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Iodine(III)-Catalyzed Dehydrogenative Cycloisomerization-
Arylation Sequence of 2-Propargyl 1,3-Dicarbonyl Compounds†

Yuki Umakoshi,a Kazushige Wakisaka,a Akira Tsubouchi,a Akira Yoshimurab and Akio Saito*a

Tandem cycloisomerization-coupling reaction of a nucleophile-tethered alkyne with a coupling partner provides an efficient 
method that allows the construction of a cyclic skeleton concomitant with the introduction of a functional group, and its 
dehydrogenative version is a greener approach that does not require a prefunctionalization step of the coupling partner. 
Herein, we report the dehydrogenative cycloisomerization-arylation sequence of 2-propargyl 1,3-dicarbonyl compounds 
with unfunctionalized arenes, representing first report of the dehydrogenative cycloisomerization-functionalization reaction 
of alkynyl ketones.

Introduction
The furan ring is a very important heterocyclic structure that is 
found in many useful substances such as bioactive substances 
and functional materials.1 In addition, furans are frequently 
used as building blocks in synthetic chemistry.2 Therefore, many 
synthetic methods of furans with specific substitution patterns 
have been developed.3 Among them, the cycloisomerization 
reaction of 2-propargyl 1,3-dicarbonyl compounds provides one 
of the efficient methods for the synthesis of highly substituted 
furans.4 The reaction has been extended to Pd-catalyzed 
tandem cycloisomerization-functionalization reactions (Scheme 
1a)5 as well as the cycloisomerization reaction of substrates in 
situ generated from 1,3-dicarbonyl compounds and propargyl 
alcohols or their analogues.6 However, although these tandem 
reactions have been demonstrated to afford furans having 
various carbon-functional groups such as aryl,5a-c,f alkenyl,5c 
acyl5a,d and allyl groups,5e it is necessary to use organic halides 
and their equivalents as coupling partners, which require 
tedious prefunctionalization steps and increased waste. From 
the viewpoint of green and sustainable chemistry, transition 
metal-catalyzed dehydrogenative methods7 have been recently 
developed for the cycloisomerization-coupling reactions of 
nucleophile-tethered alkynes with unfunctionalized arenes8a-d 
or other coupling partners.8e-g These methods have been 
applied to the C(sp2)−C(sp2) bond formation via the 
dehydrogenative cycloisomerization-arylation sequence of 
various alkynes (Scheme 1b), 8a-d but the C(sp3)−C(sp2) bond 
formation, such as the reaction of 2-propargyl 1,3-dicarbonyl 

compounds with unfunctionalized arenes, has not been 
achieved.
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Scheme 1. Heterocyclic synthesis with introduction of functional 
groups.

On the other hand, as part of our research on the synthesis of 
heterocycles based on the hypervalent iodine(III)-catalyzed 
difunctionalization of alkynes,9 we recently developed a 
dehydrogenative cycloisomerization-arylation sequence of N-
propargyl carboxamides (X = N) with the C(sp3)−C(sp2) bond 
formation (Scheme 1c).9a Although hypervalent iodine(III) 
compounds have been shown to be effective on the 
dehydrogenative C-C bond formation,10 some of which have 
been advanced to the iodine(III)-catalysis,11 only a few catalytic 
intermolecular arylation reactions have been reported.11a-c 
Thus, iodine(III)-catalyzed intermolecular arylation reactions as 
well as dehydrogenative cycloisomerization-functionalization 
sequence with the C(sp3)−C(sp2) bond formation are still 
challenging research topics. Herein, we describe a metal-free 
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dehydrogenative cycloisomerization-arylation sequence of 2-
propargyl 1,3-dicarbonyl compounds (X = CCOR’) catalyzed by 
iodine(III) species generated from iodoarene precatalyst with 
sulfinyl fluoride, which are formed by the treatment of 
sulfoxides by F-TEDA-PF6 (Scheme 1c).

