
and j and an arbitrary fixed axis, and the inner sum is taken over
the 6 nearest neighbors of each monomer i. This metric has been
shown to be useful in identifying the onset of liquid-crystalline
order in hard-disk systems.28 Ψ6 is 1 for the triangular lattice (at
any density) since the angles between its {~ri j} are multiples of
60◦, and zero for a perfectly-orientationally-disordered material
since the angles between its {~ri j} are random.

Finally we calculated the positional-orientational pair correla-
tion function g(r,∆θ), which is the ratio of the number of ellipse
pairs with center-to-center distance r and orientation-angle dif-
ference ∆θ to the number that would be present in an ideal gas of
these particles. In other words g(r,∆θ) is just the generalization of
the standard pair correlation function g(r) to include orientation-
angle differences. Our recent study16 showed that this metric is
key to understanding how the structure of saturated RSA ellipse
packings varies with α.

All numerical data presented below are averages over the 100

|| This δφ is better suited to analyzing density fluctuations in polydisperse systems than
the more commonly employed hyperuniformity metric 26 Σ2(R) = 〈n2(R)〉− 〈n(R)〉2,
where n(R) is the number of particles whose centers lie within these windows, be-
cause Σ2(R) does not account for local variations in the relative concentrations of
differently-sized particles.

packings we prepared for each α and P(σ).

3 Results
3.1 Numerical results and analytic formulae for φJ(α)

Figure 1 shows φJ(α) for all three particle dispersities. Differences
between results for bidisperse and continuously-polydisperse sys-
tems are minimal, while the differences between these and re-
sults for monodisperse systems are expected from the latter’s well-
known tendency to crystallize even under rapid Lubachevsky-
Stillinger-style compression.29 All data for α <∼ 3, and the ba-
sic features of the entire φJ(α) curves, are qualitatively consistent
with previous studies.1–6 Our data show that φJ(α) > φJ,disks ≡
φJ(1) for 1 < α < 2.70 (1 < α < 4.46) [1 < α < 4.35] for monodis-
perse (bidisperse) [continuously-polydisperse] ellipses, indicat-
ing that particle anisotropy enhances packability over these
ranges of α. Surpisingly, φ bi

J > φ contin
J > φ mono

J over the range
1.5<∼α <∼ 8.5, suggesting that a size ratio of 1.4 is large enough
for the small ellipses in bidisperse mixtures to fill the gaps be-
tween the larger ones in an at-least-semicoherent fashion. This ef-
fect is probably comparable to the well-known ability of bidsperse
spheres to form both ordered and disordered packings that are
denser than those formed by their monodisperse and (in some
cases) continously-polydisperse counterparts.30,31

Monodisperse

50/50 1:1.4 bidisp.

Contin. polydisp.
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Fig. 1 Jamming densities for ellipses with 1 ≤ α ≤ 10. Symbols show
data from our LS runs while curves respectively show Eqs. 9-11, and
the inset shows the fractional difference of the predictions of these equa-
tions from the data. Measured values of αmax and φJ(αmax) for monodis-
perse (bidisperse) [continuously-polydisperse] systems are respectively
1.3 (1.45) [1.45] and 0.8924 (0.8927) [0.8917].

With the exception of Ref.3, previous studies of ellipse jam-
ming have not attempted to find a functional form describing
their φJ(α) over a wide range of α. Ref.3 found that results for
1≤ α ≤ 5 are well described by the cubic polynomial

φJ(α) = c0 + c1(1−1/α)+ c2(1−1/α)2 + c3(1−1/α)3. (5)

Fits of this functional form to the φJ(α) data shown in Fig. 1 fail,
predicting a spurious inflection point (a transition to concave-up
behavior, i.e. ∂ 2 ln(φJ)/∂ ln(α)2 > 0) at intermediate α. An ex-
act expression for φJ(α) must satisfy at least four requirements:
(1) To be consistent with results for disks, i.e. it must have
φJ(1)≡ φJ,disks; (2) To be consistent with trends reported in previ-
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Fig. 2 Snapshots of jammed monodisperse ellipse packings for (top row, left to right) α = 1, 2, 3 4, and (bottom row, left to right) α = 5, 6, 8, 10.

