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Cation-controlled chemoselective synthesis of N-aroylureas 

and imides via amidation of N-Boc arylamides

Jiamin Wang,1,3,4,‡ Sujuan Shuai,1,3,4,‡ Lishe Gan,4,5,‡ Yongxin Luo,5 Huimin Jin,1,3,4 Lingfeng 
Chen,1 Dong Zou,1,3,4 Guang Liang*1 Patrick J. Walsh*,2 and Jie Li,*1,3,4

In this study, the first highly chemoselective amidation of Boc and amide groups of N-R-N-Boc 
arylamides is advanced. This practical and operationally-simple method enables the 
preparation of either N-aroylureas or imides in good to excellent yields without addition of 
transition metals. The choice of base plays a significant role in controlling the reactivity of the 
inequivalent carbonyl groups. The amidation of the Boc group was observed with arylamides, 
ArCONH2, when subjected to KOtBu while imides were produced with LiOH. DFT studies are 
employed to explore the divergent mechanisms.  It is anticipated that these chemoselective 
methods will be of interest to the synthetic and medicinal chemistry communities.

N-Acylureas are important functional groups in the 
fields of agrochemistry1 and medicinal chemistry (with 
anticancer,2 anti-inflammatory,3 antidiabetic,4 and 
anticonvulsant5 properties). These compounds are also 
common building blocks in materials chemistry6 and 
synthetic organic chemistry.7 Traditionally, the 
preparation of N-acylureas was largely based on two 
approaches: (1) acylation of ureas with activated 
carboxylic acids, such as acid chlorides, anhydrides, 
and carbodiimides (Scheme 1A)8 and (2) coupling of 
isocyanates with amides9 and acyl isocyanates with 
amines (Scheme 1B).7a, 10 Despite the wide utility of 
these methods, both have shortcomings. The acylation 
method usually suffers from limited substrate scope due 
to the high reactivity of the activated carboxylic acid 
derivatives. The isocyanates and acyl isocyanates used 
in the latter approach are unstable and frequently made 
from phosgene, which is dangerous and requires 
special safety precautions. Recently, palladium-
catalyzed carbonylation of acyl azides or ureas were 

employed in the synthesis of N-acylureas.10e, 11 Other 
routes such as acylation of alkenyl esters,12 amidation 
of acylcarbamates with amines13 and boronic acid-
catalyzed condensation of acids with ureas14 have been 
disclosed. However, most of these methods have their 
drawbacks, such as the use of transition-metal catalysts 
that can be hard to remove from the final products and 
multi-step preparation of starting materials. Further 
development of efficient and greener methods for the 
synthesis of N-acylureas, therefore, remains desirable.

Another group of valuable synthetic targets are 
imides, which are structural cores of various 
pharmaceuticals15 and natural products.16 The most 
popular methods to prepare these important 
compounds include Mumm rearrangement of 
isoimides17 and acylation of amides with activated 
carboxylic acid derivatives.18 Despite the popular 
application of these methods in organic synthesis, both 
have shortcomings. These include poor functional 
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group tolerance and tedious substrate 
prefunctionalization. 
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Scheme 1 General routes to N-acylureas.

To overcome these issues, substantial efforts have 
been made to develop new methods for the synthesis of 
imides.19  For example, recently Szostak and co-
workers demonstrated the direct transamidation of 
activated and unactivated amides with non-nucleophilic 
amines could be accomplished under transition metal-
free conditions (Scheme 2A).20 We have also worked to 
develop new methods for the synthesis of imides 
(Scheme 2B).21 In this study, N-Bn-N-Boc arylamides 
served as nucleophiles and were selectively acylated by 
N-acylpyrroles and aryl esters. Our team has had a 
long-standing interest in the impact of main group 
counterions in altering the course of reactions,22 which 
have been attributed to cation-π interactions in some 
cases. Most recently, in our study of toluene 
aroylations,23 we found that N-acyl pyrroles underwent 
benzylation in the presence of toluene and KN(SiMe3)2 
while the parent N-acyl pyrrole underwent isomerization 
in the presence of LiN(SiMe3)2 (Scheme 2C).24 

