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Spatial resolution enhancement in photon-starved STED imaging 
using deep learning-based fluorescence lifetime analysis
Yuan-I Chen,*a Yin-Jui Chang, *a Yuansheng Sun, b Shih-Chu Liao, b Samantha R. Santacruz, a,c,d and 
Hsin-Chih Yeh *a,e

As a super-resolution imaging method, stimulated emission depletion (STED) microscopy has unraveled fine 
intracellular structures and provided insights into nanoscale organizations in cells. Although image resolution 
can be further enhanced by continuously increasing the STED-beam power, the resulting photodamage and 
phototoxicity are major issues for real-world applications of STED microscopy. Here we demonstrate that, with 
50% less STED-beam power, the STED image resolution can be improved up to 1.45-fold using the separation 
of photons by a lifetime tuning (SPLIT) scheme combined with a deep learning-based phasor analysis algorithm 
termed flimGANE (fluorescence lifetime imaging based on a generative adversarial network). This work offers 
a new approach for STED imaging in situations where only a limited photon budget is available.

Introduction
Super-resolution imaging techniques allow fine structures of 
subcellular organelles, protein complexes, and membrane 
domains to be studied in their native environments, revealing 
new functions of these molecular assembles that were not 
previously known.1-4 Among these techniques, stimulated 
emission depletion (STED) microscopy is particularly suited to 
image dynamic processes as its light-driven off-switching 
mechanism well supports a high recording speed.4-7 STED 
microscopy keeps the fluorescent molecules within a sub-
diffraction volume at an “on” state whilst switching “off” the 
neighboring molecules (or, more precisely, returning the 
excited fluorophores back to the ground state without emitting 
fluorescence) using a donut-shaped depletion laser (i.e., the 
STED beam).1, 8 Although the spatial resolution of STED 
microscopy can be further enhanced by continuously increasing 
the STED-beam power, it comes at the price of severe 
photobleaching and phototoxcity.9, 10 For example, to achieve 
50% of probability of returning an excited fluorophore to the 
ground state within its excited-state lifetime (τ, about 4 ns) 
using stimulated emission (with energy normalized cross 
section of 10 cm2/J), a STED-beam intensity of 25 MW/cm2 is 
required.10 Such an intense excitation either directly damages 

the live samples or prohibits any long-term observation of the 
samples.11    

Several techniques have been developed to maintain or 
improve the spatial resolution while lowering the STED-beam 
power.12, 13 The key lies in reducing the noise in the imaging 
acquisition process. One source of noise is the anti-Stokes 
excitation, which can be easily removed by subtracting the 
STED-beam-only background from the STED images.14-18 
Another source of noise is the “early fluorescence” from the 
donut-shaped peripheral region.14 Using a pulsed laser and the 
time-correlated single-photon counting (TCSPC) scheme, this 
early fluorescence from the peripheral region can be eliminated 
by time-gated analysis, creating a method called gated-STED (g-
STED) that shows improved STED imaging resolution (Fig 1a).8, 

19, 20 However, not limited to the unwanted photons from the 
peripheral region, g-STED also discards the wanted photons 
from the central region that arrive at the detector early. As both 
noise and signal are reduced, the signal-to-noise ratio (SNR) is 
not necessarily improved.21 

To differentiate the central fluorescence (signal) from the 
peripheral fluorescence (noise, due to imperfect depletion), 
Lanzanò et al. developed a method termed SPLIT (separation of 
photons by lifetime tuning) that integrates a low-excitation-
power continuous-wave STED beam (CW-STED) with a phasor 
strategy to separate photons.22 Since CW-STED exhibited less 
depletion efficiency and was more susceptible to the 
background noise, the continuous-wave depletion beam was 
later replaced by the pulsed beam (pSTED, Fig. 1b and Fig. S1).23, 

24 The pSTED-SPLIT method relied on a phasor plot for photon 
separation, where the decay histogram at each pixel was 
converted into a phasor point by Fourier transform (ESI Note 
1).25 A linear decomposition algorithm was then employed to 
separate the long-lifetime photons embedded in each phasor 
point (wanted photons presumably from the center, which is 
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denoted as the P1 phasor component) from the short-lifetime 
photons (unwanted photons from the periphery, denoted as P2 
phasor component). When the P1 component was restored and 
put back to the original scanned image, a STED image with 
improved resolution was obtained (Fig. S2).26 While SPLIT 
clearly outperformed g-STED in its imaging quality, the unmixing 
accuracy of SPLIT was still limited by the shot noise (square root 
of the number of photons collected at each pixel).12, 27 Due to 
the limited photon budgets in imaging biological samples, 
widely scattered and dislocated phasor points were often seen 
in a phasor plot, making high-fidelity SPLIT analysis challenging.

