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Coupled bond dynamics alters relaxation in polymers
with multiple intrinsic dissociation rates†

Robert J. Wagnera and Franck J. Vernerey∗b

Dynamic networks containing multiple bond types within a continuous network grant engineers an-
other design parameter – relative bond fraction – by which to tune storage and dissipation of me-
chanical energy. However, the mechanisms governing emergent properties are difficult to deduce
experimentally. Therefore, we here employ a network model with prescribed fractions of dynamic
and stable bonds to predict relaxation characteristics of hybrid networks. We find that during stress
relaxation, predominantly dynamic networks can exhibit long-term moduli through conformationally
inhibited relaxation of stable bonds due to exclusion interactions with neighboring chains. Mean-
while, predominantly stable networks exhibit minor relaxation through non-affine reconfiguration of
dynamic bonds. Given this, we introduce a single fitting parameter, ξ , to Transient Network Theory
via a coupled rule of mixture, that characterizes the extent of stable bond relaxation. Treating ξ

as a fitting parameter, the coupled rule of mixture’s predicted stress response not only agrees with
the network model’s, but also unveils likely micromechanical traits of gels hosting multiple bond
dissociation timescales.

1 Introduction
Networked polymeric materials containing multiple bond types
have become increasingly investigated for their exemplary com-
binations of mechanical strength and toughness.1–5 Many state-
of-the-art polymers contain both relatively stable covalent bonds
and dynamic physical (or covalent) bonds (e.g., metallo-ligand
interactions, ionic bonds, hydrogen bonds, etc.) within the same
continuous network.6–12. In such systems, the stable bonds often
form a scaffold that supports the dynamic bonds throughout the
material. Under these conditions, the stable bonds may preserve
suitably high moduli, while incorporation of the sacrificial or re-
versible dynamic bonds introduces tunable viscoelasticity6,13–17

and self-healing ability9,18,19.
While designing such materials, researchers often employ phys-

ically motivated constitutive modeling techniques through which
the properties of individual bonds may be used to predict the
globally emergent responses of the networks.20–23 However, real-
time experimental characterization of such materials’ microstruc-
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tures remains exceedingly challenging and is relatively limited to
techniques such as small angle neutron scattering24, or inference
from diffusion and rheology data25. Therefore, gauging the de-
gree of phenomenology in such models or interpreting their pa-
rameters is somewhat difficult, thus limiting the confidence in ex-
trapolations made about microstructure using these approaches.

Fig. 1 Hybrid network schematic. A schematic of a dynamic network
including both stable bonds (blue-to-grey) and dynamic bonds (red-to-
grey) is displayed before (left) and after (right) a set of dissociation and
attachment events at characteristic rates kd and ka, respectively.

To address this limitation, many researchers have resorted
to network-scale modeling to explore polymeric microstruc-
ture.3,26–31 We here employ one such recently developed
model29 to investigate the percolation threshold of stable bonds
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in 2D networks containing interstitial dynamic bonds (Fig. 1).
Through this model, we examine the mechanical stress response
of networks containing different fractions of stable and dynamic
bonds, and then relate the clustering and geometric percolation of
stable bonds to the emergence of a long-term, finite stress plateau
beyond which further stress relaxation is likely governed by rep-
tation32, bond lifetime renormalization33, and other topological
effects neglected by the simple 2D model.

This network model deliberately hosts just one relaxation
mechanism – that of bond dynamics-driven reconfiguration –
and therefore allows us to isolate the effects of bond dynamics
on dissipation over intermediate experimental timescales (above
short term segmental relaxation but below long term reptation34

timescales). We find that under some topological conditions, a
portion of stable bonds that are fully percolated undergo non-
affine conformational relaxation due to the reconfiguration of
neighboring dynamic bonds. Equipped with this information we
establish a coupled rule of mixture for hybrid networks using
transient network theory (TNT).23 This rule introduces just one
additional, dimensionless parameter, ξ ∈ [0,1], that characterizes
the degree to which stable bonds can conformationally relax due
to adjacent bond dynamics. Finally, we apply the model (in con-
junction with other pertinent phenomena, such as bond lifetime
renormalization33,35, and force-sensitive bond dissociation36) to
predict the mechanical relaxation response of an experimental
gel6 that hosts two reversible, covalent bond types with differing
intrinsic binding energies.

2 Discrete model overview
The network model used here, introduced by Wagner, et al.
(2021)29, simulates discrete networks within 2D, periodic, repre-
sentative volume elements to which deformations may be applied.
For detailed methods pertaining to network initiation and spa-
tiotemporal normalization, see Supporting Information (SI) Sec-
tion I.A. The networks are comprised of N = 400 (see Fig. S1 for
domain size convergence results), four or eight-armed (z∈{4,8}),
star-shaped macromers whose central junctions represent perma-
nent crosslinks or “nodes” and whose free ends are functionalized
with binding sites or “stickers”. Either stable or dynamic telechelic
bonds may form between neighboring nodes, the latter of which
are assigned some constant dissociation kinetic rate, kd . Bond
association is captured through the sub diffusive Rouse scaling
utilized in Wagner, et al. (2021)29, that gives the attachment
rate as33:

ka = τ
−1
0

(
b
d

)4
, (1)

