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1.1 Design, System, Application

This work outlines a retrosynthetic framework for generating chemocatalytic libraries given 

a known list of products and a known list of reactants using automated reaction network 

generation. The extent of accessible molecular space was assessed using the Tanimoto Similarity 

Score. This work specifically targeted the synthesis of a list of computationally generated 

potential organic corrosion inhibitors from a list of candidate bioprivileged molecules. Three 

systems were explored, with variations in co-reactants or “helper molecules” and amount of 

reaction families encoded into the network. This work provides a library of reactions for 

experimental pursuit. With a flexible framework, it allows for retrosynthetic exploration of 
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innumerable reactant or product lists with targeted inclusion of helper molecules or reaction 

families.
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1.2 Abstract 
 

Retrosynthesis is the process of designing chemical pathways from a set of reactants to a 

set of desired products. However, when both the pools of potential reactants and products grow 

to a substantial size, this becomes infeasible without the aid of computational tools. This work 

uses Pickaxe, an automated network generation tool, to perform computational retrosynthesis 

on a pool of 297 bioprivileged candidate molecules as reactants and 44,003 potential corrosion 

inhibitors that were generated by a variational autoencoder. Unlike typical approaches in 

computational synthesis planning, the use of automated network generation allows flexibility in 

pathways and starting material beyond those that are documented. This work starts by 

replicating known pathways to corrosion inhibitors from a single bioprivileged candidate 

molecule and applying the constituent reaction families to the entirety of the reactant pool and 

concludes by generating networks with a more extensive reaction family list and two sets of co-

reactants, or “helper molecules.” Network size, both from the perspective of total reactions 

enacted and total products formed, was analyzed.  

1.3 Introduction 
 

Fossil fuels are the building blocks for a range of products, from plastics to fertilizers. 

However, both environmental and sustainability concerns about their sourcing and uses 

abound.1–5 Substitutes are currently being investigated, with a focus on biologically produced 

alternatives, with some solutions marrying chemical and biological production principles.6–14 One 

such solution for a set of diversifiable building blocks that are sourced biologically is bioprivileged 

molecules, which are defined as “biology-derived chemical intermediates that can be efficiently 

converted to a diversity of chemical products including both novel molecules and drop-in 
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replacements.”15–17 Among these products, corrosion inhibitors present an ideal target due to 

the attractiveness of organic alternatives to inorganic corrosion inhibitors that often contain 

toxic, heavy metals.18–29 Given the diversity of possible atomic compositions of what could 

potentially be an organic corrosion inhibitor and the experimental demands of accepted 

protocols for demonstrating inhibition effectiveness (IE%) through standard ASTM tests, 

computational approaches are an ideal technique to explore potential molecular space.30–33 

There are two key challenges in developing a portfolio of replacement candidates that can be 

biologically sourced using a computational framework. The first is developing a list of novel 

targets that can be reached from biological starting points in a small number of steps, preferably 

with high yield and high selectivity. The second is to computationally predict inhibition 

effectiveness (IE%) of a putative corrosion inhibitor.  This work focuses on predicting pathways 

based on chemocatalysis to a set of targets (corrosion inhibitors) from a set of sources (candidate 

bioprivileged molecules), i.e., how to computationally tackle retrosynthesis.  The set of targets is 

defined based on a pool of candidates derived from known corrosion inhibitors, which based on 

similarity, obviate the need to couple molecule and pathway design with a prediction of IE%.  

Retrosynthesis, or the process of deconstructing a target, has been carried out 

computationally for many years, but the advent of machine learning has brought forth a new 

generation of algorithms.34–38 Computational tools that have embraced machine learning to 

attempt to tackle this issue include Reaxys, AiZynthFinder, and ASKCOS. 39,40 Reaxys, for example, 

utilizes artificial intelligence to elucidate pathways to targets based on a library of known 

reactions. Other studies, such as that by Weber et al., have used Reaxys in their work of analyzing 

reaction networks.41 AiZynthFinder uses Monte Carlo methods to deconstruct targets to 
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purchasable precursors based on known reaction templates.39 ASKCOS, also a freely available 

tool, has a web interface that additionally predicts the likelihood of a product being formed.40 

While these tools all provide powerful contributions to retrosynthetic planning, the use of AI 

opens the door to biases present in the training data sets and the libraries of existing reactions. 

Furthermore, these tools only allow small degrees of customization; particularly relevant to this 

work is that they are limited by their predefined source list of commercially available chemicals. 

Since both the targets and sources in this work are not necessarily commercially available, 

we sought to not be limited by known reactions and thus used automated network generation. 

This approach invokes specific reaction families and rules for their application to propagate 

reactions forward, without those specific reactions having been previously experimentally 

performed.42 Automated network generation approaches have proliferated in recent years, and 

two of these, NetGen and Pickaxe, were developed by us and are based on encoding of specific 

reaction families, using either matrix representations of connectivity or SMARTS reaction 

operators, respectively.42–44 Previous work in which we identified bioprivileged molecules relied 

on NetGen to explore chemical reactions that ranked the diversification potential of candidate 

bioprivileged molecules, but it was not used to identify pathways between starting molecules 

and specific targets, which is a more challenging computational problem because of the 

combinatorial explosion of potentially long pathways.16,17,45 Thus, in this work, we transitioned 

to Pickaxe to produce and evaluate automated reaction networks due to its computational 

efficiency, use of standard cheminformatics representations which allowed available search 

algorithms to be deployed, and more compact storage of molecules.43 The source molecules were 

the candidate bioprivileged molecules identified by Lopez et al., and the target molecules were 
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corrosion inhibitors distilled from work by Dollar et al., which used variational autoencoders 

(VAEs) to generate potential corrosion inhibitors from known corrosion inhibitor seed 

molecules.16,46 Among these seed molecules were molecules synthesized and tested in Huo et 

al., which will be computationally reproduced first. The key contribution of this work is the 

exploration of the accessibility of specific targets from a candidate set of bioprivileged molecules, 

thereby providing a portfolio of potential corrosion inhibitors, known and novel, that can be 

derived from biological sources.  