To overcome the low-photon-budget issue, we previously 
developed a deep-learning framework termed flimGANE 
(fluorescence lifetime imaging based on Generative Adversarial 
Network Estimation) to denoise the time-resolved 
measurements, generating high-quality fluorescence lifetime 
images.28 Here we are combining flimGANE with SPLIT, creating 
a method termed STED-flimGANE (Fig. 1c) that can achieve an 
enhanced pSTED imaging resolution under a low STED-beam 
power (< 30 mW) and photon-starved conditions (< 200 
photons per pixel). In addition, our STED-flimGANE approach 
shows minimum dependence of spatial resolution on the STED 
power. In our method, a GAN model is trained to transform low-
photon-count fluorescence decays into highly realistic artificial 
high-photon-count decays, thus resulting in denoised phasors 
that can be used to restore fluorophores’ true distributions 
within nanoscale domains. Using our STED-flimGANE approach, 
an average resolution of 64 ± 5 nm is obtained when imaging 
the 60 nm fluorescent beads (n > 100). We also demonstrate 
STED-flimGANE imaging of nuclear pore complexes (NPCs; 
having an average size of 60 nm)29 on COS-7 cells and achieved 
a spatial resolution of 77 nm. It is verified that STED-flimGANE 
can provide up to 1.45-fold resolution enhancement with less 
dependence on STED-beam power as compared to the 
traditional pSTED-SPLIT method.

Materials and methods
The time-resolved pSTED microscope

The time-resolved pulsed STED (pSTED) was implemented on an ISS 
Alba v5 laser scanning system, which was built either upon a Nikon 
TE2000 microscope equipped with a 60X NA=1.4 oil objective lens 
(CFI Plan APO λ, Nikon) for imaging 60 nm fluorescence beads, or a 
Zeiss Axiovert 200m microscope equipped with a Zeiss Plan-
Apochromat 100X NA=1.4 oil objective lens for fixed COS-7 cells. A 
642 nm diode laser with pulse duration around 120 ps (QuixX 642-
140PS, Omicron-Laserage) and a 775 nm fiber laser with duration 
around 600 ps (Katana-775HP, NKT Phontonics) were used for 
fluorescence excitation and depletion, respectively (Fig. 1b; Fig. S1). 
A set of Galvo mirrors and a Z-piezo stage (Nano-Z200, Mad City Labs) 
were employed for 3D scanning of the samples. Both the excitation 
and the STED lasers were in sync with the lifetime 
acquisition/analysis module (FastFLIM, ISS), which was triggered at 
the clock rate of either 50 MHz (for beads samples) or 80 MHz (for 
biological samples) by the STED laser. The 642 nm laser had a built-

in picosecond delayer (10 ps resolution, 0-28 ns tuning range) for 
precise tuning of the temporal separation between the excitation 
and depletion pulses. The optimal delay was obtained by comparing 
the pSTED results of the beads while adjusting the delay in 50-ps 
steps. The two beams were combined by a 670 nm long-pass dichroic 
mirror (DM1 in Fig. 1b, FF685-Di02, Semrock). A custom-made multi-
band dichroic mirror (DM2 in Fig. 1b, zt473-491/561/640/2p-trans-
pc-uf2, custom-made by Chroma) was used to separate fluorescence 
emission and stimulated emission and reflect the de-scanned 
emission light. The fluorescence was collected by an avalanche 
photodiode (SPCM-ARQH-15, Excelitas), after being filtered by a 720 
nm short-pass filter (OD-8 720 nm, Chroma) and a band-pass 
emission filter (679/41 nm, Semrock). A tuneable and motorized 
confocal pinhole (with size tuning range from 20 μm to 1 mm) was 
placed in front of the detector to suppress the background from out-
of-focus planes. For the pSTED imaging, the pinhole size was fixed at 
50 μm. Photon histograms acquired by the FastFLIM module were 
converted into a phase plot. A diluted Cy5 solution, with ~1 ns 
lifetime, was used to calibrate the FastFLIM system before imaging 
the samples. Each bead or cellular sample was scanned only once 
with a dwelling time of 0.4 ms per pixel, generating a 512 x 512 image 
(with an image size of approximately 10.63 x 10.63 μm or 14.64 x 
14.64 μm, depending on the location of field-of-view). Data 
acquisition and a part of the analyses were performed using the ISS 
VistaVision 64-bit software (ESI Note 2 and Fig. S3). The rest of the 
analyses (flimGANE) were performed in Python.