where b is the length of a single Kuhn segment, τ0 is the time
it takes a Kuhn segment to diffuse a distance of b, and d is the
pairwise separation distance between neighboring nodes having
open stickers within cutoff distance d < lc (see SI Section I.B for
details). Here, lc = Nb where N is the number of Kuhn segments
in an attached chain so that lc is its contour length. Both bond
association and dissociation are treated as memoryless processes
such that the probability of a reaction event occurring at time t
follows29:

dP = ke−ktdt, (2)

where k represents either the rate of bond association, ka – gov-
erned by Eqn. (1) – or dissociation, kd (set a priori). For sim-
plicity, attached chains are treated as ideal entropic springs that
impart pairwise tensile forces on the nodes to which they are at-
tached according to:

fff t = 3kbT
λ√
Nb

rrr
|rrr|

, (3)

where kb is the Boltzmann constant, T is the ambient tempera-
ture, λ = |rrr|/(

√
Nb) is the chain stretch, and rrr is the end-to-end

vector of a chain. Entropic forces are balanced by repulsive forces
deriving from steric interactions between neighboring nodes or
polymer chains. For simplicity, repulsive forces are captured via a
phenomenological inverse potential for soft particles37 that yields
a force-distance relation of:

fff r =
ddd
|ddd|

−γE
[
l−1
c +(lc)γ d−(γ+1)

]
, if d < lc

0, if d ≥ lc
, (4)

where E is a parameter with units of energy that characterizes the
extent of repulsion, γ = 2 is a scaling coefficient that modulates
particle stiffness, ddd is the end-to-end separation vector between
nodes, and lc = Nb is the cutoff distance beyond which steric in-
teractions are impossible.

Pairwise interactions are used to compute the unbalanced force
on each node, denoted by α, as fff α = ∑β fff αβ . Here, fff αβ repre-
sents a single pairwise force (either fff t or fff r) between node α and
its β th neighbor. Assuming quasi-equilibrium, unbalanced forces
are used to iteratively equilibrate each node’s position after every
deformation or network reconfiguration step (i.e., “timestep”) us-
ing a gradient descent approach.38 Namely, the position of node
α is updated from iteration k to k+1 according to:

xxxα
k+1 = xxxα

k +η
−1 fff α , (5)

where η is an overdamping coefficient with units of mass per
time-squared set to ensure stable convergence. Note that η is not
to be confused with the overdamping coefficient of Brownian dy-
namics models, which relates to the thermal energy, kbT , particle
diffusion coefficient, D, and differential time interval, ∆t, through
the Einstein relation (η ∼ kbT D−1∆t−1).39,40 Rather, η is a nu-
merical value set arbitrarily to ensure stable convergence to the
lowest energy network conformation within each timestep on the
basis of quasistatic loading conditions. After equilibration within
each timestep, network stress is computed via the virial formula:

σσσ =
1

2V

N

∑
α

∑
β

rrrαβ ⊗ fff αβ , (6)

where V is the domain volume, rrrαβ is the end-to-end vector be-
tween node α and attached neighbor β , and fff αβ denotes the
pairwise tensile and repulsive force between said nodes.

Since the discrete model domains are periodic, rectangular vol-
ume elements, incremental changes to their four corners cause
the chains that transcend the four boundaries to stretch or
shorten. Accordingly, incompressible deformations may be ap-
plied by displacing the four corners of the domain. To conduct
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simulated stress relaxation experiments, we here apply a sym-
metrical velocity gradient of the form, LLL = diag(−ε̇, ε̇), where ε̇

is the true strain rate. When ε̇ is set far greater than the intrin-
sic bond dissociation rate, kd , dynamic networks approach elastic
behavior. Therefore, to ensure that bond dynamics are negligible
during initial loading for stress relaxation experiments, we here
set ε̇/kd = 100. The networks are strained until they reach a prin-
cipal stretch of λ = 2, after which the deformation is held and
stress relaxation is allowed to occur for t∗ ≈ 4 (where t∗ = tkd),
corresponding to relaxation within 2% of the steady state value
predicted by exponential decay. The applied loading history (true
strain with respect to time) is depicted in Fig. S2.

Discrete model parameters are preserved from Wagner, et al.
(2021)29 unless specified otherwise in SI Section I.C. However,
here distinct fractions of stable bonds (with kd = 0) and dynamic
bonds (with kd assigned a priori) are randomly and uniformly in-
troduced throughout the networks. The relative fractions of sta-
ble and dynamic bonds are assigned as f and 1− f , respectively,
where f ∈ [0,1]. Note that while the discrete model parameters
may be assigned physical units as needed41, they are here pre-
scribed in arbitrary normalized units. This is permissible for the
purposes of this work, which are to examine the isolated (yet
coupled) microstructural evolutions of each bond type, as f is
swept, and then relate said microstructures to each chain popu-
lation’s weighted stress. Observations are then used to develop a
more general and physically representative continuum approach
for application to real-world polymers.