ous theoretical and experimental studies,2–6,32–34 it must be lin-
ear in α for α−1� 1 and inversely proportional to α for α � 1;
(3) It must be able to quantitatively predict the initial slope

I =
∂φJ

∂α

∣∣∣∣
α=1

, (6)

the position of the maximum αmax defined by the criterion

∂φJ

∂α

∣∣∣∣
α=αmax

= 0,

the normalized curvature C of φJ at its maximum, i.e.

C =
1

φJ(αmax)

∂ 2φJ

∂α2

∣∣∣∣
α=αmax

,

and the large-α asymptotic behavior32–34

lim
α→∞

φJ(α) =
φJ,disks

L α
, (7)

suggesting that it has at least five parameters which are connected
(in some a priori unknown way) to I , C , L , αmax, and φJ,disks;
and (4) Since φJ is, in general, strongly preparation-protocol de-
pendent,21 all of these parameters must be adjustable.

One relatively simple functional form that satisfies all four of
these requirements is

φJ(α) = φJ,disks×
1+a ln(α)+b(α−1)

1+ c(α−1)+d(α−1)2 . (8)

We recently showed16 that this functional form quantitatively
predicts ellipses’ φs(α) over the same range of α considered here.
Here we demonstrate that it also predicts their φJ(α).

Figure 1 shows that the φJ for monodisperse, bidisperse, and
continuously-polydisperse ellipses are respectively very well fit by

φ
mono
J (α) = φ

mono
J,disks×

1+ 73
120 ln(α)+ 49

9 (α−1)

1+ 108
19 (α−1)+ 13

190 (α−1)2
, (9)

φ
bi
J (α) = φ

bi
J,disks×

1+ 13
20 ln(α)+ 49

10 (α−1)

1+ 249
50 (α−1)+ 5

86 (α−1)2
, (10)

and

φ
contin
J (α) = φ

contin
J,disks×

1+ 11
16 ln(α)+ 193

40 (α−1)

1+ 247
50 (α−1)+ 10

179 (α−1)2
. (11)

Here φJ,disks depends on both particle dispersity and the proto-
col with which jammed states are prepared. For our bidisperse
and continuously-polydisperse systems it takes on standard MRJ-
like values, respectively 0.8404 and 0.8402.18,23 For monodis-
perse systems it is substantially larger (0.8669) owing to these
systems’ well-known tendency to crystallize even under rapid
Lubachevsky-Stillinger-style compression29.

The mean fractional deviations of these expressions’ predic-
tions from the ensemble-averaged measured φJ are essentially
zero, while the rms fractional deviations, which are respectively
∼ 0.09%, ∼ 0.12% and 0.09% for monodisperse, bidisperse, and
continuously-polydisperse ellipses, are only slightly above the
lower bounds set by the statistical uncertainties on the mea-
sured φJ . We emphasize that all of the coefficients in the above
equations (i.e. φJ,disks, a, b, c, and d) are preparation-protocol-
dependent; for example, increasing the ratio of the maximum ro-
tational move amplitude to the maximum translational move am-
plitude (Section 2) increases the ratio d/b. While we do not claim
that any of Eqs. 8-11 are exact expressions valid for all α, or even
that their functional form is the same as that of the “true” {φJ(α)}
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Fig. 3 Snapshots of jammed 50:50 1:1.4 bidisperse ellipse packings for (top row, left to right) α = 1, 2, 3, 4, and (bottom row, left to right) α = 5, 6, 8,
10.

which could be obtained given infinite computer power, we will
present substantial additional evidence supporting our use of this
functional form, and argue for its plausibility as a near-exact ex-
pression for φJ(α), in the following sections.