STED-flimGANE

To further enhance the resolution of the pSTED-SPLIT method, 
the noise of the phasor plot needs to be suppressed and the 
assignment of the P1 and P2 components must be accurate and 
highly reproducible. To improve the quality of the phasor plot, 
here we applied the generative adversarial network (GAN) 
model to denoise the phasors under photon-starved conditions 
(Fig. 1c). The generative model learned to generate realistic 
objects from noisy inputs via an adversarial process.30 Based on 
the Wasserstein GAN framework,31 the generator (G) in our 
flimGANE algorithm was trained to produce an “artificial” high-
photon-count fluorescence decay histogram based on a low-
photon-count input (photon counts < 200 per pixel), while the 
discriminator (D) distinguished the artificial decay histogram 
from the ground-truth (Fig. 1c).28 Described in more details in 
ESI Note 3 and Fig. S4, our generator G was built on 
convolutional neural networks (CNN), fully connected neural 
networks (FCNN), and residual neural networks (ResNet), while 
the discriminator D was comprised of four fully connected 
layers. To achieve the training goal that maximized the 
probability of the discriminator making a mistake, the GAN 
model was trained by minimizing both the generator loss and 
discriminator loss, which were defined as:

𝐺𝑙𝑜𝑠𝑠 =
1
𝑛∑

𝑛

𝑖 = 1
[ ―𝑓(𝐺(𝑧𝑖))],

𝐷𝑙𝑜𝑠𝑠 =
1
𝑛∑

𝑛

𝑖 = 1
( ―𝑓(𝑥𝑖) + 𝑓(𝐺(𝑧𝑖))),
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where  represented the normalized low-photon-count 𝑧𝑖 𝑖𝑡ℎ

fluorescence decay histogram,  was the normalized ground-𝑥𝑖 𝑖𝑡ℎ

truth fluorescence decay histogram (obtained by simulations), 
and  was the 1-Lipschitz function approximated by the 𝑓(𝑥)
discriminative model. In order to avoid mode collapse, a 
common issue in GAN where the G got stuck in a small space 
with low variety,31 we included additional loss functions 
between the generator output and the ground truths (ESI Note 
3). Eventually, a well-trained G enabled the production of very 
realistic, artificial high-photon-count decays that could be used 
to generate a robust phasor representation with less scatter in 
the frequency domain.

As shown in Fig. 1c, when the distance of the fluorophore to 
the center of excitation increased, the depletion effect kicked in 
and increased the decay rate. The resulting phasor points thus 
lay along a chord of the G-S semicircle, moving from the top of 
the semicircle to the lower part of the semicircle, termed a STED 
trajectory (Fig. S4). The two ends of the STED trajectory were 
the P1 and P2 components, which represented central and 
peripheral emissions, respectively. Typically, the positions of P1 