1.4 Methods 

1.4.1 Specification of Reaction Families  

The foundation of automated network generation is specification of the reaction families, 

or operators, that are allowed. In the first explorations that were performed, which aimed to 

recreate and expand upon the experimental results in Huo et al., this work used reactions 

outlined in Zhou et al., Wang et al., and Lopez et al., with additional reaction families added to 

introduce nitrogen and halogen functionality as summarized in Table 1.16,17,45 

Most of these reaction families require a co-reactant in addition to a specific functional 

group in a parent molecule, i.e., the potential bioprivileged molecule, or one of its derivatives. 

For example, hydrogenation needs a molecule containing a carbon-carbon double bond, but it 

also requires hydrogen to be present. To address this while minimizing the potential 

combinatorial explosion, the concept of “helper molecules” was introduced, i.e., inclusion of 

small molecules added to the initial conditions to facilitate reactions. Helper molecules included 

for the 17 reaction families in the first-generation runs, as well as reactions they might participate 

in, are also summarized in Table 1. Note that these molecules can be changed to be as complex 
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or simple as necessary. In Table 1, they are represented by the simplest units possible to ensure 

the reaction is allowed. Helper molecules are not permitted to react amongst themselves and 

can only facilitate reactions amongst the original bioprivileged molecule or first-generation 

progeny. These molecules serve a similar purpose to the ‘strategic molecules’ identified as 

network hubs in Weber et al.41 
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Table 1 List of 23 initial reaction families and their prototypes used in the first generation of exploration of pathways connecting 
bioprivileged molecules and potential corrosion inhibitors. Helper molecules of the simplest derivative are shown in the right column. 

Reaction Family SMARTS Representation of Reaction Families and Prototypical Reaction Example 
Helper 
Molecule 

Hydrogenation 

 

[C+0:1]=[C+0:2].[H][H]>>[*:1][*:2] 

 

[C+0!$(*-O):1]=[O+0:2].[H][H]>>[*:1][*:2] 

H2 

Hydrogenolysis of C-
O Bond  

[C,c;+0;!$(*=O):1]!@[O+0:2][C,c;+0;!$(*=O):3].[H][H]>>[*:1].[*:2][*:3] 

 

[C,c;+0;!$(*=O):1]@[O+0:2][C,c;+0;!$(*=O):3].[H][H]>>([*:1].[*:2][*:3]) 

H2 

Hydrodeoxygenation  

 

[C,c;+0:1][O+0H:2].[H][H]>>[*:1].[*:2] 

H2 
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Hydrolysis 
 

 

 

[C,c;+0:1][O+0:2]-!@[C,c;+0:3].[O+0H2:4]>>[*:1][*:2].[*:3][*:4] 

 

 

 

[C,c;+0:1][O+0:2]-@[C,c;+0:3].[O+0H2:4]>>([*:1][*:2].[*:3][*:4]) 

H2O 

Dehydration 

 

[C+0!H0:1][C+0:2][O+0H:3]>>[*:1]=[*:2].[*:3] 
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Hydration 

 

[C+0;!$(*-O):2]=[O+0:3].[O+0H2:4]>>[*:2]([*:3])[*:4] 

 

 

[C+0:1]=[C+0:2].[O+0!H0;!$(*-C=O):3]>>[*:1][*:2][*:3] 

H2O 

Decarbonylation 

 

[*+0:1][C+0H:2]=[O+0:3]>>[*:1].[*-:2]#[*+:3] 

 

Decarboxylation 

 

[*+0:1][C+0:2](=[O+0:3])[O+0H:4]>>[*:1].[*:3]=[*:2]=[*:4] 

 

Ketonization 

 

[*+0:1][C+0:2](=[O+0:3])[O+0H:4].[*+0:5][C+0:6](=[O+0:7])[O+0H:8]>>[*:1][*:2](=[*:3])[*:5].[*:4]=[*:6]=[*:7].[*:8] 

CH3COOH 
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([*+0:1][C+0:2](=[O+0:3])[O+0H:4].[*+0:5][C+0:6](=[O+0:7])[O+0H:8])>>[*:1][*:2](=[*:3])[*:5].[*:4]=[*:6]=[*:7].[*:8] 

Esterification 

 

 

[C+0:2](=[O+0:3])[O+0H:4].[C,c;+0:5][O+0H:6]>>[*:2](=[*:3])[*:6][*:5].[*:4]

 

 

([C+0:2](=[O+0:3])[O+0H:4].[C,c;+0:5][O+0H:6])>>[*:2](=[*:3])[*:6][*:5].[*:4] 

CH3OH 

Keto-enol 
Tautomerization 

 

[C,N;+0!H0:1][C+0:2]=[O,N;+0:3]>>[*:1]=[*:2][*:3] 
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Aldol Condensation 

 

[C+0:2](=[O+0:3])[C+0!H0:4].[O+0:5]=[C+0X3:6]>>[*:2](=[*:3])[*:4][*:6]([*:5]) 

([C+0:2](=[O+0:3])[C+0!H0:4].[O+0:5]=[C+0X3:6])>>[*:2](=[*:3])[*:4][*:6]([*:5]) 

[C+0:2](=[O+0:3])[C+0;H3,H2:4].[O+0:5]=[C+0X3:6]>>[*:2](=[*:3])[*:4]=[*:6].[*:5]

        
([C+0:2](=[O+0:3])[C+0;H3,H2:4].[O+0:5]=[C+0X3:6])>>[*:2](=[*:3])[*:4]=[*:6].[*:5] 

CH3CHO 

Diels-Alder Reaction 

 

[C+0:1]=[C+0:2][C+0:3]=[C+0:4].[C+0:5]=[C+0:6]>>[*:1]1[*:2]=[*:3][*:4][*:6][*:5]1 

 

([C+0:1]=[C+0:2][C+0:3]=[C+0:4].[C+0:5]=[C+0:6])>>[*:1]1[*:2]=[*:3][*:4][*:6][*:5]1 

C2H4 
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Ketone Amination 

 