Figures 2-3 respectively show snapshots of monodisperse and
bidisperse jammed ellipse packings with α = 1, 2, 3, 4, 5, 6, 8,
and 10. Continuously-polydisperse packings are not shown here
because they are very similar to their bidisperse counterparts. Re-
sults for α = 1 are entirely as expected from Refs.17,18,29: bidis-
perse packings are disordered and approximately isostatic, while
monodisperse disk packings are denser and exhibit long-range
triangular-crystalline order interrupted by vacancies and line de-
fects. For α = 2 and 3, results are consistent with Refs.1–6. Visual
inspection suggests that the monodisperse packings are some-
what more ordered than their bidisperse counterparts, but the
nature of any such differences is not immediately clear.

Local nematic precursor domains comparable to those observed
in experiments on ellipsoidal colloids exhibiting a liquid-glass
state7–11 become increasingly apparent as α increases beyond ∼
3. The domains formed by monodisperse systems appear slightly
more ordered than those formed by their bidisperse counterparts,
but again the nature of any differences in their ordering is unclear
from visual inspection alone. For α >∼ 6, systems form well-
defined, mostly-single-layer lamellae. In contrast to the nearly
randomly oriented nematic precursors for 3 <∼ α <∼ 5, neigh-
boring lamellae are increasingly oriented perpendicularly to each
other. This structure, which is reminiscent of “checkerboard”-
like phases (e.g. the high-density disordered equilibrium phase
formed by hard rods on a lattice25), is more prominent for
monodisperse systems. Notably, the incompatible orientation of
neighboring lamellae gives rise to increasingly large voids that

cannot be filled because rotations of the surrounding particles
(which could otherwise lead to further increases in φ) are blocked
by other particles.33,34

3.2 Measures of local positional-orientational order

Next, to better understand these variations in local structure,
we examine how the structural metrics discussed in Section 2
vary with α. Figure 4(a) shows results for the coordination
number ZJ. Results for small α are consistent with previous
work,2,4 showing both the characteristic square-root singularity
[ZJ(α)− ZJ(1) ∝

√
α−1 for α − 1 � 1]** and convergence to-

wards a plateau at moderate hypostaticity [ZJ = Ziso − ε with
ε = 0.3− 0.4] for 1.5 <∼ α <∼ 2.5. For α >∼ 4, however, ZJ

drops roughly logarithmically: ZJ ' Z0−B ln(α), with a slightly-
dispersity-dependent Z0. This drop in ZJ was not observed in
previous simulations of ellipse jamming (only one of which3 re-
ported ZJ for α > 2.5), but comparable decreases have been re-
ported for spherocylinders35,36 as well as both rigid-rod-like and
semiflexible polymers.37,38 Below, we will show that this decrease
in ZJ is directly associated with an increase in low-coordinated
particles trapped inside locally nematic regions.

Figure 4(b) shows the fraction fZ=6 of particles that have ex-
actly six contacts. For all particle dispersities, the fZ=6(α) curves
have broad peaks centered at α ' αmax. In other words, max-
imizing φJ closely corresponds to maximizing the number of 6-
coordinated particles. This result is not very surprising – increas-
ing fZ>4 within a jammed ellipse packing generally requires in-

** Strictly speaking, this relation holds only for polydisperse systems since jammed
monodisperse packings’ crystallinity varies strongly with α for α−1� 1.
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Fig. 4 Local order parameters for jammed ellipse packings. All quantities
plotted above are defined in Section 2. Dashed lines in panels (a), (d)
and (f) respectively indicate Z = 7.7−1.8ln(α), S =−.09+ .174ln(α), and
δφ =−.025+ .032ln(α).

creasing its density2 –but it does not seem to have been previ-
ously reported. We find that monodisperse particles have both
larger φJ and larger fZ=6 than their polydisperse counterparts for
α < αmax, owing largely to their greater apparent crystallinity.
Results for different particle dispersities merge for α >∼ 5; few
6-coordinated particles are present in these systems.