Results and discussion
Initially, we focused on optimizing the conditions for the 
reaction of dicarbonyl compound 1a with mesitylene (2a, 3 eq.) 
as show in Table 1. As with the previous method developed for 
the reaction of N-propargyl carboxamides,9a when substrates 
and iodoarene precatalyst were added after the treatment of 
DMSO (R = R’ = Me) with F-TEDA-PF6 at 100 ºC for 1 h in MeNO2, 
the desired coupling product 3aa was obtained in 64% yield at 
100 ºC for 18 h (entry 1). However, the use of F-TEDA-X bearing 
other counter anions (X = BF4, NTf2, OTf) resulted in lower yields 
of 3aa (22-59%, entries 2-4), and the use of mCPBA instead of 
DMSO pretreated with F-TEDA-X gave a complex mixture 
including 3aa (13%, entry 5). Notably, although the use of F-
TEDA-PF6 in the absence of DMSO increased the yield of cyclized 
product 4a (entry 6), there was not much difference in the yield 
of 3aa in the presence of DMSO, even when the reaction time 
was 1 h (entry 7).

Table 1. Optimization of conditions.

2 X

F-TEDA-X

N
N Cl

F
O

Ph OPh

3aa (R'' = Mes)
4a (R'' = H)

1a

O
Ph

O
Ph

MeNO2, 100 ºC, t h
(Mes = mesityl)

(Yn = 2,4-(OMe)2-6-(COOMe))

H

H－Mes (2a, 3.0 eq.)
YnC6H2I (20 mol%)

RS(O)R' (3.0 eq.)
F-TEDA-X (1.2 eq.)

R''

Entry R, R’ X t (h) 3aaa (%) 4aa (%)
1 Me, Me PF6 18 64 19
2 Me, Me BF4 18 59 10
3 Me, Me NTf2 18 50 15
4 Me, Me OTf 18 22 19
5b none - 18 13 23
6 none PF6 18 38 29
7 Me, Me PF6 1 60 7
8 Ph, Ph PF6 1 63 6
9 Bn, Bn PF6 1 71 (58) 11
10 Ph, Bn PF6 1 71 (54) 7
11 Ph, Me PF6 1 64 4
12c Ph, tBu PF6 1 17 11
13d Bn, Bn PF6 3 73 (58) 11
14e Bn, Bn PF6 3 60 19
15f Bn, Bn PF6 18 5 39
a Determined by 1H NMR analysis using an internal standard. 
Values in parentheses were isolated yields. b mCPBA instead 
of F-TEDA-X. c Recovery of 1a: 50%. d YnC6H2I: 10 mol%. 
e YnC6H2I: 5 mol%; recovery of 1a: 7%.  f YnC6H2I: 0 mol%; 
recovery of 1a: 46%.

Among the attempted sulfoxides (entries 7-12, see also Table 
S1 in ESI), Bn2SO and PhS(O)Bn afforded good results. 

Particularly, in the case of Bn2SO, 3aa was isolated in 58% yield 
(entry 9). In addition, by extending the reaction time to 3 h, the 
amount of catalyst could be reduced to 10 mol%, giving 
comparable results (entry 13). It should be mentioned that 
other iodoarene precatalysts (2,4-(OMe)2-6-(CONHMe)C6H2I, 
2,4-(OMe)2-6-(CONHiPr)C6H2I, 2,4-(OMe)2-6-(CO2H)C6H2I, 2,4,6-
(OMe)3C6H2I, etc) and other solvents (MeCN and DCE) gave 
relatively inferior results (See, Table S1 and S2 in ESI).

