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Abstract

Two-dimensional materials (2DMs) continue to attract a lot of attention, particu-

larly for their extreme flexibility and superior thermal properties. Molecular dynamics

simulations are among the most powerful methods for computing these properties, but

their reliability depends on the accuracy of interatomic interactions. While first prin-

ciples approaches provide the most accurate description of interatomic forces, they are

computationally expensive. In contrast, classical force fields are computationally ef-

ficient, but have limited accuracy in interatomic force description. Machine learning
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interatomic potentials, such as Gaussian Approximation Potentials, trained on density

functional theory (DFT) calculations offer a compromise by providing both accurate

estimation and computational efficiency. In this work, we present a systematic pro-

cedure to develop Gaussian approximation potentials for selected 2DMs, graphene,

buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We

validate our approach through calculations that require various levels of accuracy in

interatomic interactions. The calculated phonon dispersion curves and lattice thermal

conductivity, obtained through harmonic and anharmonic force constants (including

fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in

which the generated GAP potentials were used to compute higher-order force constants

instead of DFT, demonstrated the first-principles level accuracy of the potentials for

interatomic force description. Molecular dynamics simulations based on phonon den-

sity of states calculations, which agree closely with DFT-based calculations, also show

the success of the generated potentials in high-temperature simulations.

Introduction

Accurate calculation of interatomic forces is critical for estimating reliable thermal and ther-

modynamic properties of crystalline and amorphous materials through large-scale molecular

dynamics simulations. First-principles methods based on density functional theory (DFT)

offer the most reliable approaches for calculating interatomic interactions, but the increased

computational cost has been a limiting factor that hinders the study of realistic systems

with defects and anharmonicity at scale.1 An alternative approach, classical force fields

(FFs) constructed with parameterized functions, is a computationally efficient solution, but

its accuracy in evaluating interatomic forces is limited compared to DFT.2

To address the challenge of studying realistic systems with high accuracy and reason-

able computational cost, emerging techniques such as machine learning (ML) have gained

widespread adoption in the materials science community in the last ten years.3,4 ML-based
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interatomic potentials (MLIPs) offer the potential to achieve a desired level of accuracy at

orders of magnitude lower computational cost compared to ab initio molecular dynamics

(AIMD).4 One key difference between MLIPs and FFs is the functional form used to repre-

sent the interaction potential. While FFs have a fixed functional form, MLIPs do not make

assumptions about the form of the potential, except for some physical constraints such as

smoothness of the function and a cutoff distance for interactions. This flexible functional

form allows MLIPs to achieve the accuracy of the calculations used for training within an

arbitrary error. However, the evaluation of forces from MLIPs can be more computationally

expensive than FFs due to the complexity of the model, but this cost is still orders of mag-

nitude lower than ab initio calculations.5,6 In addition, the computational cost of MLIPs

(which depends on the ML model) generally scales linearly with system size, in contrast to

the cubic or higher-order scaling of DFT methods.

The development of accurate MLIPs for various materials is critical for extending the ca-

pabilities of these potentials to address thermal and thermodynamic properties of large-scale

systems. Several MLIPs such as Gaussian Approximation Potentials (GAP),5,7 Moment

Tensor Potentials (MTP),8 SchNetPack,9 Spectral Neighbor Analysis Potential (SNAP),10

and Neuroevolution Machine Learning Potentials (NEP)11 have been proposed and tested.

We refer readers to recent reviews3,4 for a comprehensive list of developments in this rapidly

growing field. In this study, we focus on GAP models, which typically require less data

to be trained than neural network potentials, and have good scalability and computational

efficiency for large-scale molecular dynamics simulations.12 In a previous study,13 we demon-

strated that GAP models trained with DFT calculations14 provide accurate estimates of

the thermal expansion properties of graphene, along with the dominant effect of the rip-

pling/buckling on negative thermal expansion.15 Other studies have also shown the success

of GAP models for thermal properties of 2DMs, such as graphene,16 carbon allotropes,17

monolayer h-BN,18 h-BN allotropes,19 silicene,11,20 and monolayer MoS2.
21

In this work, we propose a streamlined procedure for generating highly accurate GAP
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models for 2DMs. We demonstrate our approach for graphene, silicene (as a buckled 2DM),