3 A standard rule of mixture for the TNT
While this discrete model permits direct observation of microscale
statistics, its relatively high computational expense and phe-
nomenological volume exclusion interactions motivate the devel-
opment of a representative continuum approach (e.g., TNT). TNT
predicts the Cauchy stress of a dynamic network comprised en-
tirely of linear entropic springs as23,29:

σσσ = ckbT µµµ +πIII, (7)

where c is the attached chain concentration, kb is the Boltzmann
constant, T is the ambient temperature, πIII is the isotropic pres-
sure enforcing elastic incompressibility, and µµµ is the conforma-
tion tensor whose eigenvalues and eigenvectors define the in-
stantaneous principal magnitudes and directions of average chain
stretch, respectively. Supposing constant values of kd and ka, the
conformation tensor evolves as21,23,29,42:

µ̇µµ = LLLµµµ +µµµLLLT − kd(µµµ −−− III).* (8)

To model networks containing both stable bonds and dynamic
bonds, we postulate a general rule of mixture whereby total net-
work stress is given by the weighted sum-of-independent Markov

* While recent development reveals that Eqn. (8) is specific to non-incompressible
plastic flow, we find that it is a suitable approximation for the conditions of constant
average rate kinetics, and intermediate stretches (λ = 2) used here. Specifically,
it yields less than 3% error in principle chain stretch over the updated evolution
equation, which gives: µ̇µµ = LLLµµµ +µµµLLLT − kd

[
µµµ −3/ tr(µµµ−1)III

]

processes governing each bond type’s stress response:

σσσ = ckbT
[

ps f µµµ
s + pd(1− f )µµµd

]
+πIII, (9)

where c is the total chain concentration, while ps and pd are the
respective probabilities that a given stable or dynamic bond are
attached. Note that µµµs = bbb becomes the left Cauchy Green ten-
sor for stable bonds (kd = 0). While ps requires some a priori
knowledge about the conversion ratio of activated stable bonds,
the probability of finding a dynamic bond in the attached state
may be approximated as pd ≈ ka/(ka + kd).23 Applying stress re-
laxation loading conditions (SI Section I.C), solving for π, and
normalizing by the peak stress (see SI Sections II.A-B for details)
gives the normalized stress relaxation response as:

σ
∗ = P−1

[
ps f + pd(1− f )e−kd t

]
, (10)

where the normalization factor, P = ps f + pd(1− f ), enforces that
σ∗ is unity immediately upon halting the load rate.

Predicted stress from the discrete model and Eqn. (10) are
presented in Fig. 2A for four-armed macromers (z = 4), and mul-
tiple values of f . The dissociation rate was set such that ka ≫ kd ,
regardless of f , ensuring that the fraction of attached bonds re-
mained above 95% for all networks (see SI Section III.A for de-
tailed discussion on the interplay between kd , ka, and network
connectivity). Here, ps and pd were measured from the discrete
model (Fig. S4). While Eqn. (10) provides good agreement with
discrete model predictions for purely dynamic ( f = 0) or stable
( f = 1) networks, it over-predicts the long-term stress for hybrid
networks (0 < f < 1).

Fig. 2 Fitting the general rule of mixture. (A) Normalized stress, σ∗,
is plotted with respect to normalized time, t∗, for the ensemble average
of n = 10 discrete network simulations (solid curves with shaded regions
representing standard error, S.E.) and as predicted by Eqn. (10) (dotted
curves) when kd = 1. (B) Absolute errors between the models’ σ∗ are
plotted with respect to t∗. (A-B) Results are shown for f = 0% (red),
f = 20% (maroon), f = 50% (grey), f = 80% (teal), and f = 100% (cyan).
Note that t∗ is normalized by the same value of k−1

d for all values of f ,
such that the timescale is the same for all curves.

To elucidate the origins of disagreement, we utilize the dis-
crete model to examine the isolated stable bond and dynamic
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bond characteristics, beginning with the independent probabil-
ities (denoted, respectively, as X s and Xd) that the stable and
dynamic bonds form independently percolated networks.43 Note
that the continuous network formed by both bond types is always
percolated for this model, however the probabilities that either
bond type forms its own continuous paths spanning the domain
bounds varies. Fig. 3A-C and Fig. 3D-F display undeformed
networks with f ∈ {0.2,0.5,0.8}, comprised of four-armed (z = 4)
and eight-armed (z = 8) macromers, respectively. When f < 0.2,
the stable bonds rarely, if ever, form continuous networks (i.e.,
X s ∼ 0) (Fig. 3G-H). Instead, they form clustered regions sus-
pended in a matrix of dynamic bonds (Fig. 3A,D). In contrast, at
high f ( f > 0.6 for z = 4 and f > 0.8 for z = 8), the stable bond
networks are always percolated.

One might expect that when the stable bonds percolate through
the domain, they will store stress purely elastically, and that Eqn.
(10) will provide good agreement with the network model pre-
dictions. Yet Fig. 2A indicates that when 0.8 ≤ f < 1 (X s = 1,
Fig. 3G-H) long-term stress is still overpredicted by Eqn. (10),
suggesting that the stable bonds undergo some relaxation. While
in physical materials, long-term relaxation may slow down due
to the bond lifetime renormalization effect put forth by Stukalin,
et al. (2013)33, in the present discrete model, these effects are
temporarily ignored to isolate the impact of coupled bond dynam-
ics at intermediate timescales and due to applied strain. The re-
sults suggest that conformational degrees of freedom in the stable
bonds permit non-affine relaxation modes when inter-connected
with dynamic bonds. Indeed, since no relaxation is observed
when f = 1, it must stem from dynamic bond reconfiguration
when f < 1.