Since the densest packings have the most six-coordinated parti-
cles, a natural followup question is: are they also the most locally
hexatically ordered? Results for Ψ6(α) [Figure 4(c)] suggests that
the answer is: no, except when comparing results for different
particle dispersities at the same α for α−1� 1. Intriguingly, Ψ6

is actually slightly larger for α = 1.05 than for α = 1, suggesting
that for increasing α−1� 1 the ability of particles to rotate away
from contacts enhances their ability to hexatically order even as
they become more anisotopic. Results for larger α show that Ψ6

steadily decreases with increasing α for α >∼ 1.2, and is negligi-
ble for all α >∼ 2. While Ψ6 will decrease with increasing α even
for a uniaxially stretched triangular lattice (the densest possible
monodisperse ellipse packing, which has φ = φxtal for all α 39),
the actual decrease shown in Fig. 4(c) is substantially faster than
would occur for such a lattice.

Sharper insights into the evolution of jammed ellipse packings’
structure are obtained by examining other metrics. Figure 4(d)
shows that the nematic order parameter S is strongly dispersity-
dependent for small α but nearly dispersity-independent for
α >∼ 1.8. The prominent small-α peak for monodisperse sys-
tems coincides with the abovementioned peak in their Ψ6; in the
jammed packings for α <∼αmax = 1.3, many particles have 6 con-
tacts and are aligned with their nearest neighbors. These regions
resemble a uniaxially stretched triangular lattice. For bidisperse
and continuously-polydisperse systems, S actually becomes nega-
tive for 1 < α <∼ 1.8 because tip-side contacts are favored over
side-side contacts in these systems. For α >∼ 1.8, all systems’ S in-
creases roughly logarithmically with α [i.e. S' S0+C ln(α)], with
a crossover to a slightly slower rate of increase over the range
4 <∼ α <∼ 6 that corresponds to the emergence of well-defined
locally nematic domains. The beginning of this crossover regime
roughly coincides with the end of the ZJ = Ziso−ε plateaus shown
in Fig. 4(a), suggesting that it is the formation of increasingly-
well-defined locally-nematic regions within jammed states that
causes their ZJ to drop.

This effect can be further elucidated by examining fZ=4(α)

[Fig. 4(e)]. For α <∼ 4, fZ=4 mirrors fZ=6. Next fZ=4 increases
sharply as local nematic domains emerge, reaching a peak at ap-
proximately the end of S’s crossover regime, i.e. at α ' 6. Finally.
for α >∼ 6, fZ=4 drops again. These trends can be explained as
follows: fZ=4 increases sharply as local nematic domains emerge
because (as shown in Figs. 2-3) these domains lend themselves to
Z = 4 configurations where ellipses are trapped by one parallel-
aligned neighbor on either side and one perpendicularly-aligned
neighbor on either end. As α continues to increase, the increas-
ing number of particles with Z < 4 leads to decreasing fZ=4. Note
that this result does not imply that these systems are not mechan-
ically stable; the isocounting conjecture (ZJ = 2ndof, where ndof

is the number of translational and rotational degrees of freedom
per particle) does not apply to anisotropic particles,2 and ellipses
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with Z as low as 3 can be locally jammed.2

Are systems with α ' αmax maximally dense because they
are spatially homogeneous and lack the prominent low-density
regions at the boundaries between differently-oriented locally-
ordered domains that are present for other α? Figure 4(f) sug-
gests that this is indeed the case: the δφ ≡ ∆φ(R∗[α]) are min-
imized at α ' 1.6 for all three particle dispersities. Much like
ZJ and S, δφ increases roughly logarithmically for larger α, i.e.
δφ ' δφ0 +D ln(α); hence δφ is maximal at α = 10 where φJ is
minimal. We believe that the logarithmic increases in these three
quantities are closely related to each other, and will argue below
that they may be the source of the a ln(α) contribution to φJ(α).