and h-XN (X = B, Al, and Ga, as binary 2DMs). In addition to traditional validation

using randomly selected data points (excluded from the training set) from ab initio molec-

ular dynamics (AIMD) trajectories, we also use thermal property calculations to validate

the accuracy of the MLIPs. The first test is the phonon dispersion curves, which provide

information about dynamical stability and two-phonon interactions through 2nd order inter-

atomic force constants (IFCs). The second test is the iterative solution of lattice thermal

conductivity, which also depends on 3rd order IFCs and provides information about the an-

harmonicity of the structure. The accuracy of force prediction for 2nd and 3rd order force

constant calculations is also tested by implementing the HIPHIVE package.22 The HIPHIVE

package is a Python library that aims to generate high-order IFCs with reduced number of

force calculations by using advanced optimation and machine learning techniques. There-

fore, reference forces (i.e., training data) must be calculated with high (first principles level)

accuracy to obtain a reliable output. Finally, the performance of large-scale simulations is

confirmed via phonon density of states computed with velocity auto-correlation calculations

based on molecular dynamics simulations.

Methods

Our workflow for developing GAP models and calculating thermal properties is depicted in

Figure 1. The procedure for calculating thermal properties of 2D materials is similar to our

earlier studies23,24 as shown on the right side of Figure 1. The key difference here is that we

use the thermal property calculations to tune the hyperparameters of MLIP training and to

validate the accuracy of the generated potentials.

Density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) generalized

gradient approximation (GGA)25 was used as implemented in the VASP code26 for relaxing

structures and calculating forces on atoms. A plane-wave energy cutoff of 600 eV was adopted
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Figure 1: Flowchart illustrating the process for generating and evaluating Gaussian approx-
imation potentials.
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in these calculations. The Brillouin-zone integrations were performed using a Γ-centered

regular 24 × 24 × 1 k-point mesh within the Monkhorst-Pack scheme.27 The convergence

criteria for electronic and ionic relaxations were set to 10−6 eV and 10−2 eV/Å, respectively.

A vacuum layer of at least 15 Å along the z-direction was chosen to avoid interactions

between neighbouring layers.

The 2nd and 3rd order interatomic force constants (IFCs) were calculated with the finite

displacement method as implemented in the VASP, Phonopy,28 and thirdorder.py29 codes.

An 8× 8× 1 supercell and a 3× 3× 1 Γ-centered k-points grid were employed, and the total

energy convergence limit was set to 10−8 eV for electronic minimization to obtain accurate

IFCs. IFC calculations based on GAP were performed using the QUIP,30 quippy Python

interface,31 and Atomic Simulation Environment (ASE)32 software packages.

AIMD simulations were performed on 8×8×1 supercell and 2×2×1 Γ-centered k-points

grid with a time step of 1 and 3 fs within the NPT ensemble (constant particle, pressure, and

temperature)33 at different temperatures from 200 K to 2000 K. The convergence criteria

to calculate energies for DFT calculations is 10−6 eV for each step. Different temperatures

in AIMD simulations enable us to have diverse structures that correspond to each phonon

mode. On the other hand, to avoid overfitting, none of the supercell structures from 2nd and

3rd order IFCs mentioned in the previous subsection were used in the training datasets.

Lattice thermal conductivity and various thermal transport properties such as phonon

lifetimes and Grüneisen parameters, were calculated by iterative solutions of the Peierls-

Boltzmann transport equation (PBTE)34 as implemented in the ShengBTE code.35 We note

the importance of 3rd order IFCs for these properties. In lattice thermal transport calcula-

tions, at least 64×64×1 well converged q-grid were used and up to 11 next-nearest-neighbour

interactions were selected. The out-of-plane lattice constants (layer thickness) were set as

3.35 Å, 4.20 Å, 3.33 Å, 3.40 Å, and 3.49 Å for graphene, silicene, h-BN, h-AlN, and h-GaN

respectively.