[CX3!$(*[O,S,N])+0:2](=[O+0:3]).[N+0X3!H0:6].[H][H]>>[*:2][*:6].[*:3] 

 

([CX3!$(*[O,S,N])+0:2](=[O+0:3]).[N+0X3!H0:6]).[H][H]>>[*:2][*:6].[*:3] 

NH3 

Epoxidation 

 

[C+0:1]=[C+0:2].[O+0:3]=[O+0]>>[*:1]1[*:2][*:3]1 

O2 

Selective Oxidation 

 

[C+0!H0:1][O+0H:2].[O+0:3]=[O+0]>>[*:1]=[*:2].[*:3] 

 

Hydrohalogenation 
of Alkenes 

 

[C+0:1]=[C+0:2].[F,Cl,Br,I;+0H:3]>>[*:1][*:2][*:3] 

HBr 

Halogenation of 
Alkenes 

 

[C+0:1]=[C+0:2].[F,Cl,Br,I;+0:3][F,Cl,Br,I;+0:4]>>[*:1]([*:3])[*:2][*:4] 

Br2 
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Halogenation of 
Alcohols 

 

[C+0:1][O+0H:2].[F,Cl,Br,I;+0H:3]>>[*:1][*:3].[*:2] 

 

[C,c;+0:1][O+0H:2].[Br;+0:3][P+0:4]>>[*:1][*:3].[*:2][*:4] 

PBr3 

Williamson Ether 
Synthesis  

[C,c;!$(*=O);+0:1][O+0H:2].[CX4!H0,c;+0:3][F,Cl,Br,I;+0:4]>>[*:1][*:2][*:3].[*:4]

 

([C,c;!$(*=O);+0:1][O+0H:2].[CX4!H0,c;+0:3][F,Cl,Br,I;+0:4])>>[*:1][*:2][*:3].[*:4] 

 

Hydroamination 

 

[C+0:1]=[C+0:2].[N+0X3!H0:3]>>[*:1][*:2][*:3] 

 

([C+0:1]=[C+0:2].[N+0X3!H0:3])>>[*:1][*:2][*:3] 

NH3 

McMurry Reaction 

 

[*+0:1][C+0;!$(*-O):2](=[O+0:3]).[*+0:5][C+0;!$(*-O):6](=[O+0:7]).[H][H]>>[*:1][*:2]=[*:6][*:5].[*:3].[*:7] 

CH3CHO 

R OH PBr3+ +R Br PBr2OH
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([*+0:1][C+0;!$(*-O):2](=[O+0:3]).[*+0:5][C+0;!$(*-O):6](=[O+0:7])).[H][H]>>[*:1][*:2]=[*:6][*:5].[*:3].[*:7] 

Thiol-Sulfur Reaction 
 

 

[C,c;+0:1][F,Cl,Br,I;+0:2].[S!H0X2+0:3]>>[*:1][*:3].[*:2] 

H2S 
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Specifically, the helper molecules used in the first portion of this work are outlined in 

Table 2. The last three molecules in this table correspond to molecules #1, #2, and #9 in Scheme 

1 in Huo et al. and can partake in the thiol-sulfur reaction in lieu of H2S (Table 1). An additional 

condition to note includes the use of PBr3 in lieu of HBr to recreate the halogenation pathway of 

the alcohol group on triacetic acid lactone (TAL) used in Huo et al. Each C5, C6, and C7 

bioprivileged molecule from our previous work underwent its own network expansion, i.e., every 

network was initiated with one candidate bioprivileged molecule and the list of helper molecules, 

resulting in 297 total networks in the first instantiation. 

Table 2 Helper molecules for the first portion of the work. Notably, singular bromine atoms are 
introduced using PBr3 and sulfur atom introduction comes from the heterocyclic structures 
outlined in Huo et al. 

Name SMILES Structure 

Acetic Acid CC(O)=O 

 

Water O 
 

Oxygen  O=O  

Methanol CO  

Phosphorus Tribromide BrP(Br)Br 

 

Hydrogen  [H][H]  

Carbon Monoxide [C-]#[O+]  

Ethylene C=C  

Carbon Dioxide O=C=O  

Bromine  [Br][Br]   
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Ammonia N 

 

1H-1,2,4-triazole-3-thiol SC1=NC=NN1 

 

1,2,4-thiadiazol-5-thio SC1=NC=NS1 

 

2-mercaptobenzimidazole SC(N1)=NC2=C1C=CC=C2 

 

 

 The limited set of reaction operators in Table 1 was originally conceived in the context of 

bioprivileged molecules containing carbon, hydrogen and oxygen based on conversion of typical 

biomass-derived sugars and related compounds.  However, corrosion inhibitors may have more 

diverse functionality, and the small set of operators in Table 1 may not be diverse enough to 

connect VAE-derived corrosion inhibitors with bioprivileged molecules. To explore the effect of 

the diversity of chemistry allowed, the list of possible reaction families was expanded to 242, 

while enforcing expansion for only two generations. The list of this expanded set of operators is 

provided in the Supplemental Information. For many of these reaction families, like in the first 

portion of the work, helper molecules needed to be present to enable bimolecular reactions. To 

acknowledge the complexity introduced in the additional reaction families, certain helper 

molecules were simplified from the initial runs. Notably, PBr3 was replaced with HBr and HF, and 

the introduction of sulfur was simplified from the heterocyclic compounds to H2S. This leaves a 

list of 13 helper molecules listed in Table 3. Once again, every bioprivileged candidate molecule 
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underwent individual network expansion, i.e., the initiating molecules to each network were a 

single candidate bioprivileged molecule and the list of helper molecules in Table 3. 

 

Table 3 Helper molecules used for the second portion of this work. Sulfur introduction is 
simplified to H2S and halogen introduction is changed from the use of PBr3 to the use of HBr and 
HF as helper molecules. 

