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Coiling of semiflexible paramagnetic colloidal chains

Aldo Spatafora-Salazar,a‡ Steve Kuei,a‡ Lucas H. P. Cunha,a and Sibani Lisa Biswala

Semiflexible filaments deform into a variety of configurations that dictate different phenomena man-
ifesting at low-Reynolds number. Harnessing the elasticity of these filaments to perform transport-
related processes at the microfluidic scale requires structures that can be directly manipulated to
attain controllable geometric features during their deformation. The configuration of semiflexible
chains assembled from paramagnetic colloids can be readily controlled upon the application of exter-
nal time-varying magnetic fields. In circularly rotating magnetic fields, these chains undergo coiling
dynamics in which their ends close into loops that wrap inward, analogous to the curling of long
nylon filaments under shear. The coiling is promising for the precise loading and targeted transport
of small materials, however effective implementation requires an understanding of the role that field
parameters and chain properties play on the coiling features. Here, we investigate the formation of
coils in semiflexible paramagnetic chains using numerical simulations. We demonstrate that the size
and shape of the initial coils are governed by the Mason and elastoviscous numbers, related to the
field parameters and the chain bending stiffness. The size of the initial coil follows a nonmonotonic
behavior with Mason number from which two regions are identified: 1) an elasticity-dependent non-
linear regime in which the coil size decreases with increasing field strength and for which loop shape
tends to be circular, and 2) an elasticity-independent linear regime where the size increases with field
strength and the shape become more elliptical. From the time scales associated to these regimes,
we identify distinct coiling mechanisms for each case that relate the coiling dynamics to two other
configurational dynamics of paramagnetic chains: wagging and folding behaviors.

1 Introduction
The conformations of semiflexible filaments play essential roles
in a wide variety of phenomena, ranging from biological physics
to processing of polymer solutions and fiber suspensions.1–5 In
the instance of fluid flow-driven deformation, particularly that of
shear flow, the competition between viscous stresses and filament
elasticity leads to multiple types of morphological dynamics in-
cluding buckling while tumbling,6 snaking turns,7 and even coil-
ing of the ends via curling that leads to self-entanglement.8–11

Such flow-induced microdynamics in semi-flexible filaments have
been investigated extensively as they give rise to bulk rheological
properties and flow behaviors,1,12 from elastic instabilities13–15

to shear thinning and normal stress differences.16 Additionally,
controlled manipulation of the geometric features of the de-
formed filaments is desirable to perform mechanical tasks at the
micro-scale and enhance transport.17–20

Achieving precise control requires the specific design of fila-
ments that can reconfigure in response to changes in an external
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field that is not imposed by the surrounding fluid.21,22 Uniform
time-varying magnetic fields satisfy this necessity. Model mag-
netic filaments can be produced from the directed assembly of
paramagnetic colloidal particles,23,24 which magnetize under a
static magnetic field and assemble into linear chains to minimize
the dipolar interaction energy between the induced magnetic mo-
ments. The induced dipoles respond quickly to changes in the
direction of the magnetic field, leading to the reorientation of
the chains and facilitating their manipulation with time-varying
magnetic fields.25–27 Incorporating macromolecular linkers, like
DNA or adsorbing polymers, during the assembly confers elastic
properties to the chains similar to conventional semi-flexible fil-
aments.25,28–30 Under different types of time-varying magnetic
fields, these chains acquire unique morphologies like helices31,32

and wave-like patterns.33,34 Leveraging the dynamics of these
driven colloidal systems is crucial for the propulsion of micro-
robots,32,35 the pumping of particulates in microfluidic devices
by mimicking ciliary strokes,21,36–38 as well as the loading and
transportation of cargo to targeted sites.39,40

The most common approach to actuate semi-flexible param-
agnetic chains is to use an in-plane circularly rotating magnetic
field (CRMF),25,41,42 which changes direction while maintaining
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a constant magnitude. The parameters of the CRMF define the
interplay between viscous and magnetic stresses acting on the
chains.43,44 As a result, unique bending deformations transpire
as an initially straight chain attempts to rotate and realign with
the direction of the field. For instance, the ends of the chain can
repeatedly deflect and straighten in a behavior denominated wag-
ging that is analogous to a rocking motion of the tips.45,46 In
another case, both deflecting ends bend considerably by turning
around and aligning parallel to the main chain backbone, folding
into a clip-like configuration.25,45

A third type of deformation dynamics displayed under CRMF
is characterized by deflecting ends that curl anti-symmetrically
until the tips touch the chain backbone, forming closed loops on
each side.45,47 These coils then continue to wrap inward by pro-
gressively incorporating more segments of the central backbone
into two spirals. Eventually, the entire chain collapses into an ef-
fectively smaller lasso-structure that rotates synchronously with
the CRMF.48 Similar wrapping behavior has also been reported
for paramagnetic chains in the absence of macromolecular link-
ers, where the CRMF induces the formation of triangular clus-
ters at both ends that then grow by rotating and consuming the
backbone of the chain until both ends merge into a 2D cluster
with crystalline arrangement of the colloids.49–51 These magnet-
ically induced coiling dynamics are also reminiscent of the self-
entanglement of long filaments when subjected to very high shear
rates, which start by curling ends that wrap several times to form
tight loops.8,10,11

Recently, the coiling of semi-flexible chains was demonstrated
to be viable for cargo-loading applications by enclosing non-
magnetic cargo within the loops of the chain for subsequent
translocation of the material by changing the type of magnetic
field.40 Thus, it is important to understand how the parameters
of the CRMF and the elastic properties of a chain affect the coiling
deformation process. Previous studies analyzed the propagation
velocity of the coiling spirals as a function of the field strength
and identified scaling laws that change according to the absence
or presence of elastic linkers.47,49

In this work, we employ numerical simulations to characterize
the morphology and size of the first loop formed during the anti-
symmetric coiling process of bead-spring paramagnetic chains
of different stiffness deformed under various CRMF parameters.
Furthermore, we find relevant time-scales for the formation of
the first loop, and identify two regimes based on the size of the
initial loop, each having distinct shapes, time-scales, and mech-
anisms of deformation. These regimes indicate that the wagging
and folding behaviors of semi-flexible chains are limits of the coil-
ing dynamics under certain conditions of the field strength. Our
results demonstrate how the CRMF parameters control the geo-
metric characteristics of the loops by changing the mechanism of
coiling deformation.