Phonon density of states (PDOS) is generally calculated by using 2nd order IFCs with
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ab-initio methods. Alternatively, the Fourier transform of velocity autocorrelation function

(VACF), Cvv, obtained as a result of MD simulations can be used to calculate PDOS as

follows,

Cvv(t) =
1

N

N∑
i=1

< vi(t)vi(0) >

< vi(0)vi(0) >
, (1)

D(ω) =

∫ ∞

−∞
Cvv(t)e

−iωtdt. (2)

Here, vi(t) corresponds to the velocities of particles along MD trajectories and N is the

number of particles in the simulation box. Finally, PDOS, D(ω) can be obtained with the

Fourier transform of Cvv as a function of frequency. We used LAMMPS36 to run MD sim-

ulations with the generated MLIPs. The supercell contains 5076 atoms in these simulations

and 0.1 fs was used as the time step. Also, 1000 different relative starting points (as v(0))

were selected and Cvv values were averaged over 100k steps from that of relative starting

points. The stated simulation parameters are at most important to reach accurate values

along whole frequency domain.

We generate the training database by running ab initio molecular dynamics (AIMD)

simulations at different temperatures (T=200 K, 400 K,...) and then randomly selecting

points from the trajectories for training and validation. The determination of maximum

temperatures in AIMD calculations is based on the phonon frequencies of materials. For

instance, the maximum phonon frequency of graphene is around 50 THz, which corresponds

to 2400 K; thus, the training database for graphene covers the structures in which outputs

of AIMD calculations are from 200 K to 2400 K with 200 K intervals. Since we focus on

lattice thermal transport properties using MLIPs, the hyperparameters have been tuned

according to the results of the IFCs of the materials. First, phonon dispersion curves, i.e.,

2nd order, and then thermal conductivity values, i.e., 3rd order IFCs have been calculated

and compared with DFT results. All the hyperparameters (i.e. the number of training

points, cutoff distance, sparse points, etc) were tuned to optimize the computational cost
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and accuracy. We found that 3rd order IFCs are more sensitive to hyperparameter values

compared to 2nd order IFCs.

We have used 500 validation points for all the systems while number of training points

were between 1500 to 2500 depending on the system. All the values for hyperparameters

of each system are given in Table 1. To represent the atomic environment, the smooth

overlap of atomic positions37 (SOAP) descriptor have been chosen. The main reason we

use SOAP is its ability to describe both two-body and higher-order many-body interactions

in a compact and rotationally invariant fashion. Accurate calculation of forces requires

considering surrounding atoms beyond the first neighbors and SOAP particularly works well

with mid- and long-range interactions. While we also tested other descriptors and could get

good results, using a single descriptor enabled us to develop a more consistent and systematic

approach for training.

Table 1: GAP Hyperparameters

Hyperparameters Graphene Silicene h-BN h-AlN h-GaN
lmax 10 12 6 8 6
nmax 8 10 6 8 8
rcut 5.2 7.2 6 5.2 7.2
σ 0.4 0.5 0.4 0.5 0.4

zeta 4 4 2 4 2
nsparse 1500 2000 1000 1000 1500

δ 0.2 0.3 0.2 0.2 0.2

Results and Discussions

The phonon dispersion relations of 2D materials can provide valuable insights into their

stability. On the top row of Figure 2 we present the phonon dispersion curves for graphene,

silicene, h-BN, h-AlN, and h-GaN obtained with four different methods: the reference DFT

method, the GAP method, the DFT-HIPHIVE method, and GAP-HIPHIVE method. As

shown in the figure, the GAP and DFT-HIPHIVE methods are indistinguishable from the

DFT results, despite having significantly lower computational costs. Notably, the GAP-
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(a) Graphene (b) Silicene (c) h-BN (d) h-AlN (e) h-GaN

DFT

GAP

Figure 2: Phonon dispersions (top row) and Grüneisen parameter vs frequency plots with
DFT (middle row), and GAP (bottom row) for (a) Graphene, (b) Silicene, (c) h-BN, (d)
h-AlN, and (e) h-GaN.
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HIPHIVE method, which is based on GAP calculations and therefore has the lowest com-

putational cost, reproduces the phonon dispersion relations closely as well. The middle and

bottom rows of Figure 2 present plots of Grüneisen parameters versus frequency for DFT and

GAP, respectively, for all the 2D materials. The Grüneisen parameters reflect the derivative

of phonon frequencies with respect to crystal volume (or area in the case of 2D systems).