Based on our past work (Scheme 2B) on imide 
synthesis, and our interest in the impact of main group 
metals on chemoselectivity, we were curious if 
arylamides could be employed as nucleophiles in 
related transformations. Herein we report the surprising 
results of a study to answer this question.  Indeed, we 
found that imides could be prepared from N-Boc 
protected aroyl amides when LiOH was employed as 
base. Surprisingly, by simply replacing LiOH with KOtBu, 
a change in chemoselectivity was observed enabling 
the generation of a series of N-acylureas with the same 
electrophiles. In this latter transformation, the carbonyl 
group of the Boc, instead of the amide group, is attacked 
by the aromatic amide-derived nucleophile followed by 
the cleavage of the C−N bond of the amide group, 
enabling the formation of N-acylureas. It is interesting 
that the Boc group, which is a popular and dependable 
protecting group, serves as the reactive carbonyl under 

these conditions. It is also noteworthy that high 
selectivity was achieved by the choice of bases 
employed in the reactions. 

Scheme 2 (A) Transamidation of amides under 
transition metal-free conditions. (B) Acylation of N-
acylgluarimide with N-acylpyrroles and aryl esters. (C) 
Application of different main group bases to change the 
course of the reaction. (D) Chemoselective reaction 
controlled by main group metal and base.

Our initial studies focused on the coupling between 
benzamide 1a and N-tert-butylbenzyl-N-Boc benzamide 
2a. As shown in Table 1, the choice of base is critical in 
controlling the chemoselectivity. The weaker bases 
K3PO4 and LiOH yielded the imide product 4aa in 46% 
and 74% yield. Surprisingly, KOtBu and NaOtBu 
generated the N-acylurea 3aa exclusively in 72% and 
62% yields, respectively (Table 1, entries 1−4). It is 
known that main group metals can have a dramatic 
impact on reactivity,25 including in our past work with N-
acyl pyrroles (Scheme 2C).24 In contrast to the results 
above, LiOtBu and KOH gave a mixture of imide (65% 
vs 58%) and N-acylurea (23% vs 36%) (entries 5−6). A 
solvent screen showed that DME was the best solvent 
for both transformations (entries 7−9 and 10−12). 
Further screening of the reaction temperature indicated 
that elevated temperature (120 °C) did not improve the 
yields (Table 1, entries 13 and 15) of either product, 
while lower temperature (80 °C) was deleterious due to 
lower conversions (entries 14 and 16).

Table 1. Chemoselective Reaction Development and 
Optimizationa
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(%)

4aab 

(%)
（ ）  
（）

1 DME K3PO4 100 °C 0 46
2 DME LiOH 100 °C 0 74
3 DME KOtBu 100 °C 74 0
4 DME NaOtBu 100 °C 62 0
5 DME LiOtBu 100 °C 23 65
6 DME KOH 100 °C 36 58
7 THF LiOH 100 °C 6 70
8 toluene LiOH 100 °C trace 0
9 dioxane LiOH 100 °C 12 54
1
0

THF KOtBu 100 °C 69 0
1
1

toluene KOtBu 100 °C 33 0
1
2

dioxane KOtBu 100 °C 63 0
1
3

DME KOtBu 120 °C 65 0
1
4

DME KOtBu  80 °C 45 0
1
5

DME LiOH 120 °C 0 72
1
6

DME LiOH  80 °C 0 68
a Reactions were conducted with benzamide 1a (0.1 
mmol), N-tert-butylbenzyl-N-Boc benzamide 2a (0.1 
mmol), base (0.2 mmol), solvent (1 mL), 12 h. b Isolated 
yields.