2 Theoretical Modeling
We employ a similar theoretical framework as our previous work
on the sedimentation of elastic filaments52 and the actuation of
colloidal chains in complex time-varying fields,34 where the simu-
lation technique is based on a deterministic overdamped equation

of motion with hydrodynamic interactions between particles. The
colloidal chains are modeled as a bead-spring system confined in
2D and consisting of N = 101 spheres of radius a with their centers
connected by N − 1 mass-less springs of length l0 = 5a/2. Natu-
rally, the spheres and springs represent the paramagnetic colloids
and linkers like DNA, respectively, from experimental systems.
Hence, the contour length of the chains is L = 5a(N − 1)/2. The
suspending medium is assumed to be a Newtonian fluid of viscos-
ity η . Since the chain sizes are microscopic and the coiling events
arise at velocities in the order of the field frequency or slower,
inertial effects are neglected, leading us to the Stokes regime.
Non-local hydrodynamic interactions were only accounted for
between the beads, neglecting the presence of the springs and
nearby walls. Therefore, the velocities of the particles are formu-
lated as a linear function of the non-hydrodynamic forces acting
on them and their relative spatial arrangement via the mobility
formulation

vi =
N

∑
j=1

Gij ·Fnh
j for i, j = 1, ...,N; (1)

where vi is the velocity of the ith particle, Fnh
j is the sum of the

nonhydrodynamic forces acting on the jth bead, and Gij is a 3×3
mobility tensor encoding the separation between the ith and jth
particles that describes the hydrodynamic interactions mediated
by the fluid and correlates the dynamics of the two particles. In
this work, we use the Rotne-Prager-Yamakawa mobility tensor
given by53,54

Gii =
I

6πηa
(2a)

Gij =
1

8πη

{
1
r
[I+ r̂r̂]+

2a2

3r3 [I−3r̂r̂]
}

for i ̸= j, (2b)

where I is the identity tensor, r is the distance vector between the
particle pair, r = ∥r∥ is its magnitude, and r̂ = r/r is its direction.
Note that Brownian fluctuations are not considered in this formu-
lation since we are interested in understanding the deterministic
dynamics of the system.

Having formulated the mobility problem, the next step is to
compute the nonhydrodynamic forces acting on each bead. Here,
the forces of interest are elastic and magnetic. The elastic
terms consist of stretching and bending forces that arise from the
springs connecting adjacent particles, which in the experimental
system define the rigidity and extensibility of the chains. We de-
fine the local energies of stretching and bending as

U s =
σs

2l0
(r− l0)2 and Ub =

σb

2l0
(θ −θ0)

2 (3)

where σs and σb are the stretching and bending moduli, respec-
tively, θ is the angle formed between two adjacent segments con-
necting three neighboring beads, and θ0 is the equilibrium angle
between the segments. Assuming that the chain can be modeled
as an elastic filament with a circular cross-section of radius equal
to the particle radius a, we set the relationship between the mod-
uli to be σs = 4σb/a2 based on Euler-Bernoulli beam theory. Addi-
tionally, we impose θ0 = 0 in order to study chains of zero intrinsic
curvature, i.e. the chains have a linear shape when unperturbed.
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The elastic forces are then computed as

fs =−∇U s and fb =−∇Ub. (4)

The magnetic forces on the beads arise from the interaction be-
tween the particles’ magnetic dipoles, which are induced by the
spatially uniform external magnetic field. To account for these
dipole-dipole interactions in the simulations, we employ the mu-
tual dipolar model (MDM),55,56 in which the magnetization m of
one bead depends on the intensity of the external field H0 and
the magnetization of the other particles along the chain

mi =
4
3

πa3
χ

[
H0 +

N

∑
j̸=i

Mij ·mj

]
(5)

where χ is the effective magnetic susceptibility of the particles,
and Mij = (3rr/r5 − I/r3)/4π is the grand potential tensor that
describes the mutual induction effect between the dipoles of dif-
ferent particles.57 The external circularly rotating magnetic field
(CRMF) is spatially uniform and rotates in the plane of the chains,
as defined by

H0(t) = H0{cos(2π f t)êx + sin(2π f t)êy}, (6)

where H0 is the field amplitude, f is the field frequency, and
t is time. Note that the circularly rotating field has a time-
independent magnitude that is equal to the amplitude: ∥H0∥ =

H0.

Equation 5 leads to a linear system that depends on the spatial
configuration of the beads and whose solution provides the dipole
moment of each one. After computing these dipole moments, the
magnetic force acting on each particle is determined by48

fmag
i =−

N

∑
j̸=i

3µ0

4πr5

[
(mi · r)mj +(mj · r)mi

+(mi ·mj)r−5
(mi · r)(mj · r)r

r2

] (7)

where µ0 is the magnetic permeability of the vacuum.

The last nonhydrodynamic force to consider arises from steric
interactions that prevent spatial overlap between particles that
come into contact. Here, we employed the Hertz force descrip-
tion58,59 with an empirically chosen elastic modulus of the beads
to account for the steric effects.

Upon computing the nonhydrodynamic forces and calculating
the particle velocities vi from Eq. 1, the particle positions are
evolved in time by

xi(t +∆t) = xi(t)+∆tvi(t) (8)

where ∆t is the time-step.

