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An energy-optimization method to study gel-swelling in
confinement†

Chaitanya Joshi,a‡ Mathew Q. Giso,a Jean-François Louf,b Sujit S. Dattac and Timothy J.
Athertona∗

We recast the problem of hydrogel swelling under physical constraints as an energy optimization
problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within
a jammed matrix of rigid beads, and interpret the results to determine how confinement modifies
the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation
of strains within the bulk of the hydrogel as strain becomes localized to an outer region. We also
explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian
behavior as a function of swelling. Our model, implemented in the Morpho shape optimization
environment, and validated against an experimentally demonstrated prototypical scenario, can be
applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other
energies in conjunction.

1 Introduction
Hydrogels are polymer networks that have an incredible capac-
ity to absorb water while remaining intact1. They are suitable
for a variety of practical applications such as hygienic products
and contact lenses and other areas2. Their similarity to biolog-
ical tissues have made them a promising material candidate for
biomedical and bio-interface devices3,4 and drug delivery appli-
cations5. Additionally, hydrogels are used as soil conditioners to
improve water retention and other desirable agricultural proper-
ties6,7. The success of these improvements is known to depend
on the size of the soil particles they are embedded in8, but the
mechanisms by which confinement alters the behavior of the gel
are challenging to study directly.

A recent experimental work on swelling of hydrogel confined
in a granular medium9 characterized the 3D swelling of a hy-
drogel sphere surrounded by transparent beads under confining
pressure. If the confining pressure is weak, the hydrogel sphere
tends to rearrange the surrounding matrix as it swells; for strong
confinement the sphere deforms and tends to fill the interstices
of the bead packing as is shown in Fig. 1A. The overall degree of
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swelling was found to be well described by a model that balanced
swelling pressures and contact forces, making some assumptions
about the distribution of deformation. While the deformation
state and the swelling ratio of the hydrogel sphere can be mea-
sured, the internal stress and strain distributions are not directly
accessible in the experiments.

Modeling provides a complementary approach — thermody-
namic and kinetic models of hydrogel swelling have been suc-
cessfully used to predict the evolution of the concentration and
deformation of constrained hydrogels10 and tested against exper-
iment11,12. However, because hydrogels are highly deformable,
they change shape considerably when swollen or indented. Due
to the difficulty of capturing these dramatic deformations, model-
ing of hydrogels has often been restricted to simple geometries13.
Incorporation of constraints that arise naturally in applications,
such as the surrounding matrix of soil particles, is also a chal-
lenge for modeling14.

In this paper, we aim to build a simulation methodology to
predict the structure of a swollen hydrogel bead in a realistic
matrix, and determine how confinement modifies the mechan-
ical properties, such as distribution of strain, that are difficult
to resolve experimentally. To do so, we recast hydrogel expan-
sion as an optimization problem, discretize the gel using finite
elements and solve the resulting problem to identify thermody-
namic equilibrium states. Other finite element models of hydrogel
swelling have enabled researchers to access stress and strain dis-
tributions13,15. Variational approaches have been previously used
to compute thermodynamic hydrogel profiles under certain class
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Fig. 1 Hydrogel swelling under 3D confinement. A Snapshots of an initially-spherical hydrogel (blue) embedded within a granular medium composed
of glass beads (hazy transparent circles) packed within a transparent acrylic chamber. As the hydrogel swells, it deforms strongly due to confinement.
Black circles show dyed beads used as tracers to quantify any deformations of the granular packing. The images are taken following the same
experimental protocol as in Ref.9. B Simulation snapshots of a swelling hydrogel surrounded by stationary hard-sphere beads (grey spheres) at various
intermediate stages of energy minimization. C Corresponding simulated images obtained by rasterizing the configurations in subfigure B and projecting
the the viewing plane.

of constraints14,16. The mechanics of contact for constrained hy-
drogels have been also explored analytically for prototypical ge-
ometries17. However, there is presently no general purpose finite
element scheme to solve for equilibrium hydrogel shapes with re-
alistic constraints and/or additional energetic influence, such as
surface tension, applied fields, etc. Here, we will use Morpho, a
programmable environment for shape optimization18,19 to con-
struct and solve the model.

The rest of the paper is organized as follows: In section 2, we
review the Flory-Rehner theory of hydrogel swelling, formulate
the equilibrium problem as a shape-driven energy optimization
problem and describe the computational method. In section 3, we
describe the resulting simulations for hydrogel spheres swelling
in the presence of jammed beads and examine results. Finally,
in section 4, we discuss other applications of our method and
possible extensions to it.