With the optimized conditions for the chemoselective 
reactions established, we focused on the synthesis of 
N-acylureas (standard conditions in entry 4 of Table 1). 
The substrate scope of N-R-N-Boc arylamides was 
explored with benzamide 1a (Table 2) Various N-R-N-
Boc arylamides bearing different substituents on the 
nitrogen were found to be excellent substrates, 
including those with N-benzyl groups bearing electron-
donating (4-OMe, 3ac, 61% yield), electron-withdrawing 
or electronegative groups (4-OCF3; 3ad, 4-F; 3ae and 
4-Cl; 3af, 52–55% yields), and ortho substituents (3ag, 
3ah, 3ai, 61–78% yields). In addition, heterocyclic 
substrates also participated in this reaction, giving the 
product 3aj–3am in 44–83% yields. Replacing the N-
benzyl group with an N-phenyl group, the N-Ph-N-Boc 
arylamide underwent amidation with benzamide and 
furnished the product 3an in 54% yield. N-Alkyl groups, 
such as N-methyl and N-cyclopropylmethyl, were also 
tested under these conditions and resulted in the 
formation of the target imides 3ao and 3ap in 54% and 
75% yields, respectively.

Table 2. Scope of N-R-N-Boc arylamides in the 
synthesis of N-acylureas a,b
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a Reaction conditions: benzamide 1a (0.1 mmol), N-R-
N-Boc arylamides 2 (0.1 mmol), KOtBu (0.3 mmol), 
DME (0.1 M), 12 h. b Isolated yields.

The scope of arylamides was next explored with N-
Bn-N-Boc benzamide 2b. As shown in Table 3, 
arylamides possessing electronically-diverse 
substituents on the phenyl group (4-Me, 2,3-Me2, 4-
OMe, 3,5-(OMe)2, 4-F, 4-Cl, 4-Br, and 4-CF3) provided 
the target N-acylureas (3bb, 3cb, 3db, 3eb, 3fb, 3gb, 
3hb, 3ib) in 50−88% yields. 2-Naphthamide afforded 
3ja in 85% yield. Perhaps most interesting is the 
capacity of this protocol to facilitate amidation with 
medicinally relevant heterocyclic motifs,26 including both 
electron-deficient heterocycles, such as pyridines (3kb, 
3lb, 3mb), and electron rich heterocycles, such as 
thiophene (3nb). To illustrate the scalability of this 
amidation reaction, 4 mmol of N-Bn-N-Boc benzamide 
was treated with equimolar 4-methoxybenzamide in 
DME at 100 °C for 12 h under basic conditions (3 equiv 
of KOtBu). The target N-acylurea 3db was isolated in 85% 
yield. 

Table 3. Scope of arylamides in the synthesis of N-
acylureas a,b
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a Reaction conditions: arylamides (0.1 mmol), N-benzyl-
N-Boc benzamide 2b (0.1 mmol), KOtBu (0.3 mmol), 
DME (0.1 M), 12 h. b Isolated yields. c Reaction 
conducted on 4 mmol scale.

 We next turned our attention to the preparation of 
imides. Employing the optimal conditions in Table 1 
(entry 2), we tested the reactivity of a series of N-Bn-N-
Boc benzamides (Table 4). In addition to the parent 
reaction, N-Bn-N-Boc 4-biphenylamide furnished 4ab' 
in 77% yield. N-Bn-N-Boc benzamides bearing alkyl (3-
Me; 4ac', 2-Me; 4ad', 4-tBu; 4ae', 59−64% yield), 
electron-donating (4-NMe2; 4af', 64% yields), and 
electron-withdrawing (4-F; 4ag', 4-CF3; 4ah', and 4-CN; 
4ai', 58−82% yields) groups were all tolerated in this 
protocol. Furthermore, substrates bearing 
heteroaromatic rings such as furan (3aj', 3ak') and 
thiophene (3al'), also participated in this reaction, 
affording the imide products in 49−62% yields. 