The problem was nondimensionalized using the chain contour
length L for distance, the field frequency f for time, H0 for the
magnetic field strength, and 4πa3χH0 for the magnetization of
the beads. The equations of motion in our model are defined by
two dimensionless groups. The first is the Mason number, Ma,

which describes the ratio of viscous to magnetic forces60,61

Ma =
144πη f
µ0χ2H2

0
. (9)

The second is the Magnetoelastic number, Mn, that defines the
ratio of magnetic to bending stresses33

Mn =
πa2µoH2

o L2

6σb

χ2

(1−χ/6)(1+χ/12)
. (10)

Ma compares the effects of the two field parameters (H0 and f ),
while Mn expresses how the strength of the external magnetic
field can overcome the flexural rigidity of the chain. However,
to probe for the effective stiffness of the chain, the dimensionless
numbers must account for the ratio between viscous and bending
forces. Therefore, we introduce the elastoviscous number, A, as
a third dimensionless group that defines this ratio based on the
product of Ma and Mn

A =
MaMn

N2

(
1− χ

6

)(
1+

χ

12

)
=

24π2a2L2η f
σbN2 . (11)

Note that A is analogous to the dimensionless term employed to
analyze the morphological dynamics of semiflexible polymers in
shear flow that compares strain rate to the bending modulus of
the fibers.5,7,10 In this work, we probe the coiling dynamics for
various effective stiffness A while varying Ma. As Ma is increased,
Mn is decreased accordingly to maintain a constant A, which
would be analogous to performing experiments at constant fre-
quency f on chains with the same σb while testing different field
strengths H0.

3 Results and Discussions

In our previous work,45,48 the different dynamics undergone by
DNA-linked paramagnetic colloidal chains were mapped on a
state diagram according to the Mason number, Ma (Eq. 9), and
the number of particles in the bead-chain, N. The four types of
dynamics identified were synchronous rotation, wagging, folding,
and coiling. The latter three are characterized by distinct types of
deformation. Long chains display these three configurational dy-
namics based on Ma, which is defined by the CRMF parameters.
Folding and wagging deformations manifest at low and high Ma,
respectively, while the coiling dynamics appear at intermediate
Ma. A schematic of this state diagram is presented in Fig. 1a,
including visuals of the characteristic morphologies observed in
each dynamical mode. The hatched region highlights the portion
of the state diagram that is the focus of this work: the coiling of
long paramagnetic chains, over a range of Ma.

The coiling of experimental chains synthesized from micron-
sized superparamagnetic polystyrene particles (Dynabeads My-
One Streptavidin C1, Invitrogen) linked by biotinylated DNA
strands is shown in Fig. 1b-c, following a previously reported as-
sembly method.34,45,52,62,63 This coiling behavior occurs because
the viscous forces prevent the chain from rotating synchronously
with the CRMF. Instead, only the ends of the chain respond by
realigning with the field direction because the particles in these
regions experience less drag. The backbone of the chain remains
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t = 1.67 s
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t = 2.13 s
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t = 3.15 s 5 µm

b) c)

Rotation

Wagging

Folding

Coiling

a)

Fig. 1 Coiling dynamics of semiflexible chains composed of paramagnetic particles induced by a CRMF. a) Schematic of the state diagram of chain
dynamics reported in our previous work on DNA-linked paramagnetic chains.45,48 The chains can undergo four types of dynamics based on the Mason
number (Ma) and the number of particles (N) in the chain: rigid rotation, wagging, folding, and coiling. The characteristic configurations of the three
deformation dynamics are schematically represented. The hatched area indicates the region of the state diagram studied in the rest of the paper,
corresponding to the coiling of long chains. b) and c) Paramagnetic chains linked by 2000 bp DNA undergoing coiling dynamics in experiments when
subjected to CRMF with different parameters. b) A chain of N = 85 beads driven by a CRMF with strength H0 = 24.9 G and frequency f = 0.5 Hz. c)
A chain of N = 72 beads driven by a CRMF with H0 = 48.6 G and f = 0.3 Hz. Chains were initialized from the straight configuration. The morphology
of the coils changes with the parameters.

relatively stationary, although part of it buckles to compensate for
the mismatch in orientations between different segments. Buck-
ling instabilities occur due to repulsive dipolar interactions be-
tween the linked particles. The ends curl to align with the ex-
ternal field, first becoming first anti-parallel to the chain back-
bone, then orienting towards the backbone, and finally closing
into loops.45,47 Note that as the chain ends coil, the bending cur-
vature propagates outward. After the first loop is formed on each
side, the curling process is repeated, forming spirals around the
initial loops. The chains are initialized from a straight config-
uration when the CRMF is applied, allowing for the coiling of
both ends in an anti-symmetric fashion (S-shape). It is impor-
tant to emphasize this initial condition because previous work has
demonstrated asymmetric coiling (J-shape), where only one end
of the chain undergoes coiling, typically when starting from bent
chain configurations.30,40

Even though the chains in Fig. 1b and 1c both undergo anti-
symmetric coiling dynamics, the shape and size of the coils can
vary according to the field parameters. These differences imply
that the deformed morphologies attained during the coiling pro-
cess are not homogeneous inside the region of the state diagram
(Fig. 1a) in which these dynamics occur. For instance, the initial
loops formed in Fig. 1b are small and have a more circular shape.
In contrast, the first coils formed by the ends of the chain in Fig. 1c
are larger and have a more pronounced elliptical shape. Here, we
characterize the initial loops as they define the rest of the coiling
process. However, the experimental chain models are prone to
local elastic heterogeneities along their length during the assem-
bly process, as well as perturbations caused by Brownian motion.
Coil shapes and sizes are difficult to assess for a given experimen-
tal condition, thus simulations are used to better understand the

impact of magnetic field and chain elasticity on coil properties.

Time-sequences of the coiling dynamics obtained from the nu-
merical simulations of chains with the same length, but with vary-
ing Elastoviscous number A and actuated by CRMFs of different
Ma, are shown in Fig. 2. The shaded snapshots highlight the first
coiling loops formed in each case. For a fixed effective stiffness A,
the geometry of the first loops varies from compactly folded struc-
tures Ma (Fig. 2a) to oval shapes with progressively less curvature
but with different sizes (Fig. 2b-c) as Ma increases. Recall that a
higher Ma at a fixed A implies a decrease in the field strength
and a simultaneous decrease in the Mn. Hence, the initial coil-
ing loops tend to become less compact because the weaker fields
cannot induce significant curvature as the chain ends are curl-
ing. These results agree with our experimental observations from
Fig. 1b-c where the geometry of the coiling loops is affected by the
magnitude and frequency of the magnetic field. Interestingly, the
initial compact coil in Fig. 2a is reminiscent of the morphology ac-
quired by the chains in the folding regime of Fig. 1a. However, the
scenario presented in Fig. 2a differs from the conventional fold-
ing regime in two ways. First, the coil is of shorter length, and
second, the chain coils several times. In the folding regime, once
the chain bends into the clip-like morphology, the entire chain im-
mediately starts to rotate synchronously with the CRMF as a rigid
body. The effect of Ma on the coil size is less clear than the impact
on shape. The size of the initial coils relative to the total chain
length, in terms of a long-axis, appears to decrease with increas-
ing Ma from Fig. 2a to 2b, but then increases with Ma, shown in
Fig. 2c. The impact of field parameters on the size of the coil,
particularly on its radius of gyration, will be discussed later here
in more detail.