and P2 were determined manually. To improve accuracy and 
reproducibility, our STED-flimGANE adopted an algorithm to 
assign P1 and P2 positions in the denoised phasor plot (ESI Note 
4). In short, we first assigned P1 based on the peak pixels in the 
G-generated S-image. Using beads as the calibration standard, 
when a bead was 6 pixels away from the center of excitation, 
the depletion effect reached the maximum. This maximum 
depletion provided us a threshold (termed MAX0.9, where MAX 
represented the maximum occurrence on the phasor plot; ESI 
Note 4) which could be used to accurately determine P2 
location. It was noted that P1 might not lie precisely on the G-S 
semicircle due to non-zero STED-beam intensity at the central 
minimum and multi-exponential decay of the fluorophore. 
Ideally, the phasor point of each pixel would lie along the line of 
P1 and P2. The fractions of the two components, f1 and f2, were 
then determined via linear decomposition.22 If the phasor point 
was not right on the line of  P1 and P2, it was projected to the 
line of P1 and P2. Ultimately, given the raw images with N 
acquired photons at each pixel, the final image was 
reconstructed by putting back only f1N photons at each pixel. 
Here we first validated our model using a synthetic dataset (Fig. 
S5-S7), followed by applications to real samples (fluorescent 
beads in Fig. 2 and biological samples in Fig. 3-4) under various 
depletion conditions. 

Samples and images acquisition  

Two types of samples, 60 nm fluorescent beads and STAR-635P-
stained nuclear pore complexes (NPCs) on fixed COS-7 cells, 
were tested using the STED-flimGANE method. The beads were 
first diluted in water and sparsely coated on a poly-L-lysine-
treated glass coverslip. The fixed COS-7 cells were stained with 
a primary antibody against the nuclear pore complex protein 
Nup 153 and then a secondary antibody conjugated with STAR-
635P. The power of the 642 nm laser for fluorescence excitation 
was fixed at 2.2 μW (measured at the back aperture of the 

objective), while the power of the 775 nm depletion beam 
varied for spatial resolution investigation.

Results
Synthetic data and the STED-flimGANE model training

The STED-flimGANE model was first trained using a Monte Carlo 
simulation dataset (Fig. S5 and ESI Note 5). A Python program was 
employed to simulate the photon collection process in the counting 
device with either 64- (for fluorescent beads) or 256-time bins (for 
stained NPCs), followed by the probability mass function calculation 
based on the convolution of an experimentally obtained instrument 
response function (IRF) and a theoretical fluorescence decay in the 
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Fig. 1. Principle of the STED-flimGANE. (a) The temporal dynamics 
of fluorescence can be used to improve the STED imaging 
resolution. When the distance of a fluorophore to the center of 
excitation increases, the depletion effect kicks in and increases 
the decay rate. (b) pSTED microscopy setup uses a pulsed 
excitation and pulsed depletion beam (i.e., the STED beam). The 
two laser beams are combined by a dichroic mirror (DM1), 
forming diffraction-limited Gaussian (red) and doughnut-shaped 
focal intensity distribution (purple), respectively. The 
fluorescence (green and blue) is detected by the avalanche 
photodiodes (APDs) and registered by a digital-frequency-domain 
lifetime acquisition module. (c) Our STED-flimGANE method 
integrates the SPLIT (separation of photons by lifetime tuning) 
scheme with a deep learning-based phasor analysis algorithm 
termed flimGANE (fluorescence lifetime imaging based on a 
generative adversarial network) to improve the STED imaging 
resolution while using a lower STED-beam power. The well-
trained STED-flimGANE model can generate a robust phasor 
representation (G-generated phasor plot) with less scatter for 
reconstructing STED images with higher spatial resolution. 
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central and peripheral regions, generating the following piecewise 
function:

𝐼𝑖(𝑡) ∝ {𝑒 ―𝑡/𝜏𝑖,𝑆𝑇𝐸𝐷                                       if 0 ≤ 𝑡 < 𝑇𝑆𝑇𝐸𝐷
𝑒 ― 𝑇𝑆𝑇𝐸𝐷/𝜏𝑖,𝑆𝑇𝐸𝐷𝑒 ―(𝑡 ― 𝑇𝑆𝑇𝐸𝐷)/𝜏𝑖,𝑓𝑙           if 𝑡 ≥ 𝑇𝑆𝑇𝐸𝐷

Where  represented the intensity at time t and location ,   𝑰𝒊 𝒊 𝝉𝒊,𝒇𝒍

represented the natural fluorescence lifetime of a fluorophore at 
location ,  was the shortened fluorescence lifetime under the 𝒊 𝝉𝒊,𝑺𝑻𝑬𝑫

STED-beam depletion at location , and  was the STED-beam 𝒊 𝑻𝑺𝑻𝑬𝑫

pulse duration (600 ps in this work). Location  = 1 represented the 𝒊
center while  > 1 indicated the (  -1) pixels toward the periphery. 𝒊 𝒊
Depending on the fluorophores that users wanted to image (0.5-3.5 
ns for natural fluorescence lifetime of most fluorophores) and the 
available photon budgets (50-5,000 photon counts per pixel), 300 
normalized ground truths and 150,000 degraded decays were 
generated for training G and D. The adversarial network training was 
completed in 2.3 hours.