With the optimized conditions in hand, the scope of the 
present catalytic systems was next investigated using various 
carbonyl compounds 1a-i and arenes 2a-i (Scheme 2). Similar to 
dicarbonyl compound 1a, β-ketosulfone 1b and β-ketoesters 
1d-i reacted with mesitylene (2a) to give the corresponding 
arylated furans 3ba and 3da-3ia in 40–71% yields. Notably, in 
the case of CF3-substituted 3ea, the reaction time needed to be 
extended to 18 h probably because of the reduced 
nucleophilicity of 1e. In cases of sulfonyl ketone 3ba and 
ketoester 3da-3ia, the reaction proceeded on the aryloyl group 
side, probably because the aryloyl group is easily enolized. 
Similar selectivity has been observed in other 
cycloisomerization4b-g and cycloisomerization-functionalization 
reactions.5c,5e,5f Also, the formation of tetrasubstituted furans 
3ca (51%) from 1ca having Ph-substituent at the propargyl 
position with mesitylene (2a) proceeded smoothly. 
Furthermore, the present method could be applied to the 
reaction of 1a with various arenes 2b-i. Although the increased 
amounts of 2-bromomesitylene (2e, 10 eq.), xylenes 2f-h (20 
eq.) and toluene (2i, cosolvent) were required, the arylated 
furans 3ab-3ai were obtained in 20–67%. Among these 
products, 3ag-3ai were a mixture of regioisomers (3ag, 5.5:1; 
3ah, 2.6:1; 3ai, 1.2:1). Note that the reduced amount of anisole 
(3d) to 2 eq. gave better result in the case of 3ad. Unfortunately, 
the use of indole and furan (3 eq.) as a coupling partner afforded 
the complex mixture.

31

3aa (Z = Bz, R' = H): 58%
3ba (Z = Ts, R' = H): 40%
3ca (Z = Bz, R' = Ph): 51%

3da (R = Ph): 71%
3ea (R = 4-CF3C6H4): 57%
3fa (R = 4-OMeC6H4): 57%
3ga (R = 4-MeC6H4): 55%
3ha (R = 3-MeC6H4): 59%
3ia (R = 2-MeC6H4): 63%

3ab (Ar = Me5C6): 67%
3ac (Ar = 2,3,5,6-Me4C6H): 36%
3ad (Ar = 4-OMeC6H4): 32%
3ae (Ar = 3-Br-2,4,6-Me3C6H): 20%
3af (Ar = 2,5-Me2C6H3): 37%
3ag (Ar = 2,4- and 2,6-Me2C6H3): 56% (5.5:1)
3ah (Ar = 3,4- and 2,3-Me2C6H3): 43% (2.6:1)
3ai (Ar = 4- and 2-MeC6H4): 21% (1.2:1)

a

b

a Ar-H: 2 eq. b Ar-H: 10 eq. c Ar-H: 20 eq.
d Solvent: 1:1 mixture of toluene and MeNO2.

c

c

c

d

O
R
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H 2,4-(OMe)2-6-(CO2Me)C6H2I (10 mol%)
Bn2SO (3.0 eq.), F-TEDA-PF6 (1.2 eq.)

+ H－Ar

2 (3.0 eq.)

R'

O

R'Z

R
Ar

O

R'Z

Ph
Mes

O

EtO2C

R
Mes

O

Bz

Ph
Ar

Scheme 2. Scope of substrates.

In the previous report for the cycloisomerization-arylation 
sequence of N-propargyl carboxamides,9a it was proposed that 
DMSO as a sulfoxide additive is converted to λ6-sulfane 5a (R = 
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Me) by F-TEDA-PF6 and then sulfane 5a works as a real oxidant 
that catalytically generates hypervalent iodine (Scheme 3). 
Therefore, in order to confirm whether similar species 5b (R = 
Bn) is generated in the present method, the treatment of Bn2SO 
with F-TEDA-PF6 was attempted in CD3NO2 at rt for 2 h. As a 
result, sulfane 5b12a could not be observed, but sulfinyl fluoride 
6b was detected in 1H and 19F NMR spectra (Figure S1 and S2 in 
SI for details). Note that a part of 5a was decomposed into 6a in 
a previous study, suggesting that 6 also works as the oxidant.