The stiffness of the chains also alters the geometry of the coil-
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t= 7.6 t= 9.2

d) e)

Fig. 2 Coiling dynamics obtained from numerical simulations for different cases of dimensionless parameters. Snapshots shaded in blue correspond to
the first coils formed in each case and illustrate how A and Ma alter the morphology. Chains with the same effective stiffness A = 0.0034 undergoing
coiling deformation at various CRMF conditions: a) Ma = 0.005, b) Ma = 0.01, and c) Ma = 0.04. Chains with different stiffness: d) A = 0.0009 at
Ma = 0.005, and e) A = 0.0069 at Ma = 0.04. The chain in d) is stiffer than a) and under the same CRMF conditions. Likewise, the chain in e) is
more flexible than the one in c). After the initial coils are formed, the chains continue to wrap along the backbone.

ing loops for a fixed Ma. This fact becomes apparent by compar-
ing the shapes of the loops in Fig. 2a with those in 2d, where a
decrease in A changes the configuration of the initial loops from
folded structures (Fig. 2a) to less eccentric ellipses (Fig. 2d). This
change is expected, as the lower A signifies an increased stiff-
ness and a lower Mn. Consequently, the initial loop must have a
less compact configuration because the same field strength cannot
bend the stiffer chain to the same extent. It is also worth pointing
out that the initial loops also became shorter after decreasing A.
In contrast, decreasing the stiffness at fixed but larger Ma led to
shorter loops, as seen from the comparison between Fig. 2c and
2e. This trend might be counter-intuitive at first glance. In the
earlier case (Fig. 2a to 2d), the size of the initial loops decreased
with decreasing A, while in this new scenario (Fig. 2c to 2e) the
loops also shortened with increasing A. The only difference be-
tween these changes is the value of Ma. However, in the latter
case the decrease in size was accompanied by a more compact
shape of the loops, as the chain in Fig. 2e is more flexible. This
qualitative analysis reveals that the relationship between the ge-
ometry of the coils and the parameters is not straightforward. A
quantitative analysis is required to understand how the features
of the initial loop are controlled by A and Ma.

The first loop is defined in the simulation when a bead gets in
contact with a particle that is not one of its neighbors in the linear
configuration. To characterize the geometric features of the first
loop formed during the coiling dynamics, the gyration tensor is

computed50,64

Sloop
nm =

1
2ν2

ν

∑
i=1

ν

∑
j=1

(xi
n − xj

n)(xi
m − xj

m) (12)

where ν is the number of beads that make up the loop and xi
n is

the n-th component of the position of the i-th particle. Note that
ν < N/2 because coiling occurs on both ends of the chain anti-
symmetrically. For two dimensions, Eq. 12 has two eigenvalues,
λ1 and λ2, that define the principal axes of the ellipse that best
fits the mass distribution of the coil. This is depicted schemati-
cally in Fig. 3. The sum of the eigenvalues yields the radius of
gyration64,65

Rloop
g =

√
λ1 +λ2, (13)

which we use to quantify the size of the initial coils. The eigen-
values of Sloop

nm are also required to compute the two-dimensional
version of the asphericity parameter,7,65

δ
loop = 1− 4λ1λ2

(λ 2
1 +λ 2

2 )
2 , (14)

which ranges from 0 to 1 and provides a metric of the shape of the
loops. As shown in Fig. 3, an asphericity equal to zero describes
a circle, while a value of unity represents a straight line. Inter-
mediate values of asphericity describe an ellipse, with increasing
values representing ellipses of higher aspect ratio.

Figure 4a shows how the size of the coil changes as a function
of Ma for chains of the same length and with varying A. For a fixed
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Fig. 3 Schematic of the ellipse fitting a coiling loop with principal axes
corresponding to the eigenvalues (λ1 and λ2) of the gyration tensor. To
quantify the size and shape of the loop, the radius of gyration and the
asphericity are computed from the eigenvalues. The asphericity ranges
from 0 to 1, where 0 defines a circle and 1 represent a straight line.

value of A, changes in Ma cannot be caused by modifying the fre-
quency f of the CRMF or the viscosity η of the fluid because both
Ma and A depend on these parameters. Instead, changes in Ma
must strictly be produced by the application of a magnetic field
with different strength H0. Since H0 ∼ Ma−1/2 (Eq. 9), we plot
Rloop

g as a function of Ma−1/2 to indicate that an increase in this
value is equivalent to a direct increase in the magnitude of the
CRMF for a chain of effective stiffness A. Note that Rloop

g is normal-
ized by the chain contour length L due to the nondimensionaliza-
tion of the numerical method. Interestingly, Fig. 4a demonstrates
that Rloop

g follows a nonmonotonic trend with the field intensity.
The size of the initial coiling loop shrinks as the strength of the
magnetic field increases. For these conditions, the decay of Rg

occurs nonlinearly as a power law. At an intermediate strength,
the initial loop attains a minimum size. Afterward, the initial loop
increases linearly with increasing field intensity. This nonmono-
tonic trend clarifies the qualitative observations from Fig. 2a-c
where the initial coil got shorter after increasing Ma and then
grew upon further increase in Ma.