Name SMILES Structure 

Acetic Acid CC(O)=O 

 

Water O 
 

Oxygen  O=O 
 

Methanol CO 
 

Hydrobromic Acid Br 
 

Hydrofluoric Acid F 
 

Hydrogen  [H][H] 
 

Carbon Monoxide [C-]#[O+] 
 

Ethylene C=C  

Carbon Dioxide O=C=O 
 

Bromine  [Br][Br]  
 

Ammonia N 

 

Hydrogen Sulfide S 
 

 

 The purpose of helper molecules is to ensure the propagation of a reaction in the absence 

of moieties in the primary reactive species, and the logic of choosing the smallest unit of reactive 

moiety in a helper molecule is to preserve carbon economy. However, a final analysis of network 

breadth was performed with more biologically relevant helper molecules. Notably, glycerol was 

used to introduce alcohol functionality that was incorporated in earlier runs using methanol as a 
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helper molecule, and glycolaldehyde was used to incorporate aldehyde functionality instead of 

carboxylic acid functionality from acetic acid. Both chemicals are accessible through biological 

sources; glycerol is a byproduct of biodiesel production and glycolaldehyde is a byproduct of the 

pyrolysis of glucose.47–49 

Table 4 Helper molecules used for the third portion of this work. Acetic acid was replaced by 
glycolaldehyde, and methanol was replaced by glycerol. Both of these helper molecules provide 
alcohol and aldehyde functionalities from biologically accessible molecules. 

Name SMILES Structure 

Glycolaldehyde C(C=O)O 
 

Water O 
 

Oxygen  O=O 
 

Glycerol OCC(O)CO 

 

Hydrobromic Acid Br 
 

Hydrofluoric Acid F 
 

Hydrogen  [H][H] 
 

Carbon Monoxide [C-]#[O+] 
 

Ethylene C=C  

Carbon Dioxide O=C=O 
 

Bromine  [Br][Br]  
 

Ammonia N 

 

Hydrogen Sulfide S 
 

 

1.4.2 Using Automated Network Generation to Mimic Retrosynthesis 
 

While retrosynthesis, by definition, implies deconstructing a product, the operator set 

formulated for automated reaction network generation of chemocatalytic reactions considers 

reactions in a “forward” direction as defined by typical reactions carried out in conventional 
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practice.  While some reaction families that are practiced routinely in both directions may exist 

as forward and reverse pairs via two distinct operators, not all reaction operators in Table 1 or 

Table S3 have a reverse counterpart.  Therefore, networks were generated from a list of desired 

reactants, i.e., the bioprivileged molecules, and these networks were searched for the creation 

of desired products, i.e., the target corrosion inhibitors. Specifically, the reactants were the list 

of candidate bioprivileged 5-carbon (C5), 6-carbon (C6), and 7-carbon (C7) molecules that were 

identified previously and which are summarized in the Supplementary Information in Table S1.16 

As the reaction operators are not stereospecific, formation of distinct stereoisomers is not 

delineated, so the 303 candidates proposed in Lopez et al. were reduced to 297 molecules, which 

will be the number of networks referenced from this point forward. The products were 

assembled from a list of 44,003 unique molecules, i.e., not accounting for stereochemistry, 

generated via VAEs using known corrosion inhibitor seeds46 and are summarized in a separate 

Supplemental Information file.  

Finally, to provide insight to traversing molecular space and the likelihood of forming the 

desired products, Tanimoto similarity scores, or the Tanimoto index, between bioprivileged 

reactants and target products were calculated.50,51 The Tanimoto index is a metric of comparison 

or “similarity score” given by the following equation: 

 
𝑇(𝐴, 𝐵) =  

(𝐴 ∩ 𝐵)

(𝐴 + 𝐵 − 𝐴 ∩ 𝐵)
 (1) 

 

where A and B are the molecular fingerprints of the two species being compared, and the 

Tanimoto index falls inclusively between 0 and 1: “0” means no similar bits, and “1” means all 
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the bits match. These values are calculated using RDKit, with molecules being converted to 2048-

bit RDKit molecular fingerprints. 

1.5 Results and Discussion 

1.5.1 Molecular and Atomic Characteristics of Bioprivileged Molecules and Target Corrosion 

Inhibitors  

Due to the extensive size of the pool of target corrosion inhibitors and the vastness of the 

chemical space that could potentially be explored using network generation, we first carried out 

an analysis to examine the characteristics of both the source and target molecules independently 

and how they relate to each other. The first step was examining the sources and targets and 

identifying if any of the proposed targets, i.e., corrosion inhibitors, were identical to any of the 

297 sources, i.e., candidate bioprivileged molecules. This is a simple, yet still useful, outcome of 

this analysis, since the candidate bioprivileged molecules are all known compounds derived from 

PubChem, and thus the production of these molecules and their potential of being produced 

from biomass-derived sources is catalogued. Indeed, three candidate bioprivileged molecules, 

one C5 and two C6 bioprivileged molecules, were identical to molecules in the target pool, 

depicted in Figure 1. As a related important point, their existence within the target pool does not 

preclude their participation in reaction network generation, as they could form other targets 

from chemical expansion. 
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Figure 1 Three bioprivileged molecules among the 297 C5, C6 and C7 candidates that were 
identical to three molecules among the 44,003 target molecules predicted to be corrosion 
inhibitors by the variational autoencoder. 
 

The next analysis of the molecule pools that was carried out was tallying the 

characteristics of the number and types of atoms in the target molecule pool.  Differences in the 

length and arrangement of the carbon skeleton and diversity of the elemental composition in the 

target molecules will greatly impact which products from a limited C5-C7 pool of bioprivileged 

source molecules, where oxygen is the only heteroatom, can be accessed from the available 

reaction families and helper molecules. Figure 2 shows the distribution of carbon atoms in the 

target pool of molecules (i.e., potential corrosion inhibitors); note that the source molecules (i.e., 

bioprivileged molecules), which span C5-C7, have 103 C5, 103 C6, and 100 C7 members, roughly 

an equal number near 100 for each carbon number. Approximately 96% of the target molecules 

have more than seven carbon atoms.  It is thus clear from this straightforward analysis that to 

access most of the target molecules from the specified candidate bioprivileged molecules, carbon 

atoms need to be introduced and molecular weight growth needs to be possible, and potentially 

even preferenced given the limited number of steps allowed, among the reaction families and 

helper molecules included. 
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Figure 2 Percentage of target molecules in the pool of potential corrosion inhibitors that contains 
a given number of carbon atoms. Approximately 96% of corrosion inhibitor targets have more 
carbon atoms than the source pool of bioprivileged molecules, which span C5-C7. 
 