2 Model

Theoretical modeling of hydrogel configurations in the literature
often uses a pressure balancing approach, whereby the mixing
pressure and entropic elasticity compete to determine the de-
gree of swelling20,21. Here, we wish to instead pose the prob-
lem as optimizing a free energy to identify stationary states. In
order to do so, we review the Flory-Rehner theory of hydrogel
swelling20,22–27 and present it in a form amenable to discretiza-
tion. The theory constructed reduces to conventional presenta-
tions of pressure balance as shown in the Appendix.

2.1 Theory

Consider a polymer hydrogel in a solvent at a fixed tempera-
ture T with an internal mesh of permanently crosslinked poly-
mer chains. We note that hydrogels with dynamic or transient
crosslinks are also of interest because they give rise to new relax-
ation dynamics and viscoelastic effects, but are not treated here.
Let the number of polymers be Np and the number of solvent
molecules inside the hydrogel be Ns. Let the volume occupied
by one monomer/molecule be νs, in the sense of Flory’s lattice
model15,27. Since νs is fixed, along with the number of polymers
Np in the hydrogel, the only free parameter during the hydrogel
swelling is the number of solvent molecules Ns. Since the swelling
process occurs at a fixed total volume (hydrogel plus the external
solvent) and temperature, the usual Helmholtz free energy for the
mixing of a polymer with a solvent can be used:

∆Fmix = kBT
[
Np lnφ +Ns ln(1−φ)+χNsφ

]
(1)

where kB is the Boltzmann constant and φ = xNp/(Ns + xNp) is
the volume fraction of the polymer molecules, with x being the
number of units per polymer. χ is the Flory-Huggins mixing pa-
rameter27. Since we are considering highly swollen hydrogels,
we can assume that Np ≪ Ns, thus simplifying the free energy as
follows:

∆Fmix = NskBT [ln(1−φ)+χφ ] (2)

As we noted above, this formalism can be connected to the os-
motic pressure formalism by noting that the swelling process
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also occurs at a constant pressure27, and thus we can equate
the Helmholtz free energy to the Gibbs free energy: ∆Fmix =

∆Gmix
27–30. The mixing process alters the chemical potential µ

of the solvent, resulting in an osmotic pressure, which can be de-
rived from the Gibbs free energy:

Πmix =−∆µ

νs
=− 1

νs

∂∆Gmix
∂Ns

=− 1
νs

∂∆Fmix
∂Ns

. (3)

Similarly, the free energy associated with elasticity can be written
like so:

∆Gel = ∆Fel =
3kBT Nc

2
[α2 −1− lnα] (4)

where Nc is the number of polymer chains, where a chain is
defined as the polymer between two cross-link points27, and
α = (V/V0)

1/3 = (φ0/φ)1/3 is the linear swelling ratio, with V0 and
φ0 being a reference volume and fraction20. The change in the
free energy, under a separability approximation, can we written
as

∆F = ∆Fmix +∆Fel (5)

Equilibrium is defined by the extremization of this free energy,
which is equivalent to the balance of osmotic pressures, Π =

∂∆F
/

∂Ns = 0. Note that due to the direct relationship between
Ns and φ , the free energy can be written solely in terms of φ , and
thus, we can cast hydrogel swelling as a free energy minimization
problem with respect to φ .

2.2 Finite Element Modeling

We now consider a hydrogel where the volume fraction of the
polymer can vary over space, defining x as the 3D spatial coordi-
nate. Hence, we work with a free energy density ∆ fmix(x), which
is now a function of a spatially varying field φ(x). If this space is
discretized using simplicial elements—in this work we use tetra-
hedra in 3D, but the theory is dimensionally independent and
readily applicable to other kinds of elements—it is useful to con-
sider the expression (1) for a single element. We will work in the
deformed frame of reference15 as this is the most natural frame
to express interpenetrability constraints as desired for the appli-
cation. Hence, the energy density locally at a point x in the de-
formed frame of reference will be Eq. (1) evaluated at x divided by
the volume of the element. Since this volume would also be given
by νs(xNp +Ns), we have,

∆ fmix =
Ns

νs(xNp +Ns)
kBT [ln(1−φ)+χφ ] (6)

=
(1−φ)

νs
kBT [ln(1−φ)+χφ ] (7)

This can be expressed in terms of an ‘effective diameter’ of the
solvent molecule d such that d3 = νs

9. In terms of d, this reduces
to,

∆ fmix =
kBT
d3 [(1−φ) ln(1−φ)+χφ(1−φ)] (8)

Similarly for the elastic energy, we can compute the free energy
density by dividing by the volume.