The power of the nonlinear regime at low Ma−1/2 depends
on A. In fact, the power decay ranges from approximately -0.8
to -1.9 as A increases (see Table 1). Therefore, more flexible
chains exhibit a more drastic shrinkage in their initial loop size
when subjected to a smaller change in magnetic field strength
than stiffer chains. In addition, the nonlinear regime is shifted
to weaker fields as A increases. A decaying power-law of the ra-
dius of curvature with field intensity was previously reported by
Yang et al.40 for the asymmetric (one-sided) coiling of very short
chains consisting of paramagnetic particles linked by entangled
PVP brushes. The value of the decaying exponent in their exper-
imental work is -2/3, so the impact of the field intensity is less
drastic than the results obtained here. Additionally, this power-
law was shown only for one chain stiffness. It is important to
note that the radius of curvature measured for those chains cor-
responded to the final microlasso configuration. On the other
hand, the radius of gyration computed in this study defines the
size of the initial coiled configuration in long chains undergoing
anti-symmetric (two-sided) coiling. Hence, exact comparisons
between these results must be done with discretion. Nonethe-
less, the agreement in the nonlinear dependence indicates that
the characteristic dimensions for both types of coiling dynamics

at different stages of the wrapping process can be drastically af-
fected by the field strength. Moreover, our results expand upon
previous work by demonstrating that the power-law depends on
the elastic properties of the chains. Consequently, it is possible
that by assembling experimental chains of lower bending modu-
lus, more pronounced shrinkage in loop size could be produced
when applying stronger CRMFs. Having the capability to deform
the chains into tighter coils could lead to greater control of cargo
loading in contexts where accurate dosage is necessary, like in
targeted drug delivery.

To our knowledge, the linear regime of coil size observed at
higher Ma−1/2 has not been reported previously. Surprisingly, in
contrast to the power-law regime, the linear trend observed at
higher Ma−1/2 in Fig. 4a behaves independently of A. The only
difference is that the linear trend is shifted to lower field inten-
sities for larger A due to the faster decay in initial coil size ex-
perienced by more flexible chains in the nonlinear regime. This
fact suggests that the elasticity of the chain does not play a signif-
icant role in defining the coil size at higher field strengths. In this
regime, we find that the radius of gyration increases as

Rloop
g

L
∼ 0.003Ma−1/2 (15)

for every A, with only minor deviations in the value of each slope
as shown in Table 1. To explain such a trend, we performed a
torque balance between magnetic and viscous contributions act-
ing on a mobile end of the chain. From this analysis, we obtain
a theoretical prediction for Rloop

g as a function of Ma−1/2 that also
depends on the radius of the particles. Accounting for the particle
size used in the simulations, the expression becomes

Rloop
g

L
≈ 0.00313Ma−1/2, (16)

which has excellent agreement with the linear fits in Fig. 4a (see
Table 1). This prediction strengthens the statement that the elas-
ticity of the chain does not play a significant role in the linear
regime of Fig. 4a, since the analysis yielded an expression that
agrees with the simulation results despite the omission of bend-
ing moments in the torque balance. The full derivation of Eq. 16
is presented in the Appendix.

Table 1 Fitting parameters of Rloop
g /L for each A in the nonlinear and

linear size regimes. The error of the slope is calculated with respect to
the theoretically predicted slope from Eq. 16

A Power Slope Slope Error (%)
0.0004 -0.77 0.00295 5.75
0.0009 -0.84 0.00291 7.03
0.0017 -1.12 0.00306 2.24
0.0034 -1.30 0.00316 0.96
0.0069 -1.90 0.00307 1.92

The linear regime represents a parameter space in which pro-
gressively longer portions at the chain ends can be actuated be-
cause the magnetic torque becomes larger as the field strength is
increased. These longer segments then curl as they attempt to
minimize their misalignment with the instantaneous direction of
the CRMF. Since the driven segments eventually constitute the
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Fig. 4 Size and shape of the initial loop formed during chain coiling as a function of field parameters and chain stiffness. a) Nonmonotonic behavior
of the radius of gyration of the first coil (Rloop

g ), normalized by the chain length L, as a function of Ma−1/2 for various A. The size decreases nonlinearly
with Ma−1/2 below the minimum point and increases linearly above the minimum. The linear trend has a constant slope independent of A. The
minimum point shifts to weaker Ma−1/2 as A is increased. b) The minimum Rloop

g decreases with increasing A as a power-law with exponent of -0.3.
Inset: The inverse of Ma∗, which is the Mason number at which each minimum Rloop

g is obtained, also decreases with A as a power-law with an
exponent of approximately -0.25. c) Master curve of the loop size upon normalizing each data series by their minimum points. The shaded region
indicates the nonlinear region of size. An example of a coiled chain (from Fig. 2b) at a minimum point is presented. (d) Asphericity of the first loop
δ loop as a function of the normalized Mason number. The shaded region indicates the non-linear size regime. Examples of coil shapes in the nonlinear
and linear region are shown, corresponding to the first coils from Fig. 2a and 2c.
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first loops on each side of the semi-flexible chain, then Rloop
g must

grow accordingly with rising field strength. This regime seems
to be an extension of the dynamics displayed by paramagnetic
chains that do not have linkers binding the particles. Increasing
the magnetic torque overcomes the viscous drag experienced by
rotating unlinked chains and allows longer chains to rotate syn-
chronously with the instantaneous direction of the CRMF without
breaking up into smaller chains.44,66–68 This increase in length
can be modeled by a similar torque balance and follows a scaling
of N ∼ Ma−1/2,43,60 where N is the maximum number of particles
that will undergo synchronous rotation as a single chain at a given
Ma. This same scaling applies for very rigid chains that are linked
by short molecules, like glutaraldehyde, for which chains longer
than N particles would undergo rigid asynchronous rotational dy-
namics.25 In this work, we have shown that a similar scaling is
applicable to segments of semi-flexible chains actuated above a
transition field strength. Furthermore, the scaling demonstrates
that the size of the loop above that transition point does not de-
pend on the stiffness of the semi-flexible chain.