Fig. 5 Snapshots (left panels) and g(r,∆θ) (right panels) for the densest
jammed states for each particle-dispersity category. Top panels show
monodisperse systems with α = 1.3, middle panels show 50:50 1:1.4
bidisperse systems with α = 1.45, and bottom panels show continuously-
polydisperse systems with α = 1.45. Colors are assigned only to regions
with g(r,∆θ)> 0, so the sterically forbidden regions are shown in white.

While the dataset presented above provides many insights, it
fails to conclusively specify what (other than higher fZ=6 and
lower δφ) distinguishes the densest packings from their lower-φJ

counterparts. We now show that this can be done by examining
positional-orientational correlations. Figure 5 shows representa-
tive snapshots and ensemble-averaged g(r,∆θ) for systems with
α = αmax. The monodisperse packing plainly has a mid-to-long-

range crystalline order that superficially resembles that of the tri-
angular lattice. Nearly all particles have exactly six nearest neigh-
bors that are easily discernible through visual inspection, even
though many particles have Z < 6 (i.e. fewer than six contacts).
However, in contrast to the densest crystalline ellipse packing (in
which all ellipses are oriented in the same direction and thus have
∆θ = 0), these nearest-neighbor particles exhibit a wide range of
∆θ . Tip-to-side contacts are heavily favored, with g(r,∆θ) > 30
in the limit corresponding to perpendicularly-oriented contacting
ellipses, i.e. r/σmin→ (α +1)/2 and ∆θ → 90◦. At the same time,
g(r,∆θ) < .01 for certain (r,∆θ) that are sterically allowed (i.e.
compatible with 2-body hard-particle impenetrability constraints)
yet are strongly suppressed by collective many-body effects. The
corresponding minima in g(r,∆θ) are both broad and deep: for
example, g(r,∆θ)< .1 for all 1.4 < r/σmin < 1.7 with ∆θ <∼ 60◦.

The same trends are present for bidisperse and continuously-
polydisperse systems even through their g(r,∆θ) are qualitatively
different. More specifically, although increasing particle disper-
sity changes the locations of g(r,∆θ)’s extrema, reduces the height
and increases the width of its maxima, and reduces both the depth
and width of its minima, these minima remain both broad and
deep. We refer to the ranges of (r,∆θ) that are sterically allowed
yet have g(r,∆θ)< 0.1 as “kinetically suppressed” because the var-
ious collective many-body ordering processes that occur during
dynamic compression make these configurations at least an order
of magnitude less likely in the final jammed packings than they
would be in completely disordered packings (i.e. ideal gases) with
the same φ . Critically, for all three particle dispersities, the kinet-
ically suppressed regions are largest for α ' αmax, and are absent
for systems with φJ ≤ φJ,disks.

Comparing Fig. 5 as well as g(r,∆θ) results for other α (not
shown here) to the results presented above shows that large
kinetically suppressed regions are present in systems where
most particles have six clearly-distinguishable nearest neighbors,
whether they actually contact all of these neighbors or not.
Nearest-neighbor shells including six members are “full”: they
prevent any other particles from achieving close proximity, and
they do so in a highly α- and ∆θ -dependent way. As a conse-
quence, systems in which most particles’ nearest-neighbor shells
are full have richly structured g(r,∆θ) with large kinetically sup-
pressed regions. These regions are not present in saturated RSA
ellipse packings,16 which suggests that they arise during the later
stages of compression, i.e. over the range φs(α) <∼ φ < φJ(α).
We believe that it is the formation of these unusually-well-defined
nearest-neighbor shells that allows minimization of δφ and hence
maximization of φJ.