The normalized degraded decay was transformed into the 
normalized “ground-truth mimicking” histogram, termed Goutput, 
within 0.08 ms per pixel. After the training process, Goutput became 
indistinguishable by D from the ground truth dataset (Fig. 1c and Fig. 
S6). 
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Fig. 3. Nuclear pore complex (NPC) imaging results on COS-7 cells 
under low-to-medium depletion power conditions. (a) The 
intensity images of NPCs using the confocal, pSTED, pSTED-SPLIT, 
and STED-flimGANE microscopy under various depletion powers.  
COS-7 cells were stained with a primary antibody against Nup 153 
and a STAR-635P-labeled secondary antibody. Scale bars, 1 μm. 
Colormap ranges were provided in Table S1. (b) Zoom-in views of 
the box regions in (a) showed that only the STED-flimGANE could 
well resolve the two adjacent nuclear pore complexes (indicated 
by white dashed lines) at PSTED = 20 mW. Scale bars, 200 nm. (c) 
Line profiles of the confocal, pSTED, pSTED-SPLIT, and STED-
flimGANE images in (b). The average resolutions are 116 ± 1 and 
101 ± 1 nm (n = 100) for pSTED-SPLIT and STED-flimGANE 
microscopy, respectively, at PSTED = 20 mW.
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Fig. 2. Fluorescent bead imaging results using confocal, pSTED, sSTED-
SPLIT and STED-flimGANE microscopy. (a-b) The phasor representations 
(a) and the intensity images (b) of the confocal, pSTED, pSTED-SPLIT, and 
STED-flimGANE images for 60 nm fluorescent beads.  The STED-beam 
power (PSTED) was fixed at 120 mW. Scale bars, 1 μm. (c) Zoom-in views of 
the box regions in (b) showed that the STED-flimGANE achieved the 
highest spatial resolution. Scale bars, 400 nm. (d) Line profiles of the 
confocal, pSTED, pSTED-SPLIT, and STED-flimGANE images in (c). A two-
component Gaussian fitting was utilized to obtain the FWHM of the 
fluorescent beads. The average resolutions are 75 ± 5, 70 ± 6 and 64 ± 5 
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Two validation steps were employed to evaluate the accuracy 
and reliability of the STED-flimGANE imaging. First, success in training 
was reflected by the quick drop of training loss (mean-squared error, 
MSE; Fig. S6a), followed by the convergence to 0.01 count2 after 
training iterations. Second, Sarmento et al. evaluated the SNR of a 
phasor plot based on the spread along the direction of the phasor 
elongation. Adopting the same strategy, we assessed the denoising 
performance of our STED-flimGANE algorithm (ESI Note 6).32 When 
tested on an unseen dataset, STED-flimGANE showed 2.9-, 2.2-, and 
2-fold improvement in SNR of the denoised phasor plots as 
compared to the plots before denoising, for the ultra-low- (< 100 
photons per pixel), low- (100-200 photons per pixel), and medium-
photon-count (200-300 photons per pixel) conditions, respectively,  
and a positive correlation (0.95; Pearson correlation coefficient) 
between the model performance and the SNR (Fig. S7). These 
metrics verified that the STED-flimGANE is a reliable model for STED 
imaging analysis and reconstruction.