Furthermore, one might also expect that whenever the stable
bonds are discontinuous, their clusters may relax completely such
that no long-term stress persists. Yet the network model predicts
non-negligible long-term stress when f = 0.2 (Fig. 3A), imply-
ing that stable bonds clusters are conformationally constrained
by surrounding dynamic bonds. Assuredly, this result is due to
the phenomenological choice of steric repulsive interactions and
node packing employed in the discrete model, which mitigate
non-affine deformations of the stable bonds. Whereas physical
polymers will relax at longer timescales due to diffusion and rep-
tation dynamics32,44, this simple model neglects these for the
time being such that any non-affine relaxation observed is at-
tributed to bond dynamics. Nevertheless, these findings highlight
the significant coupling between the stable and dynamic compo-
nents of network stress, thereby motivating amendment to the
rule of mixture.

4 Coupling between bond types mediates relaxation
To amend the rule of mixture we posit that some fraction, ξ ,
of stable bonds in hybrid networks relax at rate kd due to re-
configuration of adjacent dynamic bonds, whereas the fraction
1−ξ cannot relax over intermediate timescales because they are
constrained by the stable bond network structure, suffer from
relaxation retardation due to bond lifetime renormalization ef-
fects33,35, or are otherwise constrained by steric interactions (as
in the case of the 2D, highly packed networks observed in the

Fig. 3 Network percolation with respect to stable bond fraction and
crosslink functionality. (A-C) Sample discrete networks with z = 4 when
(A) f = 20%, (B) f = 50%, and (C) f = 80%, illustrate the clustering of
(A) stable and (C) dynamic bonds. (B) Dynamic bond paths highlighted
by red and stable bond paths highlighted by blue illustrate how under
certain conditions (e.g., sufficiently long chain length and high function-
ality, z), both bond types can form their own percolated load paths. (D-F)
Comparable schematics to (A-C) for z = 8 reveal comparable clustering
formations. (G) The probability that the stable (cyan) and dynamic (red)
bonds independently form geometrically percolated networks (X s and Xd)
are plotted with respect to f for (G) z = 4 and (H) z = 8. (G-H) The
regions shaded grey demark transition zones wherein simultaneous, in-
dependent percolation of both bond types is possible (X s > 0∩Xd > 0).
The probability that the dynamic bonds percolate also decreases as the
fraction ka/(ka + kd) decreases (Fig. S3-S5). (G-H) the region wherein
both stable and dynamic bonds can independently percolate (grey) exists
over a higher range of mixing fractions, f , and with greater probability
for networks with higher coordination (X s ≈ Xd ≈ 1 from f ∼ 0.4−0.5).

current discrete model). Incorporating ξ into Eqn. (9), gives a
coupled rule of mixture for hybrid networks:

σσσ = ckbT
[
(1−ξ )Psbbb+ξ Ps

µµµ +Pd
µµµ

]
+πIII, (11)

where we use Ps = ps f and Pd = pd(1− f ) for brevity. Solving for
π, and normalizing stress (see SI Section II.C for details) gives the
relaxation response:

σ
∗ = P−1

[
(1−ξ )Ps +ξ Pse−kd t +Pde−kd t

]
. (12)

When ξ = 1, all stable bonds relax completely, and the stress re-
sponse is purely dynamic whereas when ξ = 0, no stable bonds
relax and Eqn. (12) returns the decoupled rule of mixture. The
discrete model stress and Eqn. (12) are in excellent agreement
for all values of f when ξ is treated as a fitting parameter (Fig.
4A). Significantly, the isolated stress contributions from the sta-
ble (Fig. 4B) and dynamic bonds (Fig. 4C) also agree between
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models. As confirmed by Figs. S3.A or S3.B, the relaxation rate
remains kd for all relaxation responses in Fig. 4A-C, regardless of
stable bond fraction, f , or bond type. Therefore, the only major
difference between curves in Fig. 4A or Fig. 4B is the extent (and
not timescale) of stress decay. Furthermore, Figs. S3.A and S3.B
confirm that the values of kd (i) set a priori in the discrete model,
(ii) emerging stochastically from the discrete model, and (iii) fit-
ted to the discrete data with the continuum model are all in good
agreement indicating consistency between approaches. With this
confirmed, we may interpret the isolated stress responses of each
bond type.

Fig. 4 Fitting the coupled rule of mixture. (A) Normalized stress, σ∗,
is plotted with respect to normalized time, t∗, for the ensemble average
of n = 10 discrete simulations (solid curves with shaded S.E.) and as
predicted by Eqn. (12) (dotted curves) when kd = 1. Stress is decoupled
into the contribution from (B) stable bonds, σ∗

s , and (C) dynamic bonds,
σ∗

d . Error between models is consistently < 5% at all values of t∗ and
f . Note that t∗ is normalized by the same value of k−1

d for all values
of f , such that the timescale is the same for all curves. Regardless,
the relaxation timescale remains independent of f (as supported by Fig.
S3.A-B).

Fig. 4C confirms that isolated dynamic bond stress from both
models decays exponentially to zero stress at a rate of kd , in all
networks. This indicates that only stable bond relaxation is sig-
nificantly affected by coupling in the discrete model and justifies
the way in which the second term of Eqn. (12) depends only
on the stable bond fraction (through Ps). Furthermore, it sup-
ports the presumption that, ignoring short term α-relaxation45

(which is not modeled on the basis of very fast short term seg-
mental relaxation45,46), bond types with faster dissociation ki-
netics in multi-bond-type networks dominate the reconfiguration-
driven relaxation response.17 Fig. 4B confirms that stable bond
stress predictions agree between models, and that ξ characterizes
the extent to which stable bonds conform non-affinely into lower
energy states at a rate of kd (Fig. 4B). However, it is not im-
mediately clear whether ξ defines a fraction of stable bonds that
relax entirely, the degree to which all stable bonds relax partially,
or some combination of both. To elucidate the meaning of ξ , as
it applies to the network model, we leverage directly measured

discrete topological data.