CD3NO2, rt, 2 h

5a (R = Me)
5b (R = Bn) not detected

N NS
F

O
RR 2PF6R

S
R

O F-TEDA-PF6

R
S
O

F
(+ R-TEDA-PF6)

6a (R = Me)
6b (R = Bn)

Cl

Scheme 3. Formation of fluoro-λ6-sulfane 5 and sulfinyl fluoride 6.

To better understand the involvement of sulfinyl fluoride as 
the oxidant, the time-course 1H NMR analysis was carried out 
using a mixture of 2,4-(OMe)2-6-(CO2Me)C6H2I with 6b in situ 
generated from Bn2SO and F-TEDA-PF6 in CD3NO2 at room 
temperature (Scheme 4, see also Figure S3 in SI for details). In 
24 h after the sample preparation, the peaks of λ3-iodane B like 
hydrolysis derivative of A clearly appeared along with those of 
3,5-dimethoxybenzoate D and diiodoarene F. In 48 h, 6b 
disappeared completely, the peak intensity of 2,4-(OMe)2-6-
(CO2Me)C6H2I decreased and that of D increased. Considering 
that the compound D is formed by the proto-deiodination of 
diaryliodane C derived from 2,4-(OMe)2-6-(CO2Me)C6H2I and 
λ3-iodanes A and/or B, these results suggest that sulfinyl 
fluoride acts as the oxidant for the formation of iodoarenes A. 
Notably, the peak intensities of B and F were hardly  increased 
even in 48 h. The former is probably because A and/or B is very 
unstable and decomposes quickly in the absence of 2-propargyl 
1,3-dicarbonyl compounds 1. For the latter, it is likely because 
decomposition of A and/or B proceeded preferentially via the 
proto-deiodination of A and/or B rather than that of 
diaryliodane C, which is derived from A and/or B with 2,4-
(OMe)2-6-(CO2Me)C6H2I. 

6b

A (Not Detected)

I
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O
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MeO
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O

OMe

MeO
I
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MeO
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H2O or
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MeO
F I
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O
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MeO
OMe

O
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Ar
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DE (X = I+(X)···TEDA PF6
-)

F (X = I)

H2O or
TEDA·HPF6

protodeiodination

Scheme 4. Proposed decomposition mechanism of A.

As shown in Scheme 5a, it was found out that BnSOCl in the 
presence of 2,4-(OMe)2-6-(CO2Me)C6H2I (10 mol%) also 
promote the cycloisomerization-arylation sequence of 1a with 
mesitylene (2a, 3 eq.). Particularly, the addition of Bn2SO (1.8 
eq.) and TEDA-PF6 (1.2 eq.) was effective and 3aa was obtained 
in 56% yield, which is similar to the result of the present 
catalytic systems (Table 1, entry 13). Furthermore, the addition 
of KF (1.2 eq.) improved the yield of 3aa up to 73%, although it 
required an extension of the reaction time (18 h). However, the 
use of Et3N and DABCO instead of TEDA-PF6 did not lead to even 
oxidation of 2,4-(OMe)2-6-(CO2Me)C6H2I. Note that, regardless 
of the addition of Bn2SO and TEDA-PF6, no formation of sulfinyl 
fluoride 6b was observed from the mixture of BnSOCl and KF.12b 
Thus, the presence of sulfinyl halides, sulfoxides, and TEDA-PF6 
is important for this reaction.

O
Ph OPh

4a: 0% (1a: quant.)
4a: 8% (1a: 27%)
4a: 9% (1a: 82%)

1a

O
Ph

O
Ph

MeNO2, 100 ºC, 18-24 h

H Acid (1.0 eq.), Bn2SO (X eq.)
H

Pyridine·9HF, X = 0 or 3.0
TfOH + TEDA-PF6, X = 0
TfOH + TEDA-PF6, X = 3.0

(b)

4a: 68%
4a: 82%
4a: 88% (3aa: 8%)

7a Pyridine·9HF, X = 0
Pyridine·9HF, X = 3.0
optimized conditions with 2a (3.0 eq.)