To understand the diversity of chemistries that might need to be introduced during 

reaction network generation, the presence of heteroatoms in the pool of target corrosion 

inhibitors was tallied as tabulated in Table 5. Literature shows that heteroatoms such as oxygen, 

nitrogen, sulfur, and phosphorous contribute to improving corrosion-inhibiting properties of 

organic molecules.30,52 Some heteroatoms, such as phosphorous, were not found in a significant 

number of molecules in the target pool, which appeared in only 10 out of 44,003 molecules. To 

the contrary, nitrogen and oxygen are present in more than 66% of the molecules in the target 

pool. Additionally, sulfur atoms appear in 19% of species, and fluorine and bromine atoms are 

present in 9% and 2% of species, respectively. Thus, to focus our reaction network generation 

efforts, we concentrated on diversification of oxygen moieties, which are found in both the 
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source bioprivileged molecules and target corrosion inhibitors, and chemistries that introduce 

nitrogen, sulfur, and halogens as the most fruitful functionalities to emphasize in specifying the 

reaction families and defining the helper molecules. 

Table 5 Number of corrosion inhibitors in the target pool out of a total of 44,003 molecules that 
contain a given heteroatom atom. Oxygen and nitrogen are the most common heteroatoms, 
occurring in approximately 84% and 69% of molecules, respectively. The next most common 
heteroatom, sulfur, occurs in approximately 19% of the target pool. 

Heteroatom # of Targets with Heteroatom  

Oxygen 36751 

Nitrogen 30295 

Sulfur 8570 

Fluorine 3941 

Bromine 959 

Phosphorous 10 

 
 The final analysis of the characteristics of the molecule pools was to tally the distribution 

of Tanimoto similarity scores between all possible pairs of source and target molecules.  The 

Tanimoto similarity score provides a measure of the “distance” between molecules in chemical 

space; lower Tanimoto scores indicate a larger distance in chemical space, implying that more 

reactions would be required to transform a source molecule into the target corrosion inhibitor. 

Thus, each bioprivileged candidate was compared pairwise to each predicted corrosion inhibitor 

(for a total of 13,068,891 comparisons), with the distribution of Tanimoto similarity scores 

summarized in the histogram in Figure 3. Nearly all similarity scores, approximately 99.99%, fall 

below a Tanimoto similarity score of 0.5. Efforts in drug development using the Tanimoto 

similarity score as a measure of synthetic accessibility suggest that molecules with Tanimoto 

similarity scores above 0.7 are accessible after two synthesis steps, with molecules having values 

above 0.85 being “similar.”53,54 If we apply a cutoff of 0.7 to the results in Figure 3, 34 target 

molecules would be deemed to be accessible via reaction networks with two generations. 
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However, molecules of interest in drug development are typically of higher molecular weight 

than the target corrosion inhibitors in this work, and efforts with objectives similar to ours have 

used lower cutoffs, particularly when retrosynthesis of small molecules is of interest.34,55 When 

we apply a lower cutoff of 0.55 to the results in Figure 3, there are 678 instances of a bioprivileged 

molecule and a candidate corrosion inhibitor having a similarity score that meets or exceeds this 

threshold, with 326 unique corrosion inhibitors involved in these 678 pairings. That is, there 

should be at least 678 pathways to 326 products within one or two synthesis steps. Importantly, 

the scope of accessible molecular space without the introduction of new functionalities via helper 

molecules is limited, providing guidance for the choice of chemistries and justifying the 

introduction of helper molecules. While the use of the Tanimoto similarity score does not offer 

the potential efficiency of more customizable similarity searches, it provides a tractable and 

computationally inexpensive approach for approximating accessibility.56–59 
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Figure 3 Histogram showing the percentage of Tanimoto similarity scores that fall within a given 
range for 13,068,891 pairs of bioprivileged molecules and candidate corrosion inhibitors. Bin size 
= 100. Over 99.99% of matches fall below a Tanimoto similarity score of 0.5. 
 

1.5.2 Calibration of Reaction Network Generation Against Known System 
 

To calibrate the proposed framework, we applied our approach to replicate known 

pathways from experimental results (Figure 4). Specifically, pathways to make corrosion 

inhibitors by adding heterocyclic structures to triacetic acid lactone (TAL) were replicated, as 

reported by Huo et al.60 Specifically, we recreated the pathways to Species #1, #2, and #9 in 

Scheme 1 of Huo et al., which are shown in Figure 4 below. To represent these pathways more 

adequately, PBr3 was used to introduce bromine atoms as opposed to HBr. The structures from 

Huo et al. not only provide a test of our computational framework, but they were also seeds in 

the generation of novel corrosion inhibitors using VAEs.  

 

[C,c;+0:1][O+0H:2].[Br;+0:3][P+0:4]>>[*:1][*:3].[*:2][*:4] [C,c;+0:1][F,Cl,Br,I;+0:2].[S!H0X2+0:3]>>[*:1][*:3].[*:2] 

(a) (b) 

Figure 4 Pathways to corrosion inhibitors as synthesized in Huo et al. as recreated in Pickaxe. The 

brominated complex is formed in (a) generation 1 and the final product is formed in (b) 

generation 2. 

 

While the successful production of the pathways to the three corrosion inhibitors that 

were tested experimentally using automated network generation serves as a proof-of-concept 
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for utilizing for using this tool as a retrosynthesis planner, it does not provide novel pathways. 

Thus, the work continued with the application of the reaction families used to reproduce the 

pathways found in Huo et al. as well as various expanded lists to all bioprivileged molecules.  