While phonon dispersion curves only depend on 2nd order force constants, the calculation

of Grüneisen parameters requires an accurate description of quasi-harmonic force constants

(the first derivatives of frequencies with respect to volume). Therefore, the Grüneisen pa-

rameters provide a more stringent test for the accuracy of the GAP models. Our results show

that the MLIPs developed in this study are quite successful at predicting quasi-harmonic

interactions, with the exception of silicene, where there is an overestimation at low frequen-

cies. In addition, based on the Grüneisen approximation of thermal expansion theory, the

generated GAP models yield accurate results for the thermal expansion properties of these

materials.

We also calculated the thermal transport properties of these materials using the solution

of the phonon Boltzmann transport equation (PBTE) as implemented in the ShengBTE

code. By default, this approach requires accurate calculations of ionic forces for 2nd and

3rd order displacements. The number of structures that must be considered depends on the

crystal symmetry and the chosen nearest-neighbour cut-off distance. Therefore, the accu-

racy, especially for 3rd order displacements, is crucial for obtaining an accurate description

of the lattice thermal transport properties. Figure 3 a-e compares the thermal transport

properties of the 2DMs calculated using both DFT and GAP forces, respectively. Overall,

the GAP results for all the 2DMs studied are in good agreement with the reference DFT

calculations. In addition, the phonon relaxation times calculated with the consideration of

3rd order force constants throughout the Brillouin zone are also consistent with the DFT

results. These findings demonstrate the reliability of our GAP models, particularly for ther-

mal calculations. Zhang et. al 20 fitted a GAP potential for silicene and predicted its lattice
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(a) Graphene (b) Silicene (c) h-BN (d) h-AlN (e) h-GaN

DFT

GAP

Figure 3: Lattice thermal conductivities. Iterative solution of BTE

thermal conductivity via a sinusoidal approach to equilibrium molecular dynamics (SAEMD)

and time domain normal mode analysis (TDNMA) techniques. The calculated room tem-

perature thermal conductivity in our work is in very good agreement with their results.

Another GAP potential for silicene, developed and tested for thermal conductivity by Fan

et. al.11 also produce nearly the same room temperature thermal conductivity as the one

developed in this study. In both previous works, the considered interaction descriptions are

more complex due to the inclusion of two-body and three-body interactions in addition to

SOAP. Similarly, Quyang et. al.16 adopted the same descriptors for graphene and obtained

comparable results with literature in terms of lattice thermal conductivity. The potential

generated in our study is as accurate as their potential in that sense. An example application

of GAP for lattice thermal conductivity of h-BN is also available in the literature,18 but the

training data includes the 3rd order displacements, which are intentionally avoided in our

study to clearly test the accuracy of developed potentials.
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We also compared the DFT and GAP-generated forces using the HIPHIVE code. As

shown in the top row of Figure 3, the accuracy of DFT and GAP models in determining 3rd

order force constants for lattice thermal conductivity calculations is very impressive. Figure

S2 in the Supplementary Materials, which presents relaxation time calculations based on

HIPHIVE, also supports the accuracy of our potential. It is worth noting that for such good

agreement between DFT and HIPHIVE in phonon relaxation time calculations, the forces

calculated by GAP-HIPHIVE for the selected set of displacements must be as accurate as the

reference DFT calculations. The fact that the generated GAP potentials achieve this level

of accuracy and enable the use of an approximate but more efficient method is noteworthy.

On the other hand, the κ values reported here are in very good agreement with the values

calculated with similar methods and measured experimentally as depicted in Table 2.

Phonon-phonon interactions play a crucial role in determining lattice thermal conductiv-

ity in crystals. In first principles-based calculations, these interactions are generally taken

into account up to the three-phonon scattering order.51–55 However, recent studies have

highlighted the significant role of higher-order phonon-phonon interactions in accurately de-

termining lattice thermal conductivity, even for graphene.56–62

The previous tests for the GAP model were based on static calculations of interatomic

forces. To further evaluate the accuracy of the generated potentials in representing physical

properties, we performed VACF-based calculations using molecular dynamics trajectories

generated by the LAMMPS code. We conducted NVE simulations for all the considered

crystals following equilibration NVT simulations using the potentials developed in this study.