We wish to minimize ∆F =
∫

∆ f (x)dx, where dx is the volume

element. This shape optimization problem amounts to minimiz-
ing this free energy with respect to all the vertex positions xi of
the mesh, ∂∆F

/
∂xi = 0. To compute these derivatives, we use

the chain rule,
δ∆F
δxi

=
δ∆F
δNs

∂Ns

∂xi
(9)

and note that δ∆F/δNs ∝ −Π(x) as discussed in the previous
section. Since each element’s volume is given by V = xNp +Ns,
and xNp is a constant (total number of monomers in the system),
∂Ns/∂xi = ∂V/∂xi, and hence we find,

δ∆F
δxi

∝ −Π(x)
∂V
∂xi

(10)

where V (x) is the volume of the simplicial element and Π(x) is the
corresponding osmotic pressure. The volume is a known function
of its vertices, and thus an analytical derivative of the free en-
ergy with respect to the shape of the hydrogel is obtained, facil-
itating high performance of the resulting code. We program this
functional and its shape gradient in Morpho19. Within this envi-
ronment, we can now minimize this functional in the presence of
additional energies and constraints19 for arbitrary geometries in
any dimension. Details of the Morpho implementation are pro-
vided in the Appendix and codes are provided as Supplementary
Information.

In this work, we assume that the chains are uniformly dis-
tributed throughout the hydrogel, so Nc does not depend on x,
but the formulation above and the implementation in Morpho can
be easily tweaked to allow a spatially varying initial Nc. It can
be seen that we have three non-dimensional parameters, namely,
the Flory-Huggins mixing parameter χ, the relative strength of
the elastic energy to the mixing energy Ncα3/V0 and the refer-
ence volume fraction φ0

20. Given an initial value of φ , we can
vary these parameters to change the minima of the overall free
energy. Thus, we can tune the volumetric swelling ratio, given
by rsw =Vf/Vi = φi/φf = φi/φeq, where the subscripts i and f refer
to initial and final (equilibrium) states. Motivated by the experi-
ments in Ref.9, we choose the values χ = 0.499, Ncα3/V0 = 1 and
φ0 ∼ 0.036, which together set the equilibrium value φeq ∼ 0.1.
Varying the initial volume fraction φi between 0.1 and 1, we get
volumetric swelling ratios rsw = φi/φeq ∼ 1− 10, allowing us to
access the range observed in the experiments.

We leverage a convenient hard constraint available in Mor-
pho, whereby vertices are excluded from a boundary defined by
the contours or level-sets of a scalar function. Inspired by the
experiments described in the introduction9, we introduce hard-
sphere beads surrounding the hydrogel. To mimic the experimen-
tal geometry, Nb hard-spheres are distributed around the hydro-
gel sphere in contact with its surface. An illustrative example,
Fig. 1B, shows snapshots as the minimization proceeds from an
initial spherical state for Nb = 30, comparable to the experimental
scenario, and depicts the final equilibrium state. To account for
the projective imaging used in the experiment, we compute simu-
lated images by rasterizing the configurations in 3D and summing
them along a viewing axis as displayed in Fig. 1C.
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3 Results

We perform simulations of the swelling hydrogel for swelling ra-
tios ranging from rsw ∈ [2,6], inspired by experimental values, and
with varying sizes (Rb) and numbers (Nb) of confining beads.

In Fig. 2A, B and C, we display the equilibrium configuration for
a hydrogel sphere with 10, 20 and 30 adjacent beads respectively
of Rb = 0.7. We observe that the resulting configurations strongly
resemble the morphologies observed in experiments as shown in
Fig. 1A and Ref.9. We also display corresponding cross sections
of these configurations with the state of strain in Fig. 2D-F as will
be discussed later. The final volume Vf of the hydrogel is less than
that of the final volume Vf,u of the unconstrained hydrogel with
the same parameters. We define the percent swelling suppres-
sion due to the confinement then as c = (∆Vf,u −∆Vf)/∆Vf,u ×100,
where ∆V =V −Vi is the volume of the solvent absorbed. We plot
this swelling suppression as a function of the number of beads Nb
in Fig. 2G for a swelling ratio of rsw = 3 and bead radius Rb = 0.7.
The increase in the swelling suppression with confinement is con-
sistent with the observations in the experiments in Ref.9