The smallest coil size is attained at the transition between the
nonlinear and linear regimes, shown by the minimum point for
each A in Fig. 4. As shown earlier, the minimum point shifts
to weaker fields as A increases. In fact, Fig. 4b shows that
the decrease in the transition point follows a power scaling of
(Rloop

g /L)min ∼ A−0.3. The inset of Fig. 4b shows that Ma∗, which
is the Mason number corresponding to each minimum of Rloop

g ,
also changes via a power-law scaling of (Ma∗)−1/2 ∼ A−0.25. Since
lower stiffness allows for larger bending curvatures to develop,
then loops of smaller size can be produced with weaker fields at
the transition point. Upon normalizing the curves of A in Fig. 4a
by their values of (Rloop

g )min and (Ma∗)−1/2 from Fig. 4b, the en-
tirety of the data collapses into a single curve shown in Fig. 4c.
The shaded region indicates the nonlinear regime in the master
curve. These results highlight how to produce an initial coiling
loop of a desired size under a CRMF. By knowing the bending
modulus of a chain and setting the CRMF frequency, A can be cal-
culated. Then, the value of A determines the minimum Rloop

g and
its corresponding (Ma∗)−1/2 by using the scalings from Fig. 4b
and its inset, respectively. Finally, upon deciding the operating
field strength Ma−1/2, the minimum point values can be used to
find the size of the initial loop from Fig. 4c.

The analysis of the loop sizes up until this point has not pro-
vided any insight about the different shapes they can acquire. The
asphericity δ loop presented in Fig. 4d as a function of the normal-
ized Mason number shows the impact that the CRMF parameters
have on the shape of the initial coil. In contrast to the size, δ loop

increases monotonically until it eventually reaches a plateau at
high field intensities. Therefore, the initial coils tend to have
a circular shape under weak fields and become more elliptical
as the strength is increased. Eventually, the coil shape reaches
a plateau at δ loop = 0.93 instead of continuing the ascent to 1.
Asphericities closer to unity are not feasible because of the cur-
vature of the loop and the excluded volume of the particles, i.e.
the coil shape cannot collapse into a straight line. The shaded
region in Fig. 4d indicates once again the nonlinear size regime
from Fig. 4c. Hence, the elasticity-dependent nonlinear regime

is characterized by large circular loops that progressively devi-
ate from a circle as they shrink with rising field strength. On
the other hand, the elasticity-independent linear regime forms el-
liptical loops that approach the limit of a straight line as they
grow with increasing field strength. The values of δ loop in the
linear size regime increase via a saturating exponential func-
tion δ loop = B−C exp(−k((Ma/Ma∗)−1/2 −1)) as indicated by the
dashed curve in Fig. 4d, where B, C, and k are fitting parameters.
These simulation results agree the qualitative observations from
the experimental colloidal chains shown in Fig. 1, where increas-
ing the value of Ma−1/2 from Fig. 1b to 1c yielded coiling loops
that are more elliptical.

It should be emphasized that the compact folded first loop ob-
served in Fig. 2a corresponds to high values of δ loop and conse-
quently this type of coil manifests in the linear size regime. The
elliptical loops from Fig. 2b and 2d correspond to the minimum
points of A = 0.0034 and A = 0.0009, respectively. Since the case
in Fig. 2b is the more flexible of these two, then a weaker field
(higher Ma) is capable of deforming the chain ends into smaller
coils compared to Fig. 2d. Finally, the initial circular loops in the
dynamics of Fig. 2c and 2e appear in the nonlinear size regime.
Once more, the same field intensity can curl the ends of the more
flexible chain (Fig. 2e) into smaller circular loops, compared to
the stiffer chain (Fig. 2c). To better connect the loop morpholo-
gies observed in Fig. 2 with the quantitative results presented in
Fig. 4, the initial loops of some of these cases are drawn inside
Fig. 4c and 4d.

Having characterized the morphological features of the initial
loop, we can now elucidate the mechanism of coiling deforma-
tion occurring in both size regimes. We address this part of the
problem by focusing on the time-scales for initial coil formation.
Figure 5a showcases the number of cycles ( f t)loop of the CRMF re-
quired to form the first loop for each A as a function of the normal-
ized field intensity (Ma/Ma∗)−1/2. The normalization collapses
the results into a single master curve. Once again, the shaded
area indicates the nonlinear size regime. In this region, it takes
less cycles to form the first loop as the magnetic field strength is
increased. The decay in number of cycles approximately follows
the power law scaling ( f t)loop ∼ [(Ma/Ma∗)−1/2]−14/3. Despite the
decay with field strength, it takes more than one cycle of rotation
to form the coils in this nonlinear region. The only exceptions are
the minimum points of the Rloop

g curves, which form their coil at
a constant value of approximately 0.685 for every A, as seen in
Fig. 5b. Furthermore, since the curves of Rloop

g in Fig. 4a shift to
weaker field intensities as A increases, then chains that are more
flexible require less cycles than their stiffer counterparts to coil
at a fixed Ma−1/2. This fact is showcased in the inset of Fig. 5a
where the Mason number is not normalized by the value at the
minimum point. Interestingly, ( f t)loop decreases slightly from the
minimum point and remains constant when the dynamics change
to the stiffness-independent linear growth regime (Fig. 5a). This
constant is ( f t)loop ≈ 0.6. Hence, the initial loops form in this re-
gion in a little under 2/3rds of a period of the CRMF, regardless
of the applied field strength and the size of the resulting coil.

These time scales provide insights into the mechanisms of coil-
ing occurring in each regime. The strong fields in the linear
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regime can exert a significant magnetic torque on the end seg-
ments to drive their reorientation almost synchronously from the
starting straight configuration. Essentially, as the field rotates
from the x-direction to the y-direction, these end segments fol-
low the field with a small misorientation and eventually achieve
a vertical orientation. During this stage of the response, bend-
ing waves travel from the chain ends to the backbone, with the
inward propagation length of the bending wave increasing upon
applying a stronger field intensity. Once the magnetic field direc-
tion rotates toward the negative x-direction, the curvature begins
to propagate outward to accommodate for the curling of the ver-
tical end segments that continue to rotate synchronously with the
field. Hence, the chain ends becoming anti-parallel to the chain
backbone around half a period of the magnetic field. The inward
and outward propagation of the curvature can be seen from the
simulation snapshots occurring prior to the blue-shaded panels of
Fig. 2a, 2b, and 2d. Afterward, as the field rotates toward the
negative y-direction, the anti-parallel ends continue to follow the
field direction until the tips touch the chain backbone and form
the coiling loop. Consequently, the chain attains its initial coiled
state before the magnetic field has completed a single revolution.
This process is independent of the elastic properties of the semi-
flexible chain and increasing the field strength leads to a longer
portion of the chains to deflect, leading to a larger loop size.