Fig. 5A-B illustrate the probability mass functions (PMFs) of
stable and dynamic bonds’ end-to-end stretches, λλλ = rrr/(

√
Nb), in

the principal direction of loading at the start and end of relax-
ation ( f = 0.5). The insets display the 2D PMFs of chain stretch,
along with isolated network snapshots at the start and end of re-
laxation. As evidenced by the axisymmetric 2D PMF of Fig. 5B
(t∗ = 4), dynamic bonds reconfigure completely to an isotropic
state, whereas the elongated 2D PMF and negligible reduction
in variance from Fig. 5A confirm that stable bond relaxation is
partial. To quantify modes of stable bond relaxation, Fig. 5C
presents the distributions of single-chain relaxation strains, εεεr, in
the principal directions of the orthonormal basis {eee1,eee2}, and the
change in end-to-end norms, ||εεεr||. Notably, some stable bonds
elongate (||εεεr||> 0), indicating that thermal fluctuations stochas-
tically move a minority of stable bonds to temporarily higher
energy states. However, most stable bonds relax into lower en-
ergy states (||εεεr||< 0), and shorten in the direction of principal
stretch, eee2. In contrast, stable bonds undergo roughly equiprob-
able shortening or lengthening in direction eee1. Lengthening in
eee1 can occur due to chain stretching but is confirmed to occur
predominantly due to reorientation.

Fig. 5C confirms that most stable bonds relaxed, but to a vari-
able degree. Therefore, ξ cannot be mapped to a single, physical
value, rather it lumps the effects of stable bond shortening and
reorientation into some effective scalar. Nevertheless, we seek to
understand how ξ evolves with respect to f . First, we recognize
that that no stable bond relaxation occurs in permanent networks
(i.e., ξ ( f = 1) = 0). We also observe that, some fraction of stable
bonds, η , may fail to relax even in the limit f → 0 (consistent with
studies of highly packed granular networks that jam through ex-
clusively repulsive forces47,48 or polymers that exists below their
glass transition state due to low free volume49). Motivated by
these observations, we introduce a simple phenomenological scal-
ing rule that gives the degree of stable relaxation as:

ξ ∼ 1−
√

η2 + f 2(1−η2). (13)

When η = 1 (i.e., no stable bonds relax, even in the limit f → 0),
Eqn. (13) devolves into ξ ∼ 1 regardless of the stable bond frac-
tion, f . This states that if a network of entirely dynamic bonds
deforms affinely and fails to relax stress, then so too will net-
works containing increasingly large fractions of stable bonds. In
contrast, when η = 0 (indicative of full stable bond relaxation
for f → 0, which is likely more representative of polymers), Eqn.
(13) devolves to ξ ∼ 1− f suggesting that the fraction of stable
bonds that relax over intermediate timescales is proportionate to
the relative compositional fraction of dynamic bonds in the over-
all network (as seen in the following section for an experimentally
tested gel).

Fig. 5D depicts the degree of stable bond non-relaxation, 1−ξ ,
with respect to f ∈ (0,1] for kd ∈ {0.1,1,10} and z = 4. As f in-
creases, 1−ξ increases, implying that percolation of stable bonds
inhibits their relaxation. This interpretation is further supported
by the fact that networks with higher coordination (begetting
greater stable bond percolation) display (1−ξ )-versus- f relations
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Fig. 5 Topological relaxation data. (A-B) The PMFs of (A) stable and (B) dynamic bond end-to-end stretch, λ , at t∗ = 0 and t∗ = 4. Insets of (A-B)
display the joint (i.e., 2D) PMFs of the respective bond types and the visually isolated stable and dynamic bond networks, also at times t∗ = 0 and
t∗ = 4. (C) The PMFs of εr

22 = (r2 − r0
2)/r0

2 (blue), εr
11 = (r1 − r0

1)/r0
1 (green), and ‖εεεr‖= (|rrr|− |rrr0|)/|rrr0| (black) are presented where rrr0 and rrr are the

end-to-end lengths of stable bonds at time t∗ = 0 and t∗ = 4, respectively. (D) Fitted values of 1−ξ are plotted with respect to f for three different
values of kd . Discrete circles represent the results of the network model, while dashed curves represent fitted functions per Eqn. (13) where η = 0.52
for kd = 0.1 (magenta, R2 = 0.94), η = 0.46 for kd = 1 (grey, R2 = 0.96), and η = 0.22 for kd = 10 (green, R2 = 0.99).

that extrapolate to greater values of η (Fig. S6). Surprisingly,
networks in which stable bond percolation is enhanced by in-
creased chain length – although well-represented by Eqn. (12)
– do not exhibit higher η suggesting a diminishing effect of sta-
ble bond percolation on relaxation inhibition. Notably, without
sufficient network connectivity (e.g., for short chain networks,
Fig. S7-S8), the coupled rule of mixture cannot accurately pre-
dict stable bond relaxation, as it becomes dominated by floppy
deformation modes43 at shorter timescales.