1.5.3 Application of Limited Reaction Rules and Small Set of Helper Molecules to All Bioprivileged 

Molecules 

The first step in the creation of novel pathways was to deploy the reaction families in 

Table 1 and the helper molecules outlined in Table 2. After two generations, over 3,083,285 total 

molecules were produced across all networks, 3,051,655 of which were unique. Of these 

molecules, 64 were exact matches for predicted corrosion inhibitors (SMILES provided in the SI). 

Their accessibility from the candidate bioprivileged sources is shown in Figure 5. Approximately 

40% of the predicted corrosion inhibitors were formed by more than one candidate bioprivileged 

molecule; one molecule, valeric acid, was made by 13 sources. 
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Figure 5 Accessibility of targets from candidate bioprivileged sources. 48% of targets were 
formed by only one bioprivileged source. No target was formed by all bioprivileged molecules. 
 
 In addition to the distribution of sources, the prolificness of the bioprivileged candidates 

is also of interest. For those bioprivileged molecules that formed at least one corrosion inhibitor, 

the number of corrosion inhibitors these bioprivileged molecules individually formed is shown in 

Figure 6. Notably, only 106 of the bioprivileged candidates, or approximately 36%, formed 

corrosion inhibitors in their networks. Of the 106 that formed corrosion inhibitors, approximately 

72% formed only one corrosion inhibitor.  

 

Figure 6 For those bioprivileged molecules that formed at least one corrosion inhibitor, the 
number of corrosion inhibitors these bioprivileged molecules individually formed is shown. Most 
(72%) bioprivileged molecules that formed corrosion inhibitors formed only one corrosion 
inhibitor. 
 

Drawing on guidance from the analysis of the Tanimoto similarity scores, 64 matches are 

an underprediction from what is expected from the results in Figure 3. This raises the question 
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of whether a similarity score based on the bioprivileged molecule alone, without contributions 

from the helper molecules, is the source of this discrepancy.  To examine this, we analyzed the 

three corrosion inhibitors that were synthesized experimentally for which pathways using 

“complex helper molecules” were reproduced using Pickaxe in terms of their similarity scores. 

The similarity score between the final products, their reactants individually, and their reactants 

as a composite were calculated and tabulated in Table 6. Although there are only two synthesis 

steps to make these heterocyclic corrosion inhibitors, the Tanimoto similarity score falls below 

0.55 for all but one of the nine comparisons. Additionally, the level of specificity used to generate 

these molecules by tailoring the helper molecules to be identical to the reagents used 

experimentally is an infeasible exercise for matching 44,003 molecules. Thus, it was next 

examined whether incorporation of a more extensive list of reaction families but the use of 

simple helper molecules propagated for two generations could increase the number of pairs of 

bioprivileged molecules and corrosion inhibitors; the results are tabulated in the next section.  

Table 6 The similarity score between the corrosion inhibitors synthesized by Huo et al. via the 
pathways in Figure 4 and either each of their reactants individually or their reactants as a 
composite.  Although the molecules are synthesized in two steps, suggesting that they would be 
described by Tanimoto similarity scores higher than 0.5, the Tanimoto similarity score falls below 
0.5 for all but one of the comparisons.  

Corrosion Inhibitor Target Tanimoto Similarity Score to Reactants 

TAL Heterocyclic 

Helper 

Composite of 

Reactants 

 

0.33 0.13 0.42 

 

0.31 0.16 0.42 
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0.29 0.38 0.58 

 

1.5.4 Finding Targets and Pathways in Expanded Networks: Extensive Set of Reaction Operators 
with Simple Helper Molecules 

Using the set of simple helper molecules in Table 3 and the expansive set of reaction 

operators summarized in Table S3, 19,072,011 total products were formed in the union of the 

297 networks via a total of 32,649,547 reactions, with 18,841,363 of those products being 

unique. The intersection of the products formed from the 297 networks was small, with 

approximately only 2% of the products being formed by more than one expansion, and thus, each 

of the 297 expansions contributed a large number of distinct molecules. Of the 18,841,363 

unique products, 162 were exact matches for the potential corrosion inhibitors. This increased 

number is closer in line with predictions based on the analysis of the Tanimoto similarity scores 

shown in Figure 3 and confirm that the use of an expanded set of reaction operators was 

productive. Note, however, that a larger set of corrosion inhibitor “hits” comes with 

computational challenges, as the number of pathways to produce them is vast. Thus, first 

statistics related to the corrosion inhibitors that were formed and the bioprivileged candidates 

to produce them were tallied before examining any pathways in detail.  

Figure 7 examines the two dimensionalities of the networks: how many potential 

corrosion inhibitors are formed by each bioprivileged candidate (Figure 7a) and via how many 

bioprivileged candidate sources each corrosion inhibitor is formed (Figure 7b). To provide more 

insight into these measures which were introduced in the last section, the first criterion 
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acknowledges the need of a bioprivileged molecule to be diversifiable – the candidate that can 

form the most potential corrosion inhibitors is the most valuable in this paradigm. The second 

criterion acknowledges accessibility of the corrosion inhibitor candidates as predicted by reaction 

network generation. Those with more sources and pathways are more likely to have 

experimentally viable pathways among those predicted. Related to the first criterion, i.e., 

diversifiability, there were some excellent candidates, as 43 bioprivileged molecules formed five 

or more corrosion inhibitors. Related to the second criterion, three potential corrosion inhibitors 

emerged as highly attractive, as they could be formed by more than 20 bioprivileged molecules. 

Notably, with the expanded reaction family operators available, 202 candidate bioprivileged 

molecules, or 68% of the starting molecules, formed one or more predicted corrosion inhibitor. 

 

(a) 
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(b) 

Figure 7 For expanded list of reaction operators and list of simple helper molecules, summary of 
(a) diversifiability of bioprivileged sources as measured by how many potential corrosion 
inihibitors can be formed from them in two generations and (b) accessibility of potential 
corrosion inhibitors formed from bioprivileged candidates as measured by how many 
bioprivileged molecules can form them in two generations. 
  