3.3 Comparison to RSA packings

For a wide variety of particle shapes, complex liquid-state dy-
namics are expected for packing fractions in the range φo(α) <

φ < φ trans
g (α), where φo(α) is the “onset” density.40,41 In hard-

ellipse liquids, onset and translational-rotational decoupling42

have been associated with the emergence of unstable nematic-like
regions with a mean lifetime τnem that exceeds the characteristic
relaxation time τ0 for translational diffusion.43 Measurement of
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the ratios φ trans
g (α)/φ rot

g (α), φ trans
g (α)/φo(α) and φ rot

g (α)/φo(α) for
various shapes over a wide range of α could provide additional
valuable insights into these dynamics, but evaluating these quan-
tities is computationally expensive.44,45 An alternative approach
that should provide at least some of the same insights is to mea-
sure the ratio φJ(α)/φs(α); this ratio of fundamental interest be-
cause it indicates how much packing efficiency particles can gain
via cooperative translations and rotations during the later stages
of compression, i.e. over the range φs(α) < φ < φJ(α). Surpris-
ingly, to the best of our knowledge, no previous studies have sys-
tematically examined φJ(α)/φs(α) for ellipses, ellipsoids, or other
comparable 2D or 3D convex shapes.

Monodisperse

50/50 1:1.4 bidisp.

Contin. polydisp.

1 2 4 6 8 10
1.5

1.52

1.54

1.56

1.58

1.6

1.62

α

ϕ
J
/ϕ
s

Fig. 6 Ratio of the jamming densities φ x
J (α) (Eqs. 9-11) to the saturated

RSA packing densities φs(α) of monodisperse ellipses (Eq. 12).

We recently showed that monodisperse ellipses’ φs(α) is pre-
dicted to within ∼ 0.1% by

φs(α) = φs,disks×
1+ 3

8 ln(α)+ 17
25 (α−1)

1+ 80
99 (α−1)+ 1

96 (α−1)2
, (12)

where φs,disks = .54707,46 over the same range of α (1 ≤ α ≤ 10)
considered here.16 As shown in Figure 6, in our bidisperse and
continuously-polydisperse systems, the ratio φJ(α)/φs(α) stays
within ∼ 1.6% of 1.535 for all 1 ≤ α ≤ 5. φJ(α)/φs(α) is larger
for our small-α monodisperse systems, and for all dispersities for
α >∼ 5. In other words, our data indicates that this ratio is almost
α-independent as long as neither substantial local hexatic order
nor substantial local nematic order develops during compression.

4 Discussion and Conclusions

In this paper, we performed a detailed characterization of jammed
ellipse packings over a much wider range of aspect ratios (1≤α ≤
10) than had previously been attempted. Our first major goal was
to determine φJ(α) to high precision, for three different particle
dispersities: mono-, bi-, and continuously-polydisperse. After do-
ing so, we found simple analytic formulae (Eqs. 9-11) that predict
these φJ to within <∼ 0.1%. Surprisingly, ellipses’ jamming and
saturated-RSA packing densities are both quantitatively predicted
over the entire range of α by a common functional form

φX(α) = φX,disks×
1+a ln(α)+b(α−1)

1+ c(α−1)+d(α−1)2 , (13)

where φX is the jamming or RSA density (i.e. φJ or φs) and the
coefficients {a,b,c,d} depend on particle dispersity and packing
preparation protocol. Moreover, the ratio φJ(α)/φs(α) remains
almost α-independent, suggesting that the amount of extra pack-
ing efficiency ellipses can gain via cooperative translations and
rotations during the later stages of compression depends only de-
pends only weakly on their aspect ratio as long as neither sub-
stantial local hexatic nor substantial local nematic order develops
during compression.

Our second major goal was to characterize the local structure
of jammed packings that include the local nematic domains found
in liquid-glass colloidal suspensions.7–11 Previous studies of el-
lipse jamming found that ZJ(α) plateaus at moderate hypostatic-
ity [ZJ = 6− ε with ε = 0.3− 0.4 for 1.5 <∼ α <∼ 2.5],2,4,6 and
implied that this plateau extends to α = ∞. However, since these
studies did not examine α that were sufficiently large to possess
a high-φ equilibrium nematic phase (e.g. α > 2.4 for monodis-
perse ellipses47) and hence only examined nearly-isotropic pack-
ings, the question of whether it actually does so had remained
open. Here we found that ZJ drops roughly logarithmically
[ZJ' Z0−B ln(α), with weakly-dispersity-dependent Z0 and B] for
α >∼ 3. This drop in ZJ results largely from an increasing fraction
of particles that are trapped inside locally nematic domains by a
parallel-oriented neighbor on either side and a perpendicularly-
oriented neighbor on either end, and hence have no more than
four contacts. The emergence of comparable particle caging dur-
ing dynamic compression may help explain the onset of liquid-
glass physics in athermal systems.43