Another factor influencing network percolation is dynamic
bond reaction rates. Networks with higher kd generally demon-
strate greater stable bond relaxation in the limit f → 0 (η = 0.52
for kd = 0.1 whereas η = 0.22 for kd = 10) (Fig. 5D). Since all
networks relaxed for t∗ = t/kd = 4, one might expect identical be-
havior regardless of kd . However, the parameters governing ka

are preserved across simulations so that the steady state fraction
of attached dynamic bonds (pd ≈ ka/(ka + kd)), decreases as kd

increases. This indicates that η is correlated with pd and suggests
that networks in which ka ≫ kd mitigate conformational change
of stable bonds to a greater extent in a manner that supports the
concept of bond lifetime renormalization discussed in the follow-
ing section.33

It must be noted that the failure of stable bonds to relax be-
low their independent percolation threshold is here attributable

to steric interactions arising from the phenomenological pairwise
repulsive potential, node packing, and 2D conditions utilized in
the discrete network. Lowering the degree of repulsion or node
density, as well as implementing the model in 3D, would inhibit
this effect by increasing the networks’ effective free volumes.49

While reduced chain mobilization is certainly observable in poly-
mers below glass transition conditions (e.g., low temperature and
free volume), even glassy polymers are expected to relax residual
stress over longer timescales at rates inversely related to polymer
packing and inter-chain interaction strength.50–52 Therefore, the
discrete model is not representative of long term relaxation, but
rather usefully elucidates the effects of bond kinetics at intermedi-
ate timescales (above the timescale of short term α-relaxation35

but below the timescale of reptation and diffusion32). Neverthe-
less, the concept of finite η within polymeric networks is seem-
ingly non-physical and in the remainder of this work η = 0 (i.e.,
ξ ∼ 1− f ) is observed.

5 Coupling effects on dynamic hydrogel relaxation

To exhibit the utility of the coupled rule of mixture, we apply it to
the stress relaxation data provided by Richardson, et al. (2019)6

for hydrazone covalently adaptable, 8-arm, poly(ethylene glycol)-
based hydrogels. These gels contain “slower” and “faster” benzyl-
hydrazone (bHz) and alkyl-hydrazone (aHz) bonds with kinetic
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dissociation rates of kβ and kα , respectively. Here, kα is not to
be confused with the attachment rate described in prior sections.
Based on the experiments’ use of parallel plate rheometry, Eqn.
(12) is rederived for simple shear conditions as:

σ
∗ = P−1

[
(1−ξ )Pβ e−kβ t +ξ Pβ e−kα t +Pα e−kα t

]
, (14)

where Pβ = f pβ and Pα = ( f −1)pα ; f is the fraction of bHz; and
pβ and pα are the attached fractions of bHz and aHz, respectively
(pβ = pα > 0.9 assuming network equilibrium is met before strain
is applied and that the attachment rate is much greater than the
detachment rate) (see SI Section II.D for detailed derivations).
Significantly, we have again postulated that the coupled stress
term relaxes at the faster of the two kinetic rates, kα .17

As indicated by Richardson, et al. (2019)6, and evidenced by
non-exponential relaxation curves for f = {0,1} (Fig. 6A), bHz
and aHz bonds exhibit slower relaxation at longer timescales than
immediately after strain is applied. While a similarly observed
effect in the discrete network model is attributed to a low free
volume-induced, glassy-like state, a more suitable explanation for
this behavior in gels is the bond lifetime renormalization effect
proposed by Stukalin, et al. (2013)33, which posits that reversible
bonds – while detaching at some mean thermodynamic rate ac-
cording to an Arrhenius type equation35,53 – relax network stress
only as fast as they may attach into new configurations. Essen-
tially, the renormalized bond lifetime accounts for functional end
groups’ tendencies to repeatedly dissociate and associate with the
same neighboring chains before diffusing through sufficient space
to bind into lower energy states, thereby retarding the long-tail
relaxation rate. We here incorporate bond lifetime renormaliza-
tion into the continuum framework per the details of SI Section
E.

To fit the non-exponential relaxation of the experimental data,
we find that we must also account for the change in polymer
chains’ free energies as they are extended beyond their mean
equilibrium stretch of λ = 1 (where λ = r/(

√
Nb) for Gaussian

chains29). Following Eyring’s supposition that intrinsic bond life-
time within complex polymer systems decreases with increasing
chain force54, we utilize Bell’s model36,55–57 that gives the force-
adjusted bond lifetime according to:

τi = τ0 exp
(

εi − ft∆x
kbT

)
, (15)

where i ∈ {α,β} denotes either aHz or bHz; τ0 remains the time
it takes a single Kuhn segment to diffuse its own length, b; εα

and εβ are the bond activation energies of aHz and bHz, respec-
tively; ft is the single chain force from Eqn. (3); ∆x is the reaction
coordinate characterizing the distance from the equilibrium bond
length to the activation barrier; kb is the Boltzmann constant; and
T is temperature.