(c)

OPh

O
Ph

MeNO2, 100 ºC, 3 h

Acid (1.0 eq.), Bn2SO (X eq.)
or optimized conditions with 2a

O
Ph OPh

3aa: 08%, 4a: 9% (1a: 79%)
3aa: 19%, 4a: 4% (1a: 53%)
3aa: 11%, 4a: 3% (1a: 85%)
3aa: 29%, 4a: 6% (1a: 50%)
3aa: 56%, 4a: 3% (1a: 12%)
3aa: 73%, 4a: 5% (1a: 00%)

1a

O
Ph

O
Ph

MeNO2, 100 ºC, 3 h (or 18 h)*

H

2,4-(OMe)2-6-(CO2Me)C6H2I (10 mol%)
2a (3.0 eq.), BnSOCl (1.2 eq.)

Bn2SO (X eq.), KF (Y eq.)
TEDA-PF6 (Z eq.)

E

X = 0, Y = 0, Z = 0
X = 0, Y = 0, Z = 1.2
X = 0, Y = 1.2, Z = 1.2
X = 1.8, Y = 0, Z = 0
X = 1.8, Y = 0, Z = 1.2
X = 1.8, Y = 1.2, Z = 1.2*

TEDA-PF6

N
N Cl

PF6

(a)

3aa (E = Mes), 4a (E = H)

OPh

O
Ph

H

Scheme 5. Control experiments.

Since the cyclized products 4 were observed as byproducts in 
most of the reaction of 1 with 2, we attempted to check the 
formation mechanism of 4 (Scheme 5b and 5c). Initially, 
considering the cycloisomerization of 1 by the generated acid in 
the present catalytic systems,13 1a was treated with 
Pyridine·9HF or H-TEDA-PF6 generated from TfOH and TEDA-PF6 
(1.0 eq.) in MeNO2 at 100 ºC (Scheme 5b). However, regardless 
of the presence of Bn2SO, HF did not afford 4a at all and H-TEDA-
PF6 hardly did. Next, as an alternative possible mechanism, 
aromatization of methylenedihydrofuran 7 by acid4g was 
investigated (Scheme 5c). The reaction of 7a proceeded even by 
Pyridine·9HF (1.0 eq.), and 4a was obtained in 82% yield in the 
presence of Bn2SO (3.0 eq.). Note that in both control 
experiments (Scheme 5b and 5c), the mass balance is poor in 
the absence of Bn2SO, suggesting that the sulfoxide acts as a 
Lewis base to inhibit the acid-induced decomposition of 1 and 
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7. Moreover, 7a was converted into 4a in 88% yield even in the 
presence of mesitylene (2a, 3.0 eq.) under the optimized 
conditions. Thus, 7 would be mainly involved in the formation 
of 4. In addition, a small amount of 3aa (8%) was also obtained 
in the reaction of 7a with mesitylene, indicating that part of 7 is 
involved in the formation of arylated furan 3.

On the basis of the above observations and our previous 
report on the iodine(III)-mediated oxidative 
cycloisomerization,9 we proposed a catalytic cycle for the 
synthesis of arylated furans 3 from 1 and 2 (Scheme 6). First, the 
ArI precatalyst is oxidized by sulfinyl fluoride 6b derived from 
Bn2SO and F-TEDA-PF6 and/or a complex of 6b, Bn2O and TEDA-
PF6. The formed fluoroiodane-amine complex CAT-A activates 
the triple bond of 1 and promote the cyclization of INT-A to INT-
B via the tautomerism of keto to enol form.4e-g,5c,5e 
Subsequently, INT-B is aromatized to INT-C via 1,4-elimination 
of HF followed by addition of HF to iodonium ylide INT-D (path 
a) and/or via isomerization of INT-B by the generated HF (path 
b). Finally, nucleophilic substitution of INT-C by aromatics 2 (Ar'-
H) yields the arylated furans 3 with regeneration of the ArI 
precatalyst. As shown in Scheme 4, since CAT-A is a highly 
unstable iodine(III) species, the formation of low concentrations 
of CAT-A due to the relatively weak oxidation power of sulfinyl 
fluoride 6 would be effective on the catalytic reaction.