The third major question we wished to answer in this study
was: what structural features distinguish the densest jammed
packings from their lower-φJ counterparts? Examination of com-
monly employed structural metrics such as the local nematic or-
der parameter S and the Steinhardt-like order parameter Ψ6

28

failed to conclusively answer this question. Instead we showed
that the fraction of particles that have exactly six contacts ( fZ=6)
is maximized at α ' αmax for all particle dispersities even though
fZ=6(α) is itself highly dispersity-dependent, and that locally-
hyperstatic particles within α ' αmax packings are far more likely
to have six clearly-distinguishable nearest neighbors than their
counterparts in systems with φJ < φJ,disks, even in the absence of
substantial local hexatic order. While it has long been known
that nearest-neighbor shells including six members are full and
hence prevent any other particles from achieving close proxim-
ity to the reference particle, here we showed that they do so
in a highly α- and ∆θ -dependent way that (in systems with
α ' αmax) leads to richly structured g(r,∆θ) with large kinetically
suppressed regions. In other words, we showed that particles
with α ' αmax develop unusually-well-defined nearest-neighbor
shells during compression, for three very different particle disper-
sities, even through the structure of the shells themselves is highly
dispersity-dependent. These shells seem to be commensurable
in the sense that nearby particles’ shells can pack efficiently to-
gether without introducing the low-density regions at the bound-
aries between differently-oriented locally-ordered domains that
are present for both disks and large-α ellipses: in other words,
their formation allows minimization of δφ(α). We conclude that
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it is these well-defined shells that allow α ' αmax ellipses’ φJ to
be substantially higher than disks’ φJ even though their jammed
states do not possess longer-range crystalline order. This conclu-
sion places Donev et al.’s argument that ellipses’ ability to rotate
away from contact allows them to pack more densely than disks1

on a firmer quantitative foundation.

Finally we discuss how our results may prove useful for the
further development of first-principles theories of anisotropic-
particle jamming. While there is as of yet no first-principles the-
oretical justification for Eq. 13’s functional form, let alone a first-
principles calculation of all of its coefficients for a specific particle
dispersity, we emphasize that many of the ingredients for obtain-
ing these are now in place. φJ,disks and φs,disks can be calculated
using approaches based on liquid-state theory and the replica
trick.48,49 Donev et al’s perturbation-theory approach2 could be
used to calculate I = (a+ b− c)/φX,disks (Eq. 6). L = d/b (Eq.
7) could be calculated by combining Onsager’s classical argu-
ments32 for why the characteristic densities for structural tran-
sitions driven by excluded volume should scale as 1/α, ellipsoidal
Percus-Yevick theory,50 and mean-field theoretical methods like
those employed in Refs.48,49,51,52. Finally, the presence of the
a ln(α) term might be explained by the need for a next-to-leading
order correction to Onsager (i.e. 1/α) scaling, perhaps arising
from finite correlation lengths within the packings or other non-
mean-field effects. For example, the same increases in local ne-
matic order that lead to the Z ' Z0−B ln(α), S' S0 +C ln(α), and
δφ ' δφ0 +D ln(α) trends illustrated in Fig. 4 might also lead to
a ln(α)/α2 correction to a mean-field expression for φJ(α). Since
comparison to previous results for spherocylinders and strongly-
overlapping n-mers53,54 suggests that Eq. 13 may be applicable
to all convex 2D shapes, with {a,b,c,d} that depend on shape in
addition to the factors mentioned above, it would be very inter-
esting to attempt to derive its functional form (or find a better
one to replace it) using state-of-the-art theoretical methods like
those discussed above.
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