Accounting for both bond lifetime renormalization and force-
adjusted bond dissociation kinetics through Eqn. (15) (see SI
Section II.E for details) gives the effective relaxation rate of each

respective bond type as:

kα ≈
[
c∗open(1− f )

]1/3

τ0

[
K0

α exp

(
−
√

σ∗

σ∗
0

)
+

1
c∗open(1− f )

]−1

,

(16)
and:

kβ ≈
(
c∗open f

)1/3

τ0

[
K0

β
exp

(
−
√

σ∗

σ∗
0

)
+

1
c∗open f

]−1

, (17)

where c∗open = b3copen is the total open sticker concentration,
copen, normalized by the characteristic Kuhn volume, b3; K0

i =

exp(εi/kbT ) is the dissociation kinetic constant of bond type i ∈
{α,β} when it connects a chain at the equilibrium stretch (such
that the force-free bond lifetime is K0

i τ0); and σ∗
0 defines the in-

trinsic bond dissociation rate’s sensitivity to internal stress, where
σ∗

0 → ∞ begets stress invariance. Analytically, σ∗
0 is treated as a

fitting parameter but it is related to the bond reaction coordinate
length, ∆x, by:

∆x = b

√
N sin(2γ)

3pγ
σ∗

0 , (18)

where N = 88 is the approximate number of Kuhn segments of
length b = 0.78 nm, based on the molecular weight of the 8-
armed, star-shaped macromers used in experiments (Mw = 8,000
g mol−1) and that of ethylene glycol (Meg = 44.05 g mol−1). Fur-
thermore, p ≈ pβ ≈ pα > 0.9 is the fraction of attached chains and
γ = 0.1 is the experimentally applied shear strain magnitude.6,41

Note that through Eqns. (16) and (17), the relaxation rate goes
to zero when the open sticker concentration or bond fraction ( f
for bHz and 1− f for aHz) of the corresponding bond type is zero.

This model has five dimensionless free parameters, K0
α , K0

β
,

c∗open, σ∗
0 , and ξ as well as a fifth unknown parameter, τ0. While

c∗open, σ∗
0 , and ξ are liable to change with respect to the rela-

tive bond fraction, K0
α and K0

β
are intrinsic constants associated

with aHz and bHz bonds, respectively. Furthermore, τ0 is the
timescale of monomer diffusion treated as identical between func-
tional groups since they are on the same order molecular weight.
Therefore, the steps used to fit the model parameters are as fol-
lows:

1. Fit the normalized stress versus time for the purely aHz net-
work with τ0, K0

α , c∗open, and σ∗
0 as the fitting parameters

(since ξ = 0 without bHz present). K0
α is then fixed moving

forward for any networks containing aHz.

2. Fixing τ0, fit the normalized stress versus time for the purely
bHz network with K0

β
, c∗open, and σ∗

0 as the only fitting pa-

rameters (since ξ ≈ 1 for a network comprised of bHz). K0
β

is fixed moving forward for networks containing bHz.

3. Fit the remainder of the mixed networks’ stress responses
with σ∗

0 , c∗open, and ξ treated as free parameters.

Fitting the parameters per the procedure above and the meth-
ods detailed in SI Section II.F, the model predicts that the
timescale of monomer diffusion is on the order of 20 µs (con-
sistent with the segmental relaxation timescale of comparable
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telechelic bond groups such as poly(isobutylene) at room temper-
ature)46. It also predicts that the bond activation energies of aHz
and bHz are εα = kbT lnK0

α ≈ 38.5 kJ mol−1 and εβ kbT lnK0
β
≈ 85.7

kJ mol−1, respectively (where an ambient temperature of T ≈ 293
K is assumed). For comparison, the activation energy of hydrogen
bonding in water is on the order of 18 kJ mol−1 while that of sin-
gle carbon-carbon bond is upwards 271 kJ mol−1 indicating that
the model predicts realistic values.58,59 Indeed, fixing these val-
ues while treating ξ , c∗open, and σ∗

0 as fitting parameters for the
mixed networks, the coupled rule of mixture predicts stress re-
sponses in excellent agreement (R2 > 0.99) with the experimental
data (Fig. 6A).

Fig. 6 Experimental validation. (A) The coupled rule of mix-
ture with bond lifetime renormalization and force-dependent bond dis-
sociation (solid curves) is fit to the experimental stress relaxation
data (circles) for hydrazone covalently adaptable network with f ∈
{0,10,20,30,40,70,100}% bHz. f = 0 is represented by red and f = 1
is represented by cyan. R2 > 0.99 for all values of f . Experimental data
adapted from Richardson, et al. (2019).(B) Fitted values of 1−ξ (black
circles) are plotted with respect to f . The dotted curve represents the
scaling relation 1 − ξ ∼ f (with a correlation coefficient of R = 0.99).
(C-D) The normalized distance between open stickers, r∗open and bond
activation length scale, x∗, are plotted with respect to f, respectively.
The dotted curves represent the fits from linear regression analysis giving
correlation coefficients of R =−0.56 and R =−0.30, respectively.

Fitted values of the bHz non-relaxation degree (1−ξ ), average
normalized distance between open stickers (r∗open = c−1/3

open /Nb),
and normalized bond reaction coordinate length (x∗ = ∆x/b
through Eqn. (18)) are presented in Fig. 6B-D, respectively.
The values of r∗open (Fig. 6C) suggest that the distance between
open stickers is believably on the order of a chain’s contour length
(here, Nb ≈ 70 nm). Specifically, r∗open ∼ 2 indicating that most

open stickers are not within reach of adjacent open sites and
thus partially explaining the appearance of slower relaxation rates
over longer timescales. Interpreting x∗ (Fig. 6D), we see that the
reaction coordinate length scale is roughly on the order of two
to four Kuhn lengths (where b = 0.78 nm) suggesting that the
distance between the minimum energetic spacing and the transi-
tion length is on the order of 1.6 to 3.2 nm. Alternatively, rec-
ognizing through Eqns. (3) and (15) that the dissociation rate
for either species may be written as ki = k0

i exp(3λx∗/
√

N), then
λ0 =

√
N/3x∗ is the stretch at which the dissociation rate increases

by a factor of e1 as compared to the force-free rate, k0
i = (K0

i τ0)
−1.