3.1 Internal strain

Next, we reconstruct the state of strain in the deformed gel as fol-
lows. First, we run a corresponding simulation without the bead
constraints to obtain the unconfined swollen profiles. By com-
paring the elements and their vertex positions in the constrained
and unconstrained swollen meshes, we can compute the Cauchy-
Green strain tensor (CG) for each element as follows. First, we
compute a Gram matrix for every element Vk in the confined
mesh,

Gk
i j = si · s j, i ∈ {1,2,3} (11)

where, s⃗i = v⃗i
k − v⃗0

k is the vector connecting the 0th and ith vertex
of the element. We also compute the corresponding Gram matrix
for the reference unconfined element,

(Gk
ref)i j = sr

i · sr
j, i ∈ {1,2,3}. (12)

From these quantities, we compute the Cauchy-Green tensor for
the volume element Vk as,

CGk
i j = (Gk

ref)
−1
il Gk

l j, i ∈ {1,2,3}. (13)

In the present work, both constrained and unconstrained meshes
have the same topology. It is however important that if refine-
ment or element exchanges are performed during optimization
that they be executed on both meshes to preserve an element-
to-element map between the two final states for the CG tensor
calculation to be valid.

In Fig. 2H, we plot the Trace of this tensor (I1 = Tr(CG)), aver-
aged over angular variables, as a function of the distance from the
center, thus probing the strain due to confinement. We also dis-
play similar plots of the determinant of this tensor (I3 = det(CG)),
which corresponds to the local volume change, in Fig. 2I. We can
reconstruct and visualize these quantities spatially. Example pro-
files of Tr(CG) sliced across the x− y plane for the simulations in
Fig. 2A, B and C are shown in Fig. 2D, E and F respectively.

From this analysis, we observe that the strain is largely confined
to the outer half of the hydrogel sphere, and is increasingly local-
ized to the outer extremities as we increase the number of beads.
For a small number of beads, the strain profiles are markedly dif-
ferent from those expected from a uniform spherical confinement,
which would result in a constant value of Tr(CG) throughout the
hydrogel. Indeed, the localization of strain a posteriori justifies a
key assumption of the model developed in Ref.9: that the sphere
can be decomposed into an undeformed core and a highly de-
formed outer region.

3.2 Contact mechanics

To understand the contact mechanics of the gel-constraint inter-
face, we compute the contact forces between the hydrogel and
the beads as follows. We obtain the swelling force at each mesh
vertex by taking the gradient of the free energy (Eq. 5) with re-
spect to the vertex positions. The total contact pressure per bead
for various swelling ratios and bead radii are shown in Fig. 3. We
observe an increase in the pressure as a function of the swelling
ratio and a steeper increase with the bead radius as confinement
increases. A few examples of this force at the boundary are plot-
ted in Fig. 4A, B and C. As expected, this force is largest at the cen-
ter of the contacts due to the constraints. To probe the mechanics
of the hydrogel-bead contact, we plot the 1D profiles of the con-
tact pressure, averaged over 1D boundary slices of the forces and
over all the beads. As shown in Fig. 4D, this profile follows the
Hertzian contact mechanics estimate of p = a

√
1− (d/d0)2) close

to the contact point. As discussed in Ref.9, Hertzian contact me-
chanics is a good first approximation for this system provided a
few requirements, one of them being that the linear strains re-
main small —(Rf,u −Rf)/Rf,u ≈ 50%. For the swelling ratios that
we have used, our maximum value for (Rf,u −Rf)/Rf,u is ≈ 20%,
and so we are well within the linear elastic regime. Our model
also does not include any friction or adhesion between the hy-
drogel and the beads, which is another crucial requirement of
the Hertzian theory. Lastly, we also assume that the gel does
not phase separate31. Our results thus provide further support
for the applicability of Hertzian contact mechanics assumed in
the model developed in Ref. 9 and confirmed experimentally. We
also see in the right panel of Fig. 4D that the extent to which a
Hertzian profile is followed decreases when the contacts overlap,
echoing the analysis in Ref. 9 for stronger confinements, namely
that the radii of curvature of the bead and the hydrogel must re-
main much larger than the radius of the area of contact between
them for model to be applicable.

4 Discussion

In this paper, we formulated a general approach to determin-
ing the equilibrium configurations and properties of osmotically
swollen hydrogels under arbitrary confinement in 3D. Recasting
the state of the system as the solution to an energy optimization
problem enables us to take advantage of optimization theory and
permits convenient enforcement of constraints.