To narrow the list further, within the paradigm of bioprivileged molecules, those 

candidates which form the most potential corrosion inhibitors are of the most interest. Four 

candidate bioprivileged molecules have the potential of forming more than ten corrosion 

inhibitors; these promiscuous bioprivileged candidates are shown in Figure 8. Notably, all of 

these are C5 bioprivileged candidates. The most promiscuous C6 and C7 candidate bioprivileged 

molecules produce “only” six and eight target corrosion inhibitors, respectively. Another notable 

feature is the lack of a ring structure in any of the most prolific bioprivileged molecules; while 

ring structures are present both in the proposed corrosion inhibitor list and amongst the 

Page 33 of 49 Molecular Systems Design & Engineering



 32 

candidate bioprivileged molecules, the complexity of the ring structures within the proposed 

corrosion inhibitors makes them inaccessible within two generations, and thus, linear structures 

emerge as the most viable pairs from the present analysis.  

 

 

 
 

Figure 8 Using the expanded list of reaction operators on Table S3 and the list of simple helper 
molecules in Table 3, four starting molecules emerged as the most promiscuous bioprivileged 
molecules, as they each form more than 10 potential corrosion inhibitors. 
 

The 162 potential corrosion inhibitors that were formed were examined to assess how 

many carbon atoms and heteroatoms they contained, and it was seen that a bias towards small 

molecules, as expected from Figure 2, is exhibited in the targets that were formed. From Figure 

9a, although 96% of the corrosion inhibitor targets have a carbon atom count greater than seven, 

only 21% of the targets generated have a carbon atom count greater than seven. This is 

consistent with the observation noted earlier that the promiscuous bioprivileged molecules came 

from the C5 pool and have limited opportunities to grow more than two or three carbon atoms 

beyond their initial carbon backbone. To the contrary, in Figure 9b, the heteroatom distribution 

more closely resembled that seen across the entire target pool, with 66% of the targets that were 

formed containing between three and five heteroatoms. It is important to note that the number 

of heteroatoms was not normalized by the number of carbon atoms, and the mean number of 

heteroatoms per carbon atom could differ. 
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(a) 

 

(b) 

Figure 9 Analysis of the 162 potential corrosion inhibitors that were formed from 202 
bioprivileged molecules as starting molecules according to the number of carbon atoms and 
heteroatoms they contain: (a) carbon atom distribution of the 162 potential corrosion inhibitors 
that were formed (solid bar) compared to the carbon atom distribution of the 202 bioprivileged 
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candidates as starting molecules (hashed bar) and (b) heteroatom distribution of the 162 
potential corrosion inhibitors that were formed (solid bar) compared to the heteroatom 
distribution of the 202 bioprivileged candidates as starting molecules (hashed bar). 
 

The next feature of note to explore was the extent of connectivity, i.e., how many pathways 

result in one of the corrosion inhibitors as a product, and the pathways were characterized by 

how many generations they spanned and how many reactions comprised them.  Note that due 

to the fact that two first-generation products may combine to form a product in a second-

generation reaction, two generations of reaction can result in pathways comprised of three 

reactions.  These statistics for exemplar corrosion inhibitor/bioprivileged molecule pairs are 

summarized in Table 7. The statistics of individual pathways connecting corrosion 

inhibitor/bioprivileged molecule pairs are derived from searches of very large reaction networks. 

The smallest individual network had 2,471 reactions, while the largest individual network had 

4,343,820 reactions. The second largest network in terms of reactions was 1,195,823, or a 72% 

reduction from the largest network. The average number of reactions in each individual network 

was approximately 110,000, with a standard deviation of approximately 282,000, exemplifying 

the broad distribution of reaction network sizes and skewness. The examples shown in Table 7 

are typical of the diversity of the pathways to potential corrosion inhibitors, as most products 

have multiple pathways.  

Table 7. Statistics for pathways connecting two exemplar corrosion inhibitor/bioprivileged 
molecule pairs that summarize how the pathways were characterized, i.e., by how many 
generations they spanned and how many reactions comprised them. The first candidate 
bioprivileged molecule listed is also a corrosion inhibitor target, Figure 1. 

Candidate Bioprivileged 
Starting Molecule 

Potential Corrosion 
Inhibitor Formed 

# of Pathways of 
X Generations 

# of Pathways 
with X 
Reactions 

1 2 1 2 3 

Page 36 of 49Molecular Systems Design & Engineering



 35 

 
 

0 4 0 4 0 

 

 

1 7 1 7 0 

 
 

0 4 0 4 0 

 

0 4 0 4 0 

 

0 1 0 1 0 

 

Interestingly, the total network size did not necessarily correlate with most corrosion 

inhibitors formed, as seen in Figure 10. One of the best performing bioprivileged molecules as 

measured by the degree of accessibility to predicted corrosion inhibitors led to the generation of 

a network in the lower half of the network size distribution at 60,805 total reactions. All of the 

top four bioprivileged molecules had networks comprised of fewer than 150,000 reactions. 

Likewise, the largest network, with over four million reactions, only produced one corrosion 
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inhibitor. Recall, as well, that the networks only had about 2% overlap. This highlights that the 

number of reactions does not necessarily dictate the successful formation of target products, 

while the expansion of the number of reaction operators, and thus reaction types, does have a 

positive correlation.  

 

Figure 10 Comparison of the number of corrosion inhibitors formed as targets versus the number 
of total reactions in each individual reaction network for the case of the expanded list of reaction 
operators and small helper molecules. 
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Among the 202 candidate bioprivileged molecules that produced corrosion inhibitors in 

their reaction networks, for a total of 602 matches, there were a total of 4,512 pathways. A 

breakdown of the pathways is in Table 8. Most of the products, 99.2%, were formed in the second 

generation. Approximately 62% of the products formed in the second generation were comprised 

of reactions from two products from the first generations. Three pathways were comprised of 

zero reactions, which are the three molecules in Figure 1. The maximum number of potential 

pathways to one of the targets was 332 pathways. The most desirable pathways would be the 

shortest, as theoretically those would be the most accessible in an experimental setting. Thus, 

the pathways to targets in the first generation and pathways only comprised of two reactions 

would be the highest priority to consider pursuing experimentally.  