Since the coiling loops formed at large field strengths have a
compact folded shape and require less than a single cycle to form,
like those attained in Fig. 2a, we can connect the coiling dynam-
ics to the folding configurations presented in the schematic of
Fig. 1a. Further increasing the field strength in the linear regime
of coiling size will eventually increase the length of the mobile
end segments to a point in which the coil size becomes compa-
rable to the chain backbone. Such a coiling configuration would
in fact correspond to the folding dynamics of DNA-linked param-
agnetic chains.45 Therefore, the transition from coiling to folding
occurs smoothly, i.e. the folding dynamics represent the limit of
coiling deformation at very high field strengths. Note that chains
undergoing folding dynamics also acquire their clip-like structure
in less than a single field cycle.

The field intensities that induce the coiling deformation in the
nonlinear regime are not strong enough to sustain synchronous
rotation of the end segments within 2/3 of a field period. Instead,
the chain ends only deflect slightly in the field’s rotational direc-
tion. After the initial deflection, the chain ends become arrested
as they cannot continue to follow the magnetic field because the
driving magnetic torque cannot overcome the viscous drag. Even-
tually, the magnetic field and the arrested chain ends become or-
thogonal to each other as the field continues its rotation. After-
ward, the magnetic field approaches the arrested ends from the
opposite direction as the field approaches the completion of one
revolution. This significant misalignment causes the arrested seg-
ment to briefly rotate in the opposite direction of rotation. After
a cycle, the field reaches the orientation of the deflected ends and
resumes their deflection in the direction of rotation. This process
creates a rocking deflection in which the segments experience a
forward and backward kick within each revolution of the CRMF.
Over several cycles, there is a net rotation of the chain ends in the
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Fig. 5 Time-scale for the formation of the first loop in the coiling dy-
namics. a) The number of cycles of the external CRMF required to form
the first coil, as a function of Ma−1/2 (inset). When normalized by the
transition value of Ma∗, it is apparent that for values less than 1, the
first coil takes multiple cycles to form, with limiting behavior akin to the
wagging dynamics established in45. For values greater than 1, all coils
form in less than a full cycle, with limiting behavior approaching folding
dynamics. The shaded region indicates the nonlinear regime of Rloop

g from
Fig. 4c, where the number of cycles decreases via a power-law with an
exponent of -14/3. (b) Over a range of A , the minimum points of the

Rloop
g curves all take ≈ 0.685 cycles to coil.
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sense of the CRMF. After enough cycles, the deflected portions of
the chain develop significant curvature to curl and get in contact
with the chain backbone. Ultimately, this leads to the deforma-
tion of the ends into circular coiling loops (low δ loop). Increasing
field strength (decreasing Ma) for a fixed A signifies an increase
in Mn (see Eq. 11), meaning that a stronger field can more readily
overcome the bending stiffness of the chain and produce more sig-
nificant curvature. Therefore, in this nonlinear regime where the
magnetic torque cannot overcome the drag, the increasing field
strength can produce more pronounced curvature over shorter
segments at the chain ends compared to weaker fields, leading to
smaller coil sizes that form over fewer cycles of the field rotation.
Correspondingly, the coiling shape deviates more and more from
the circular morphology as the field strength rises. For a chain
with higher A, and thus larger Mn, the lower rigidity for the same
field strength allows for the formation of even smaller loops over
fewer cycles compared to a stiffer chain, as shown in the inset of
Fig. 5a. This is the reason behind the decrease in loop size when
comparing the simulations in Fig. 2c and 2e.

A connection can also be built between the nonlinear coiling
regime and the wagging dynamics schematized in Fig. 1a. As a
decreasing field intensity requires more cycles to form a loop, ul-
timately a sufficiently weak field will produce a rocking motion
that cannot bring the ends in contact with the chain backbone
to form a loop within a reasonable time-scale. Therefore, we can
conclude that the transition from coiling to the wagging dynamics
observed in experimental DNA-linked is also smooth. Essentially,
the wagging behavior of these chains represents the limit of coil-
ing deformation at very low field strengths, where the rocking
deflection dominates the entire dynamics.

4 Conclusions
We have numerically explored the dynamics of paramagnetic
semiflexible filaments as they coil anti-symmetrically in an exter-
nally applied CRMF, and demonstrate that the size of the initial
coil follows a non-monotonic dependence with Ma−1/2, which can
be broken down into a power law decay and a linear increasing
regime.

In the power law region, coil sizes are dependent on the value
of A, as the field is low enough that the magnetic, elastic, and
viscous forces compete to cause a rocking deflection. Thus, the
chain ends deflect over multiple rotations of the external field, un-
til forming a first coil with lower asphericity. In the linear region,
at higher field strengths, the increase in coil size shows no de-
pendence on A. Here, the greater available magnetic torques and
viscous resistance cause the chain ends to deflect synchronously
with the external field. This leads to a coil formed in less than a
full field rotation with loops of higher asphericity.

Between the power law decay and linearly increasing regime
is a transition value. This point can be predicted as a function
of A and Ma, and can be interpreted as the change from asyn-
chronous to synchronous dynamics of the chain ends, indicating
the transition from a wagging mechanism to a folding mechanism
of coiling ends. This transition point also marks the smallest coil
size achievable for a chain of a given A.