We applied this framework to a specific case of the swelling
of a large grain of uncharged, macroscopically homogeneous,
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Fig. 2 Hydrogel Swelling in 3D. A, B, C Swollen hydrogels with Nb = 10, 20 and 30 surrounding beads respectively of radius Rb = 0.7. The swelling
ratio is rsw = 3. D, E, F Trace of the Cauchy-Green tensor Tr(CG) sliced along the x− y plane for the simulations in A, B and C respectively. G The
% suppression of swelling as a function of Nb. H Tr(CG), averaged along angular variables, as a function of distance from the center of the hydrogel,
plotted for various number of beads. The distance is normalized by its maximum. I The corresponding plots for the determinant of the CG tensor.

A B

C D

Nb = 20 Beads

Nb = 30 Beads

Fig. 3 Average contact pressure. The average pressure experienced by a single bead for hydrogels with varying swelling ratios and radii of beads on
the left, with the values along the cyan and magenta dashed lines shown on the linear plot on the right, for Nb = 20 (A,B) and Nb = 30 (C,D). Panel
A shows a jump in the pressure, beyond a level of confinement.
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0 10 20
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C
Nb=20 Nb=40 Nb=30

Force

Fig. 4 Contact forces for a swollen confined hydrogel. A, B, C Gradient of the hydrogel functional at the boundary of the hydrogel for number of
beads Nb, swelling ratio rsw and bead radius Rb equal to (20,2.4,0.5), (40,3.0,0.3) and (30,2.4,0.7) respectively. D The average contact force as a
function of the normalized arc-length d/Rb away from the center of the contact (as illustrated in the inset) for the simulations in A, B and C. The
dashed line shows a fit to the Hertzian contact pressure profile, p = a

√
1− (d/d0)2). We can see that the Hertzian model works well when the contacts

are independent, but starts to diverge away from it at larger d/Rb values when the contacts overlap.

non-thermoresponsive hydrogel (i.e., polyacrylamide) as an
experimentally-validated prototypical example. Our resulting nu-
merically optimized configurations give fresh insight into the un-
usual mechanical properties of these gels that are not experimen-
tally accessible. Notably, we observe a transition in the behavior
as a function of confinement: for small enough confinements, the
strain is localised on the outside of the sphere with the core of
the hydrogel remaining relatively strain-free. At higher confine-
ment, the strain becomes more and more uniformly distributed
throughout the hydrogel matching the configuration expected for
a sphere swelling with a fixed outer boundary. We also examined
the contact mechanics of the gel-bead system, finding a transition
from Hertzian to non-Hertzian behavior in the contact pressure
distribution as a function of swelling.

We formulated and solved the problem using our open source
shape optimization environment Morpho, which means that we
can readily accommodate a number of experimentally relevant
extensions to the model. We could easily incorporate other ener-
gies such as gravitational potentials, electric fields, surface ten-
sion and surface elasticity, for example. By allowing the con-
straining beads to move with a pinning energy, we could model
situations where the confinement pressure is finite.

We note that our results are applicable for hydrogels with uni-
formly distributed chains, swelling in an ideal solvent with no
ionic charge, pH variations or any other contaminants, which
could occur in soil. Further, our results sought equilibrium config-
urations of the hydrogels, and thus do not account for the kinetics
of the process. Lastly, we did not consider swelling extents high
enough to cause fracture or other changes in the topology of the
hydrogel. Studying such effects would allow further insights in
the confined swelling process.

While we investigated homogeneous hydrogels, our framework
can be easily used to impose a position-dependent swelling ratio,
elasticity, etc. which can also be used in applications such as hy-
drogel bi-layers32–35 or other functional hydrogels. Further, it can
be readily extended to include ionic contributions20. Our method
could also be adapted to study the kinetics of swelling in the qua-
sistatic limit where experiments typically take place by recasting
the optimization problem as a gradient-flow problem with an ap-
propriate time-stepping scheme. In addition, careful application
of refinement could be used to accommodate topological changes,
or strain dependent connectivity energies could be incorporated
in order to study fracture of hydrogels36,37.
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Appendix

Osmotic Pressure

Conventional presentations of hydrogel swelling rely on a
pressure-balance approach. In this appendix, we show that our
optimization formalism reduces to the regular theory. To do so,
begin by noting that the mixing contribution to the free energy,
∆Fmix, is given by the Flory-Huggins theory. The osmotic pressure
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contribution from this energy is

Πmix =− 1
νs

∂∆Fmix
∂Ns

(14)

Because the volume fraction φ depends on Ns,

φ =
xNp

(xNp +Ns)
, (15)

we may re-express derivatives with respect to Ns using the chain
rule,

∂

∂Ns
=

∂φ

∂Ns

∂

∂φ

=−
xNp

(xNp +Ns)2
∂

∂φ

=− 1
xNp

φ
2 ∂

∂φ
.