On average, this occurs at a predicted chain stretch of λ = 1.8.
Note that, while we here simply treat x∗ as a single fitting pa-
rameter for both species, more accurate fitting is attainable by
decoupling this length scale for aHz and bHz. However, we find
that decoupling ∆x for both bond types into separate parameters
does not significantly impact the relation between ξ and f (the
primary focus of this work).

Significantly, neither r∗open nor x∗ are strongly correlated with
the fraction of stable bonds, f . Thus, while still significant for
the non-exponential relaxation response observed across all hy-
brid networks, bond lifetime renormalization and force-sensitive
bond dissociation are not the primary factors influencing differ-
ences observed between these samples. In contrast, the degree of
bHz non-relaxation, 1−ξ , is strongly correlated with f , justifying
the choice of scaling through Eqn. (13), under the condition that
η → 0 and ξ ≈ 1− f .† Furthermore, it proves necessary to ac-
count for some degree of stable bond relaxation through ξ to fit
the observed stress response. In other words, a standard rule of
mixture – presuming that all bHz relax no faster than the rate al-
lowed by kβ – does not predict the correct mechanical response.
Together, the necessity of including the coupled rule of mixture
and the strong correlation between 1− ξ and f , suggest that the
degree of coupled relaxation is a significant effect governing the
observed trends as the relative fractions of each bond type are
swept in this model hydrogel.

6 Conclusion
Here we utilized a network model to explore coupled stress re-
sponse of networks containing multiple bond types within one
continuous network. We discovered that for a simple 2D network
model whose only relaxation timescale is governed by bond dy-
namics, long-term moduli may subsist at low stable bond fractions
due to low free volume and hinderance of stable chain reptation.
However, this result is specific to the phenomenological repulsive
potentials, high packing fractions, and 2D framework employed
in the discrete network model such that it is not expected to hold
in 3D frameworks or real-world systems. Indeed, stored stress in
even tightly packed polymer systems decays at longer timescales
due to segmental relaxation and reptation.34 Meanwhile, long-
term moduli of polymers with high free volumes (e.g., swollen

† As mentioned previously, finite values of η are not expected for polymeric systems
wherein reptation and Rouse diffusion ensure relaxation, especially for swollen gels
whose polymer volume fractions are on the order of 0.01-0.1. 41
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gels) are likely unaffected by inter-chain topological volume ex-
clusion. This result nevertheless emphasizes the important influ-
ence that network topology has on stable chains’ segmental relax-
ation. A more representative finding of the network model is that
even stable bonds may undergo non-affine, conformational stress
relaxation over intermediate timescales due to adjacent dynamic
bond reconfiguration. Notably, the rate of stable bond relaxation
in the discrete model – whose only source of stress relaxation is
stochastic bond exchange – coincides with that of the prescribed
dynamic bond dissociation. These effects motivated the introduc-
tion of a novel, dimensionless coupling parameter, ξ , that weights
the degree of stable bond relaxation at rate kd and which inversely
correlates with the stable bond fraction, f . Incorporating this pa-
rameter into TNT, we developed a coupled rule of mixture for
hybrid dynamic networks.

Significantly, the discrete model is a deliberate idealization for-
mulated to isolate the effects of bond kinetics, thereby neglecting
other first-order physical effects such as polydispersity, segmen-
tal relaxation35,45, poroelastic relaxation60, damage-induced dis-
sipation61,62, long-term hydrolysis/degradation63,64, or repta-
tion32,44. These additional confounding factors emphasize that
coupling the relaxation between separate bond types is, on its
own, not sufficient to encapsulate the complex dissipative be-
havior of polymeric systems. Nevertheless, to demonstrate the
importance of bond coupling, we employed the coupled rule
of mixture through TNT to model the mechanical response of
physical gel networks hosting two, reversible hydrazone bond
types. To account for experimentally observed strain-dependent
relaxation times36,54,55,65, we concurrently considered the effects
of relaxation-retarding bond lifetime renormalization33,35 and
relaxation-enhancing force-sensitive dissociation6,36. The model
predicts that the concentrations of open binding sites (govern-
ing bond lifetime renormalization) and the reaction coordinate
length (governing the sensitivity of force-dependent bond disso-
ciation) are only weakly correlated with f . However, the cou-
pling parameter (dictating the degree of more stable bond re-
laxation due to kinetics of more dynamic bonds) is highly corre-
lated with f . This provides strong evidence that inter-bond cou-
pling is a dominant effect that researchers should consider when
investigating networks with controlled fractions of mixed bond
types. The simplicity and robustness of this approach, combined
with its compatibility with other first-order physical phenomena,
may render it useful for predictive design of diverse hybrid net-
works including elastomers with charge interactions16,65,66, vit-
rimers6, and metallopolymers7,9. Therefore, in future work, this
method may be utilized in conjunction with additional modeling
approaches for other significant phenomena (e.g., entanglement,
reptation, etc.) to investigate polymer micromechanics or guide
design applications.
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