As such, the morphology and timescales of coils in semiflexi-

ble filaments are intricately linked together, but the range of coil
shapes and sizes can be achieved by directed manipulation of fila-
ment properties and the parameters of the applied CRMF. This, in
turn, informs the application, control, and optimization of coiling
dynamics in different contextual applications.
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Appendix

We perform a torque balance by approximating the deflecting
chain ends as a rigid magnetic chain of length ℓ pinned on one
of its ends. The deflected end will constitute the entire perime-
ter of the first loop formed during coiling. Figure 6 illustrates
this pinned rigid-rod approximation on a deflected chain segment
prior to curling. The moment arm of the force is taken to be the
distance from the pinned end. Note that we neglect any bending
moments acting on the pinned end because the linear trend of the
coil size with field strength being modeled here does not change
upon variation of the elastoviscous number (effective chain stiff-
ness).

Assuming a simple dipolar model, the magnetic forces acting
on the particles cancel each other because the two nearest neigh-
bors of any given bead exert equal but opposite forces.43 Since
the last bead on the chain only has one neighbor, the magnetic
force acting on it is not balanced by other magnetic contributions.
Therefore, the magnetic torque on the free end of the chain is
computed only from the angular component of the dipolar mag-
netic force acting on the outermost particle, which has moment
arm ℓ from the pinned end. Considering these assumptions, the
magnetic torque on the chain is

Γmag =
3µ0m2ℓ

4πr4 sin(2α), (17)

where m is the magnitude of the particle magnetization, r is the
center-to-center distance between two particles, and α is the an-
gle between the field direction and the orientation of the long-axis
of the rigid chain also known as the phase lag angle. For a sim-
ple dipolar model, the magnetization is m =VpχH2

0 = 4πa3χH2
0 /3

where Vp is the volume of the spherical particle. The inter-
particle spacing is set to the separation used in the simulations
r = l0 = 5a/2. Substituting m and r into Eq. 17 and simplifying
yields the following expression for the magnetic torque

Γmag =
26

3(5)4 µ0πa2
χ

2H2
0 ℓsin(2α). (18)

In the absence of inertia (due to the low Reynolds number), the
magnetic torque is balanced only by an opposing viscous torque
mediated by the surrounding fluid. Neglecting hydrodynamic in-
teractions between the beads, the viscous torque on the chain can
be expressed as69

Γv =
πηℓ3

4

(
dψ

dt

)
(19)

where ψ is the orientation of the rigid chain and dψ/dt is its
angular velocity. The instantaneous chain angle can be expressed
in terms of the phase lag angle and the angle of the CRMF as
ψ = ωt −α,25,43 where ω = 2π f is the angular frequency of the
CRMF. Substituting these angles into Eq. 19, the viscous torque
becomes

Γv =
πηℓ3

4

(
ω − dα

dt

)
. (20)

Performing a torque balance by equating Equations 18 and 20

Pinned End

Free End

Rigid Approxima�on

Deflec�ng Segments

Fig. 6 Approximation of the deflected chain segment of length ℓ as a
rigid rod pinned on one end. The magnetic torque is computed from the
moment arm ℓ and the angular component of the magnetic force Fmag
acting on the particle at the free end.

yields an expression for the rate of change of the phase lag angle

dα

dt
= ω −

28a2µ0χ2H2
0

3(5)4ηℓ2 sin(2α). (21)

Assuming that the rigid rod rotates synchronously with the field
(which is a valid assumption for the deflecting segments of the
chain in the linear size regime based on the time-scale results
from Fig. 5a), then the phase lag angle will be at steady state.
Therefore, Eq. 21 can be rearranged into the following expression

sin(2α) =
3(5)4ηωℓ2

28a2µ0χ2H2
0
. (22)

The maximum magnetic torque occurs when α = π/4, for which
sin(2α) = 1. Assuming the magnetic torque is a maximum and
substituting the Mason number Ma = 72ηω/µ0χ2H2

0 (see Eq. 9)
into Eq. 22, we can obtain an expression for the length of the
longest rigid chain that can be actuated at a given set of parame-
ters of the CRMF (at a given Ma):

ℓ=
25
√

6
52 a(Ma)−1/2 (23)

which states that ℓ depends linearly on the particle radius a and
Ma−1/2. Note that Eq. 23 indicates that a rigid chain of length
L ≤ ℓ will rotate synchronously with the magnetic field, but the
maximum magnetic torque will be exerted for a length L = ℓ. If
the rigid chain is longer, then the magnetic torque will become
time-dependent and will decrease after reaching the maximum
torque, making the steady state assumption on the phase lag an-
gle invalid.

In the case of a semiflexible chain, Eq. 23 describes the maxi-
mum length of the end segments that can be actuated to rotate
synchronously at a given Ma−1/2. Changing Ma−1/2 will corre-
spondingly modify the length of the deflected segment, at least
within the linear regime shown in Fig. 4. The entirety of the
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length of a deflected chain segment will eventually wrap around
to form the first loop on one side of the chain during the coiling
dynamics. Consequently, the length ℓ will constitute the perime-
ter of the coiled loop. Considering the coiling loops to be ellipses,
we can relate their major and minor radii to the perimeter. The
exact computation of the perimeter of an ellipse requires an in-
finite series of terms involving the two principal radii. However,
a reasonable approximation for this perimeter can be calculated
from ℓ ≈ 2π(λ1 +λ2)

1/2/
√

2 ∼ 4(λ1 +λ2)
1/2, where the λ s corre-

spond to the squares of the principal radii of the ellipse best fitting
the coiling loop, which is depicted in Fig. 3. Using Eq. 13, we find
that Rg ∼ ℓ/4. Substituting this approximation into Eq. 23 yields
the following expression for the radius of gyration of the loop in
terms of a and Ma−1/2

Rloop
g =

23
√

6
52 a(Ma)−1/2 ≈ 0.7839a(Ma)−1/2. (24)

Normalizing this equation by the total length of the semiflexible
chain L and accounting for the normalized particle size used in
the simulations of a/L = 0.004, Eq. 24 for Rloop

g becomes Eq. 16,
which we present here once again for completeness:

Rloop
g

L
≈ 0.00313(Ma)−1/2. (25)

This theoretical prediction, arising from the balance of magnetic
and viscous torques on a rigid chain pinned on one end, recov-
ers the linear relationship with Ma−1/2 obtained from the simu-
lations. Strikingly, it also predicts essentially the same stiffness-
independent slope presented in Fig. 4a.
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