Hence,

1
kBT

∂∆Fmix
∂Ns

=
∂

∂Ns
{Ns [ln(1−φ)+χφ ]}

= [ln(1−φ)+χφ ]

+Ns

(
− 1

xNp
φ

2
)

∂

∂φ
[ln(1−φ)+χφ ]

= [ln(1−φ)+χφ ]−
(

Ns

xNp
φ

2
)[

−1
(1−φ)

+χ

]
We rearrange Eq. (15),

Ns

xNp
=

1
φ
−1 =

(1−φ)

φ
,

and use this to eliminate Ns/xNp from the osmotic pressure,

1
kBT

∂∆Fmix
∂Ns

= [ln(1−φ)+χφ ]−
(

Ns

xNp
φ

2
)[

−1
(1−φ)

+χ

]

= [ln(1−φ)+χφ ]− (φ(1−φ))

[
−1

(1−φ)
+χ

]
= [ln(1−φ)+χφ ]+φ −χφ(1−φ)

= φ + ln(1−φ)+χφ
2.

We hence recover the standard result, expressed for example as
Eq. (8) from Ref.20:

Πmix =− 1
νs

∂∆Fmix
∂Ns

=−kBT
νs

[
φ + ln(1−φ)+χφ

2
]

(16)

Note that in the literature, this osmotic pressure is some-
times expressed in terms of an ‘effective diameter’ of the solvent
molecule9:

Πmix =−kBT
d3

[
φ + ln(1−φ)+χφ

2
]
, (17)

which can be readily understood, since it implies d3 = νs.

Parameter Symbol Value

Flory-Huggins parameter χ 0.499
Relative elastic strength Ncα3/V0 1

Reference volume fraction φ0 0.036
Confining bead radius Rb [0.5, 1]

Swelling ratio rsw [2,6]
Number of beads Nb [5,10,. . . 40]

Table 1 Parameters used for the hydrogel swelling simulations.

Simulation details
To compute the structure of the hydrogel in Morpho, we start
by constructing an initially spherical Mesh corresponding to the
unit ball |x|2 < 1 with Morpho’s meshgen module. An Optimiza-
tionProblem object is then defined and a Hydrogel functional,
implementing the above discussed free energy density, is added
to it. For hard confinements, we define level-set constraints
corresponding to the objects (spheres, ellipsoids, planes, etc.)
through the ScalarPotential object from the functionals module.
A ShapeOptimizer object is then created to optimize the shape.
We perform gradient descent with a fixed step size. A Volume
object is used to keep track of the volume of the hydrogel during
relaxation.

To initialize the positions of the hard spheres, we define a
dummy shell mesh with radius R+Rb with Nb number of vertices
placed randomly. We first confine the vertices to lie on the shell
by using a ScalarPotential object. We then define an electrostatic
repulsive pairwise interaction between the vertices using a Pair-
wisePotential object from the functionals module, thus proceed-
ing to solve the Thomson problem. The resulting mesh vertex po-
sitions are used as the sphere centers for the level set constraints.
We thus get equidistantly packed spheres on the outer shell.

All 3D visualizations are made using the povray module. The
slices of the Cauchy Green strain tensor’s trace are generated us-
ing the meshslice module.

The parameters used in the simulations are listed in Table 1.

Supplementary codes
Here, we briefly describe the codes provided in as Supplementary
Information.:

sphere.mesh: This is the 3D sphere mesh used in all the simu-
lations in this paper, in the Morpho .mesh format.

sphere.vtk: The same mesh as above in the .vtk format for con-
venience.

ConfinedHydrogel.morpho: This script defines the Confined-
Hydrogel Class to set up the simulation discussed above.

main.morpho: This script uses the ConfinedHydrogel.morpho
file to simulate the system for a given set of parameters. We equi-
librate the confined hydrogel first, followed by the corresponding
unconfined equilibration.

computeCauchyGreen.morpho: This script uses the results from
the main.morpho file to compare the confined and unconfined
hydrogel meshes to compute the Cauchy-Green strain tensor as
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discussed in the main text.

computeContactPressure.morpho: This script uses the results
from the main.morpho file to compute the average contact pres-
sure between the hydrogel and the beads.
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