As shown in the temperature fluctuation data in the Supplementary Materials (Figure S9),

the temperature, which is related to the kinetic energy of the particles, is within the limits

of accurate molecular dynamics simulations.

The calculated ensemble average phonon density of states, obtained from velocity auto-

correlation data using the GAP model, agrees very well with the phonon density of states

calculated statically using Phonopy with finite displacement forces calculated by DFT (Fig-
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Table 2: The calculated room temperature lattice thermal conductivity of materials in com-
parison with example calculations and available experimental data. Here, ’EXP’, ’HP’,
’GK’, ’SAEMD’, and ’SW’ refers to experimental results, HIPHIVE, Green-Kubo, sinusoidal
approach-to-equilibrium MD, Stillinger–Weber, respectively.

Material Approach κ (Wm−1 K−1) Ref.
Graphene DFT-BTE 3345 TW

GAP-BTE 3470 TW
DFT-HP-BTE 3192 TW
GAP-HP-BTE 3323 TW
DFT-BTE 3040 [38]
MD-GK 2300 [39]
GAP-BTE 3400 [16]
EXP 4840-5300 [40]
EXP 1500-5000 [41]

Silicene DFT-BTE 34 TW
GAP-BTE 35 TW
DFT-HP-BTE 34 TW
GAP-HP-BTE 35 TW
DFTB-BTE 34 [42]
GAP-SAEMD 32 [20]

h-BN DFT-BTE 915 TW
GAP-BTE 934 TW
DFT-HP-BTE 913 TW
GAP-HP-BTE 873 TW
DFT-BTE 900 [43]
DFT-BTE 1242 [44]
EXP 545 [45]

h-AlN DFT-BTE 110 TW
GAP-BTE 118 TW
DFT-HP-BTE 108 TW
GAP-HP-BTE 113 TW
DFT-BTE 73 [46]
DFT-BTE 78 [43]
DFT-BTE 70 [47]

h-GaN DFT-BTE 45 TW
GAP-BTE 45 TW
DFT-HP-BTE 43 TW
GAP-HP-BTE 42 TW
DFT-BTE 37 [48]
DFT-BTE 71 [49]
SW-MD 49 [50]
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ure 4). This agreement is particularly impressive when compared with the results obtained

using classical force fields.

(a) Graphene (b) Silicene (d) h-AlN(c) h-BN (e) h-GaN

Figure 4: Phonon density of states (PDOS) calculations for (a) Graphene, (b) Silicene, (c)
h-BN, (d) h-AlN, and (e) h-GaN.

Conclusions

In this study, we presented a systematic workflow to generate machine learning potentials

for two-dimensional materials. We utilized these potentials to calculate thermoelectric prop-

erties of these materieals, which requires the computation of higher-order force constants,

making it a challenging application for machine learning potentials. We demonstrated that

the potentials we trained are as reliable as the reference DFT calculations for thermal prop-

erty calculations while having orders of magnitude lower computational costs. On average

computational time of force calculations with DFT takes approximately 1 hour per structure

on a node with 40 cores, while it is only 0.3 seconds on one core with GAP. This speedup

allows for longer and larger MD simulations to be run at DFT accuracy. We verified the

accuracy of such MD simulations by comparing PDOS calculations with autocorrelation

data based on GAP and static Phonopy calculation with DFT. The excellent agreement

demonstrates the utility of machine learned potentials is not limited to static properties

(i.e., single-step force calculations), and can be reliably used for computing dynamic prop-

erties through molecular dynamics simulations. Final GAP models and all the training and

validation data were uploaded to a GitHub repository.63
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(3) Deringer, V. L.; Caro, M. A.; Csányi, G. Machine Learning Interatomic Potentials as

Emerging Tools for Materials Science. Advanced Materials 2019, 31, 1902765.
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