The substrate scope of arylamides in the amidation of 
N-Bn-N-Boc benzamide 2b was subsequently explored 
(Table 4, lower half). Using benzamide with various 
substituents on the phenyl group (4-Me, 2,3-Me2, 4-
OMe, 3,5-(OMe)2, 4-NO2, 4-Cl, 4-Br, 4-NH2) afforded 
products (4bb−4Ib) in 60−85% yields. 2-Naphthamide 
furnished 4jb in 82% yield. Additionally, heterocyclic 
substrates, such as 4-pyridinylamide, furnished the 
product 4mb in 68% yield. Interestingly, cinnamamide 
was also tolerated in this reaction, giving the product 
4nb' in 52% yield under optimal reaction conditions. A 
scale-up reaction was conducted with 4 mmol of N-Bn-
N-Boc benzamide 2b and isonicotinamide 1m in DME 

at 100 °C for 12 h with LiOH as base. The imide product 
4mb was isolated in 66% yield.

Table 4. Synthesis of imides from N-Bn-N-Boc 
benzamidesa,b
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a Reaction conditions: arylamides (0.1 mmol), N-Bn-N-
Boc benzamide (0.1 mmol), LiOH (0.3 mmol), DME (0.1 
M), 12 h. b Isolated yields. c Reaction conducted on 4 
mmol scale.

A few experiments were performed to probe the 
reaction mechanism (Scheme 3). With addition of 2 
equiv. of radical scavenger TEMPO, the model reaction 
afforded the N-acylurea product in 64% yield (Scheme 
3A). We take this result to indicate that the reaction 
proceeds by a 2-electron pathway. When benzamide 
was mixed with 3 equiv. of LiOH for 12 h at 100 °C, only 
starting material was recovered (Scheme 3B). This 
result excludes the self-coupling pathway in the 
synthesis of imides. We found that N-Boc-4-tBu 
benzylamine 5 reacted with benzamide to give 
aroylation product 3aa in 33% yield (Scheme 3C). This 
observation supports the Boc group being employed as 
carbonyl source. A cross-over experiment with 
benzamide 1a, Boc protected 2a, and a Boc protected 
benzyl amine bearing a 4-OMe group 5’ furnished equal 
amounts of products 3aa and 3ac (in a combined yield 
of 65%), again indicating that the Boc protected benzyl 
amine is an intermediate in this reaction (Scheme 3D).
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Scheme 3 Control experiments.

  The roles of LiOH and KOtBu as base and nucleophile 
in the divergent reaction mechanisms were examined 
by DFT calculations (see SI for computational details). 
According to the experimental reaction conditions, 
especially entries 2 and 3 in Table 1, LiOH and KOtBu 
can act as bases or nucleophiles to attack benzamide 
(1a) and N-tert-butyl benzyl-N-Boc benzamide (2a), 
respectively.
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Scheme 4. Calculated ΔH for isodesmic binding 
processes.

LiOH-1a

LiOH-2a

KOtBu-1a

KOtBu-2a

1.99

2.00

1.56

2.40
2.72

2.64

1.0
9

1.091.56

1.7
0

Figure 1. Optimized 3D structures of complexes of base 
LiOH/KOtBu with substrate 1a/2a, respectively. Bond 
lengths are shown in Å.

First, the binding energies of 1a/2a with LiOH/KOtBu 
were evaluated (Scheme 4A–D). The calculated ΔH for 
the isodesmic binding processes in Scheme 4A and 4B 
are endothermic by 5.6 and 5.8 kcal/mol, respectively, 
suggesting that the binding of substrate 1a with 
LiOH/KOtBu is more favorable than that of 2a. In 
addition to the expected Lewis base-Lewis acid 
interaction between the carbonyl group of 1a and Li+/K+ 
cations, a favorable H–bonding interaction between the 
N–H of 1a and the –OH and –OtBu also contributes to 
the preferential binding of 1a (Figure 1). No significant 
difference in binding preference of 1a between LiOH 
and KOtBu was observed in the calculated results.