Table 8 Analysis of pathways to make targets, including generation the product was formed and 
number of reactions for product formation. Three bioprivileged molecules were corrosion 
inhibitor targets, which would make them a 0th generation product. 

 Network Attributes of Corrosion Inhibitors # of Pathways 

1st Generation Product 52 

2nd Generation Product 4,457 

Product from two reactions 2,279 

Product from three reactions 2,159 

 

1.5.5 Retrosynthesis in Reaction Networks with Alternate Helper Molecules 

As helper molecules largely contribute to the breadth of reaction space exploration, an 

alternative set of helper molecules (Table 4) was introduced to the more extensive set of reaction 

families (Table S3). Using each of the 297 bioprivileged molecules as a starting point, the union 

of the reaction networks resulted in 35,592,071 total products from a total of 61,210,576 

reactions, with approximately 35,310,000 of those products being unique. The intersection of the 

products formed from the 297 networks was small, with approximately only 1% of the products 
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being formed by more than one expansion. Of these products, 159 were exact matches for the 

potential corrosion inhibitors, which is even smaller than what was expected from Figure 3 and 

achieved using the set of helper molecules in Table 3.  Notably, there was an 87% increase in the 

total number of products and reactions, but a 2% decrease in exact matches compared to the 

previous case when helper molecules with smaller carbon backbones were used. 

As was done earlier, Figure 11 examines two dimensionalities of the networks: how many 

potential corrosion inhibitors are formed by each bioprivileged candidate  (Figure 11a) and via 

how many bioprivileged candidate sources each corrosion inhibitor is formed (Figure 11b). Four 

predicted corrosion inhibitors could be formed by more than 20 bioprivileged molecules, and 44 

bioprivileged molecules formed five or more corrosion inhibitors. Thus, the diversifiability and 

accessibility of corrosion inhibitors did not have a notable improvement over the previous run as 

evaluated by these two metrics. However, overall there were more bioprivileged molecules and 

potential corrosion inhibitors that were connected by putative pathways with the expanded set 

of helper molecules.  Specifically, 245 candidate bioprivileged molecules, or 82% of the starting 

molecules, formed one or more predicted corrosion inhibitor, and the number of total corrosion 

inhibitors that could be reached increased by 19% to 714, far exceeding the prediction from 

Figure 3. This is an interesting result that demonstrates that the choice of both reaction families 

and helper molecules drive the pathway discovery process.  While fewer unique corrosion 

inhibitors were formed than might be expected given the scale of the number of molecules and 

reactions, but those that were formed were more accessible from the bioprivileged molecules. 
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(a) 

 
(b) 

 
Figure 11 For expanded list of reaction operators and list of more complex helper molecules, 
summary of (a) diversifiability of bioprivileged sources as measured by how many potential 
corrosion inhibitors can be formed from them in two generations and (b) accessibility of potential 
corrosion inhibitors formed from bioprivileged candidates as measured by how many 
bioprivileged molecules can form them in two generations. 
 

Page 41 of 49 Molecular Systems Design & Engineering



 40 

 As shown in Figure 12, similar results were found for a lack of correlation between 

network size and number of corrosion inhibitors found as was observed for the previous run. The 

largest network was once again from the expansion of furylpyruvic acid, 

C1=COC(=C1)CC(=O)C(=O)O, which had 7,649,792 total reactions and formed only one potential 

corrosion inhibitor, 2-furoic acid, O=C(O)c1ccco1. This product was the same corrosion inhibitor 

target formed when simple helper molecules were used. The minimum network size increased 

to 6,238 reactions, and the average number of reactions doubled to approximately 206,100. The 

standard deviation increased to approximately 528,000, demonstrating that the variance of 

network size was also large in this case. Because there were even fewer target corrosion 

inhibitors reached for this case, we did not analyze the individual pathways in detail.  However, 

the specific corrosion inhibitors that were connected to bioprivileged molecules are summarized 

in the Supplementary Information in Table S5, and pathways to them can be reproduced using 

Pickaxe by an interested reader. 
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Figure 12 Comparison of the number of corrosion inhibitors formed as targets versus the number 
of total reactions in each individual reaction network for the case of the expanded list of reaction 
operators and the larger helper molecules. 
 

1.6 Conclusion 

Automated network generation was used to perform computational retrosynthesis on a 

pool of 303 bioprivileged candidate molecules as reactants and 44,003 potential corrosion 
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inhibitors that were generated by a variational autoencoder. While artificial intelligence was used 

to create the 44,003 molecules, pathways to produce them from biological starting points is 

appealing.  However, this is too vast of a chemical space to manually design chemical pathways, 

especially when considering multiple starting points. Automated network generation using the 

Pickaxe framework can be deployed to identify possible synthesis pathways, and this was 

successfully demonstrated in this work. However, we also demonstrated that the choice of the 

reaction families and the helper molecules chosen to deploy them have a significant influence on 

creating pathways between bioprivileged molecules as starting points and potential corrosion 

inhibitors as targets.  We also showed that it is useful to carry out basic analyses using 

chemiformatics tools, such as Tanimoto similarity indexing, to set an expectation value for the 

number of targets that can be achieved in a given number of steps, and prior to analyzing 

individual pathways, a simple summary of the number of targets that are reached from the set 

of starting molecules provides guidance about whether the reaction operator set and helper 

molecules are sufficiently rich. We also demonstrated how the use of automated network 

generation for retrosynthesis benefits more from the breadth of the operator set used rather 

than the depth of reaction networks expanded for a small operator set. However, there is little 

correlation between network size as measured by the total number of reactions in the union of 

all individual networks and the number of targets formed. Targeted inclusion of helper molecules 

and specific reaction types accelerates pathway discovery, especially in instances where the 

structural features of targets deviate greatly from the source molecules. As a final note, we point 

out that the most time-consuming step of the computational workflow was the identification of 

pathways, which contained a maximum of three reactions.  To achieve more rapid analysis of 
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putative pathways that are longer, future work would benefit from filtering on-the-fly during 

network expansion, such as applying thermodynamic boundaries on free energies of reaction or 

Tanimoto similarity filtering. 
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