Validation of STED-flimGANE using 60 nm fluorescent beads

When imaging fluorescent beads, the power of the 775 nm 
depletion beam was fixed at 120 mW. Under such a strong 

STED-beam power, the acquired average photon count per pixel 
reduced to 41 photons (Fig. 2 and ESI Note 7). In the confocal 
imaging (equivalent to STED imaging without the depletion 
beam), the phasors mapped from all pixels scattered around the 
long lifetime (P1) components in the semicircle. In contrast, 
when the STED beam was employed, the phasor distribution 
elongated toward the short lifetime (P2) component (Fig. 2a). 
The formation of a clear STED trajectory clearly facilitated 
photon separation in the pSTED-SPLIT and STED-flimGANE 
schemes, thus improving the spatial resolution (Fig. 2b-c). By 
fitting the line profiles with a multi-peak Gaussian function (Fig. 
2d and ESI Note 8), we estimated the full-width-at-half-
maximum (FWHM) of these fluorescent beads (n > 100) to be 
64 ± 5 nm when using STED-flimGANE, which was 1.17-fold and 
1.09-fold improvement as compared to the conventional pSTED 
imaging (75 ± 5 nm) and the pSTED-SPLIT imaging (70 ± 6 nm), 
respectively.

Performance of STED-flimGANE in imaging biological samples

When imaging nuclear pore complexes (NPCs, with an average 
size of 60 nm) on fixed COS-7 cells, STAR-635p was used as the 
STED dye that stained nucleoporin Nup 153 through a primary 
and a secondary antibody (Fig. 3a-b). As expected, with a more 
effective algorithm to separate unwanted photons, STED-
flimGANE outperformed pSTED, and pSTED-SPLIT in resolving 
NPCs under low-photon-count (133 average photons per pixel) 
to ultra-low-count (45 average photons per pixel) conditions 
(Fig. 3c). Both pSTED and pSTED-SPLIT schemes failed to 
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at extreme depletion power conditions. (a) The intensity images of 
the confocal, pSTED, pSTED-SPLIT, and STED-flimGANE for the STED 
probe under extremely low depletion conditions (PSTED = 14 mW). 
Scale bars, 1 μm. Colormap ranges were provided in Table S1. (b) 
The same as (a) but under extremely high depletion conditions 
(PSTED = 140 mW). (c) Zoom-in views from the solid box region in (a, 
b) demonstrated that the STED-flimGANE achieved a similarly high 
spatial resolution using extreme depletion power. Obvious 
improvements were observed from extremely low to high 
depletion for both pSTED and pSTED-SPLIT. Scale bars, 400 nm.  The 
arrows indicated that only STED-flimGANE was able to resolve the 
closely packed NPCs under extremely low depletion conditions. (d) 
Line profile of the confocal, pSTED, pSTED-SPLIT, and STED-
flimGANE images in (c). 
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Fig. 5. The STED-flimGANE provided reliable super-resolution 
images across various STED depletion conditions. (a) Qualification 
of the resolution in the confocal, pSTED, pSTED-SPLIT, and STED-
flimGANE images. The optical resolution was determined by the 
FWHM of the intensity profiles of the nuclear pores. STED-
flimGANE exhibited 50% less dependency of the image resolution 
on the STED power. The transparent points in the raincloud plots 
represented individual FWHM values for 100 randomly selected 
NPCs while the darker points represent the average FWHM values 
from Gaussian fitting. (b) The fitted Gaussian distributions of 
pSTED, pSTED-SPLIT, and STED-flimGANE on the FWHMs under 
two PSTED conditions: 15-30 mW and >120 mW depletion power.
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reconstruct a clear NPC image at a low STED-beam power (20 
mW) and high average photon count (133 per pixel), indicating 
a reduced resolution due to the early fluorescence background. 
However, under this low depletion condition, STED-flimGANE 
still well resolved the adjacent NPCs (Fig. 3b). The line profile 
from the STED-flimGANE image exhibited a clear trough 
between the adjacent NPCs (Fig. 3c). When the distance 
between adjacent NPCs was down to 140 nm, only STED-
flimGANE could better differentiate these NPCs (Fig. S8). In 
contrast, pSTED and pSTED-SPLIT could resolve the same pair of 
NPC only when the STED-beam power was higher (60 mW). 
Although the resolution of the STED-flimGANE slightly improved 
under high STED-beam power (Fig. 3c), its spatial resolution 
dependence on the STED-beam power was much less than that 
of pSTED and pSTED-SPLIT. Specifically, the STED-flimGANE 
showed 1.45-fold improvement in spatial resolution (77 nm) as 
compared to that of pSTED-SPLIT (112 nm) under the STED-
beam power of 60 mW, indicating that STED-flimGANE could 
further enhance the spatial resolution when STED-beam power 
was kept low. 