O

R
Ar ArI I

HF

HF
INT-A

INT-BINT-D

INT-C

cat. HF

+ HF

I F
Ar

OR
I

F

Ar

OR
I

F

Ar

OR
I

Ar

H H

H H

H H

3

1

FCAT-A

S
O

Bn F
6b

N
N Cl

TEDA

2PF6

MeO CO2Me

OMe

I
Ar-I =

TEDA
2PF6

N
N Cl

H 2PF6

Ar' H (2)

INT-B

F
HF

HF

cat. HF
CAT-A
(or ArIF2)

INT-C

INT-F
OR

I
F

Ar

H H

H H

7
OR

H

H

4
OR

H

ArIF2

Z H

O

R
Z H

H

ZZ

Z

Bn2SO

PF6

(b)

(a)

(a)

(b), (c)

(b)
(c)

(b)

Z

Z

Z

OR

Z

Ar'

Path (b) or (c)

(c) (c)

(b')

Scheme 6. Proposed formation mechanism of 3 and 4.

It should be mentioned that the HF-catalyzed isomerization 
of INT-B into INT-C (path b) would proceed via the protonation 
of enol moiety of INT-B and the subsequent deprotonation of 
cyclic moiety of INT-F by fluoride ion (Scheme in the dotted 

square of Scheme 6). Hence, in the latter process, the fluoride 
ion induces the deiodination of INT-F to form 7, which is 
converted into 4 by HF (path c). The proto-deiodination of -
iodinated enols like INT-B has been known.9,14 On the other 
hand, 7 reacts with CAT-A and/or ArIF2 (produced by proto-
iodination of INT-B) prior to HF to give INT-C (path b’). This 
process would be partially responsible for the formation of 3.

Conclusions
We have developed the iodine(III)-catalyzed reaction of 2-
propargyl 1,3-dicarbonyl compounds and arenes for the novel 
and efficient synthetic method of arylated furans with the 
C(sp3)−C(sp2) bond formation. The present work is one of the 
few examples on C(sp3)−C(sp2) bond formation by the catalytic 
dehydrogenative cycloisomerization/arylation reaction and also 
represents as the first report of the dehydrogenative 
cycloisomerization-functionalization reaction of alkynyl 
ketones. Moreover, on the basis of results of control 
experiments, we proposed that sulfinyl fluoride would act as 
the terminal oxidant in this iodine(III)-catalysis. Since sulfinyl 
halides are unknown to be effective on the generation of 
hypervalent iodine compounds, this study provides useful 
findings in the field of λ3-iodane catalysis as well as the powerful 
method of furan synthesis.

Experimental
Representative procedure for conversion of 1a with 2a into 3aa.
After Bn2SO (276 mg, 1.2 mmol) was treated with F-TEDA-PF6 (226 
mg, 0.48 mmol) in MeNO2 (4.0 mL) at 100 ºC for 1 h, methyl 2-iodo-
3,5-dimethoxybenzoate (12.9 mg, 0.04 mmol), 1a (105 mg, 0.40 
mmol) and 2a (83.5 μL, 1.2 mmol) were added in turn at the ambient 
temperature. After being stirred at 100 ºC for 3 h, the reaction 
mixture was diluted with ether and filtered through a pad of silica 
gel. The filtrate was concentrated in vacuo to dryness and then the 
residue was purified by MPLC on silica gel (Hexane:AcOEt = 99:1) and 
by MPLC on silica gel modified with octadecylsilyl (ODS) groups 
(MeCN only) to give 3aa (88.0 mg, 58%).
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