Next, the dissociation of the −OH/−OtBu anion was 
considered via isodesmic reactions in Scheme 4C and 
D. Interestingly, the calculated ΔH values for the 
isodesmic reactions in Scheme 4C and D are 
endothermic by 62.8 and 49.5 kcal/mol, respectively, 
implying that the dissociation of the –OH anion is more 
endothermic than −OtBu.  Consequently, for LiOH 
promoted reaction, a complex was constructed in which 
the N–H…OH hydrogen-bonding interaction between 1a 
and LiOH is present (INT1a, Scheme 5). Next, two 
possible reaction pathways were considered 1) where 
−OH acts as a nucleophile and 2) in which the −OH 
behaves as a base. When the −OH acts as a nucleophile 
by attacking the carbonyl carbon of 2a, the 
corresponding transition state was located as TS1a. 
The predicted activation barrier is 6.7 kcal/mol for this 
step. When the −OH anion acts as a base, a transition 
state of proton transfer from the amide group of 1a to 
−OH was located as TS2a. The computational results 
suggest that the proton transfer step is nearly 
barrierless and this is the preferred pathway. 
Subsequently, the formed PhCONH– moiety can 
undergo nucleophilic attack on the carbonyl carbon of 
2a via TS3a with a barrier of 6.1 kcal/mol to afford 
INT5a. The adduct INT5a can undergo cleavage of the 
C–N bond via TS4a with a barrier of 2.5 kcal/mol to 
afford the product 4aa.

Starting from the adduct between amide 1a to KOtBu, 
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coordination of 2a gives INT2b, which is up hill by 5.3 
kcal/mol (Scheme 6). When the −OtBu acts as a 
nucleophile to attack the carbonyl carbon of 2a, the 
corresponding transition state was located as TS1b (7 
kcal/mol). Next, the tetrahedral intermediate INT3b can 
undergo C–N bond breakage via TS2b (8.4 kcal/mol) to 
form INT4b with a 2-tert-butyl benzoate. Proton 
transfer from the amide group of 1a to the deprotonated 
carbamate via TS3b (1.5 kcal) is calculated to give 
INT5b. Subsequently, nucleophilic attack of the 
deprotonated benzamide (PhCONH–) on the carbonyl 

carbon of the potassium-coordinated BocNHBn via 
TS4b (26.7 kcal/mol) to generate a new tetrahedral 
intermediate, INT6b. Finally, breakdown of the 
tetrahedral intermediate INT6b by C–O bond cleavage 
via TS5b (13.2 kcal/mol) liberates the alkoxide –OtBu 
and produces the final product 3aa. Computational 
results suggest that the rate-limiting step for the 
formation of 3aa is the nucleophilic attack of the bound 
PhCONH– moiety on the BocNHBn group and 
subsequent dissociation of the −OtBu anion.
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.

  In conclusion, we have introduced a chemoselective 
method for the synthesis of either N-acylureas or imides, 
both of which are important motifs in medicinal 

chemistry. The key to achieving high selectivity is the 
choice of base (KOtBu vs LiOH), while the other reaction 
parameters of both processes are nearly identical. DFT 
calculations help to elucidate the reaction mechanisms 
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of these divergent pathways.  These new protocols are 
complementary to classical routes for N-acylurea 
synthesis, such as acylation of ureas with activated 
carboxylic acids and isocyanates. Compared to these 
syntheses, our method stands out for its exceptional 
chemoselectivity, broad scope, environmentally friendly 
properties, and avoidance of toxic phosgene or strongly 
acidic conditions. Further, the utility of the Boc group 
was broadened in this study in which it was employed 
as the carbonyl source.27 In the case of the imide 
synthesis, traditional methods involve acylation of 
amides with activated carboxylic acid derivatives and 
Mumm rearrangement. The amidation process outlined 
herein is distinguished by its conciseness, convergent 
character, and avoidance of added transition metals.
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