Resolution comparison under extreme depletion power conditions

Here we compared the spatial resolution of the STED-flimGANE 
imaging with that of the confocal, pSTED, and pSTED-SPLIT 
imaging under extremely low (PSTED = 14 mW, 120 average 
photons per pixel) and extremely high (PSTED = 140 mW, 55 
average photons per pixel) depletion power conditions (Fig. 4a-
b). As expected, the P2 component moved closer to (1, 0) under 
the high depletion power (Figs. S9-10). Although both pSTED-
SPLIT and STED-flimGANE could differentiate closely packed 
NPCs under the high depletion power, some closely packed 
NPCs were not resolved in pSTED-SPLIT imaging under the low 
depletion power (Fig. 4c-d and Fig. S11). In contrast, STED-
flimGANE well resolved these closely packed NPCs even under 
a low depletion power. In addition, STED-flimGANE offered 
more background suppression in the surroundings of the NPCs 
and the outer regions of the cells (Fig. 4c).

Evaluation of the spatial resolution dependence on STED power

Using as the resolution estimate, FWHM of the point spread 
function was determined by fitting the intensity profiles of 100 
randomly selected NPCs with a Gaussian function (Fig. 5), where 
the FWHM was equal to 2.35. Under all STED-beam powers 
used in this investigation, STED-flimGANE not only achieved 
super resolution imaging (i.e., FWHM < 200 nm, Fig. 5a), but 
showed 1.13-fold improvement in spatial resolution (on 
average) over the traditional pSTED-SPLIT imaging. When the 
same resolution was maintained, STED-flimGANE only required 
one-fourth the depletion power as compared to pSTED-SPLIT 
(30 mW vs. 120 mW). While the resolution of both methods 
could be enhanced by increasing the STED-beam power, STED-
flimGANE clearly showed less dependence on the depletion 
power (the slope of the linear regression fit was only half of that 
of the pSTED-SPLIT fit). In addition, the FWHM distributions also 
indicated STED-flimGANE had less dependence on the STED-
beam power (Fig. 5b). All these results suggested that STED-

flimGANE is a better form of the SPLIT method and is more 
suitable for imaging live samples (although here we only tested 
STED-flimGANE on fixed cells). 

Discussion
In this work, we have demonstrated that the STED-flimGANE 
can achieve 77 nm lateral resolution in imaging nuclear pore 
complexes on fixed COS-7 cells, under the conditions of 73 
photons per pixel and 60 mW STED-beam power. These results 
indicated that the STED-flimGANE is a robust, fit-free and user-
friendly method for enhancing the spatial resolution with 
minimum dependence on the STED-beam power, even in the 
presence of uncorrelated background and shot noise. The 
denoising capability of the STED-flimGANE on the noisy 
fluorescence decays via GAN is the key to providing robust 
phasor representations for downstream photon separation (Fig. 
S6). Although GAN-based approaches have been used to 
transform the confocal images to match the resolution of STED 
images,33, 34 to the best of our knowledge, this is the first report 
that the GAN is applied to improve the spatial resolution of 
STED imaging based on the fluorescence temporal dynamics. 

It is worth noting that STED-flimGANE maintains good 
spatial resolution even when photon counts are low. 
Insufficient photons result in scattered phasor points in the 
phasor plot, leading to so-called scatter error.35 Since the 
scatter error scales inversely with the square root of the total 
photon counts per pixel, filtering is a typical strategy to denoise 
phasor plots under photon-starved conditions. For instance, a 
median filter is commonly used for phasor denoising;36 
however, high-spatial-frequency components such as the edge 
of features are often diminished.37 To preserve these high-
frequency components, STED-flimGANE employs Wasserstein 
distance as the loss function, which provides a smoother 
gradient for GAN network training under all conditions (ESI 
Note 3). As a result, the well-trained generator in STED-
flimGANE seamlessly converts low-photon-count decays into 
highly realistic high-photon-count ones, leading to a denoised 
phasor plot with much less scatter error.28 Although other 
strategies such as the complex wavelet transform methods can 
also preserve fine structures and concurrently clean up noisy 
images,37, 38 they require additional steps, such as selection and 
optimization of the basis functions, before the transformation.

A few reports demonstrated low-power STED imaging 
through modulating the STED beam. One example is the 
adaptive STED-illumination strategy DyMIN (Dynamic intensity 
MINimum) that provides the imaging of NPCs at a resolution of 
73 nm with 30 and 344 mW STED-beam powers for two cycles.18 
Similarly, modulation-enhanced STED (M-STED) also achieves 
87 nm resolution of NPCs by analyzing the STED trajectory 
under various STED-beam powers.32, 39 However, changing the 
STED-beam power not only increases the data acquisition time 
but also complicates the analysis process. In contrast, our STED-
flimGANE only relies on post-processing, which provides a 
comparable resolution without the need of spending additional 
time modulating the STED-beam power. We emphasize that this 
method is simple to implement in the existing optical system 
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such as modulated STED (mSTED) to facilitate the observation 
of the rapid process of the biological samples.40 Although the 
network training time may be the bottleneck for STED-
flimGANE, this issue can be overcome by using more advanced 
hardware (e.g., graphic processing unit or tensor processing 
unit) or transfer learning techniques that take advantage of the 
previously trained networks.41

The STED-flimGANE is a versatile and efficient method for 
improving the resolution of STED microscopy, which can be 
easily adapted on a variety of standard and custom setups. 
Bayesian optimization provides an efficient means to select the 
optimal hyperparameters. The P1 and P2 phasor components in 
the traditional SPLIT are either assigned manually or 
determined by the characteristic limits of the operative range. 
As a result, these phasor components can be skewed due to 
bias, or require recalibration once the sample or the 
excitation/depletion power is changed. In contrast, STED-
flimGANE automatically assigns the P1 and P2 phasor 
components without the need of recalibration, thus eliminating 
any user or experimental bias. Similar to the existing photon-
separation approaches, we expect STED-flimGANE to be 
capable of improving the resolution in both CW and pulsed 
STED. While the implementation of CW-STED is more 
straightforward, less depletion efficiency and more 
susceptibility to the background noise limit its widespread use 
in various applications.12, 42, 43 Here we demonstrate STED-
flimGANE using pSTED, achieving up to 1.45-fold improvement 
in spatial resolution under the conditions of both 20 mW (90 nm 
vs 131 nm) and 60 mW (77 nm vs 112 nm) STED-beam power 
(Fig. 3c). The higher STED-beam power depletes more photons 
from the periphery at the expense of SNR of the phasor plot (ESI 
Note 6 and Fig. S8). In contrast, the lower STED-beam power 
yields a better quality of phasor plot, but at the cost of the 
spatial resolution. As live-cell imaging usually involves a 
compromise between image quality and cellular health, the 
labeling protocols and imaging conditions are required to be 
optimized according to the users’ purpose.4

Conclusions and Outlook
Here we introduce a new method termed STED-flimGANE 
(combination of a deep learning-based phasor analysis, 
fluorescence lifetime imaging based on Generative Adversarial 
Network Estimation, and the separation of photons by lifetime 
tuning scheme) that can achieve enhanced STED imaging 
resolution under a low STED-beam power (< 30 mW) and 
photon-starved conditions (< 200 photons per pixel). Our STED-
flimGANE method can rapidly generate robust phasor 
representations with less scatter error. Images reconstructed by 
these denoised phasor plots clearly show improved resolution 
and quality. Our work represents an important step towards 
low-power STED imaging for live-cell or live-tissue imaging 
applications, allowing users to achieve desired spatial 
resolution without significantly causing phototoxicity and 
photodamage to the samples. Our next task is to demonstrate 
STED-flimGANE in imaging organelles in live cells. As one of the 
key advantages of phasor analysis is the differentiation of 

multiple fluorophores with different lifetimes excited by a single 
excitation source,44, 45 with recent development in fluorescence 
lifetime tuning strategies in fluorophores and protein tags,46-49 
we envision that our STED-flimGANE can also be adapted for 
multiplexed STED imaging.
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