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LIBS in the 424.4 nm Spectral Region Using Numeri-
cal HOGSVD-DTW Features
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P. Hayward,b Howard L. Hallb

This Technical Note presents experimental results using numerical features of fs-LIBS data to classify
the assay value of gaseous UF6 material. The data-driven feature vectors are computed by Higher
Order Generalized Singular Value Decomposition (HOGSVD) and Dynamic Time Warp (DTW). The
method achieves 96.97% accuracy in spectral classification testing with fs-LIBS samples obtained
from UF6 material with five known assay values ranging from 0.287% to 61.740%, with 100%
accuracy for the four largest assay values ranging from 4.615% to 61.740%.

1 Introduction
A recent paper1 reports the computation of assay values in sam-
ples of fs-LIBS data for gaseous UF6 material by applying mul-
tivariate nonlinear spectral fitting (MVNLSF)2. MVNLSF uses
predetermined reference isotopic shifts and fitness of multiple
Lorentzian distributions. This Technical Note describes a different
computational approach, specifically, the training of a classifica-
tion algorithm for the fs-LIBS data using data-driven, numerical
feature vectors for the samples.

We define a numerical feature vector for the fs-LIBS samples
in section 2.3. This feature vector is computed for each sample,
and the data for a known assay value is partitioned into training
and test datasets. A training algorithm fits the parameters of a
classification model to the training data vectors, thereby creating
a reference model for the assay value. In classification experi-
ments, a candidate feature vector is compared with each separate
class model and is assigned for the best model match.

The classification algorithms available today include discrim-
inant analysis, nearest neighbors, neural networks, and sup-
port vector machines, among others3. Instead of restricting the
study to a single algorithm, we use a software tool Classification-
Learner3 which evaluates a suite of state-of-the-art methods and
reports the best performance for the given data. For the fs-LIBS
datasets in this Note, the best performance is obtained with a sup-
port vector machine.

The following section 2.1 discusses the established statistical
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method of bootstrapping4,5 to address the sparsity of fs-LIBS sam-
ples. Sections 2.2 and 2.3 discuss the numerical feature vector for
fs-LIBS data. Section 3 describes the training and test datasets for
the UF6 material and presents the classification results.

2 Methodology

2.1 Addressing Sparsity in LIBS Data by Bootstrapping
Each digitized fs-LIBS sample LS is a 1-D vector with n = 339 dat-
apoints spanning wavelengths from 424.25 nm to 424.5 nm. The
sparsity of LIBS samples relative to the number of discrete wave-
length datapoints (here n = 339) is a challenge in post-acquisition
processing of data6. Since we are using higher-order singular
value methods which require that data matrices have full rank,
our approach to the sparsity problem is the statistical method of
bootstrapping4,5,7,8.

Bootstrapping is a technique in sampling to create additional
representative samples from a given dataset in a statistically con-
trolled way4,5. Bootstrapping is not new to LIBS processes9, al-
though there is no indication that it has been used with LIBS spec-
tra for the computations in this paper.

Each digitized LIBS sample LS is a 1×339 vector of datapoints
ordered left-to-right by increasing wavelength. The bootstrapping
of LS has a requirement similar to the bootstrapping of time-series
data sequenced by increasing time stamp7,8, namely, the order-
ing of the original datapoints in the sample spectrum LS must be
retained for the increasing wavelengths. A bootstrap sample of
a LIBS spectrum LS is a sequence BLS = d1d2 · · ·d339 of n = 339
datapoints generated probabilistically by

• stepping the datapoint index i from 1 to n−1

• for each i, keeping the datapoint value di from LS unchanged
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with probability 0.5 or replacing di by di+1 from LS with
probability 0.5.

Digital random number generation is used to create bootstrap
samples for a given LIBS spectrum LS. The probability of regener-
ating LS unchanged or of repeating the same bootstrapped sample
underflows to 0. These bootstrap samples can be said to repre-
sent small, random jitter in positions locally in sampling the dat-
apoints in LS while maintaining the association with increasing
wavelength. On average, a third of the datapoint pairs in LS are
unchanged, a third are duplicated, and a third are skipped. Each
bootstrap sample BLS preserves the sample length n, has one ex-
pected occurrence of each individual datapoint in LS (other than
the endpoints), and preserves the left-to-right ordering of the dat-
apoints that occur.

The practice in this research has been to have 6 times as many
bootstrap samples as n, i.e., 6 times as many rows as columns
in a bootstrapped data matrix for a given LIBS spectrum LS with
n = 339 columns.

2.2 SVD extended to HOGSVD

Numerical techniques used in the analysis of LIBS-type spectral
data include Partial Least Squares (PLS) regression, Principal
Component Analysis (PCA), and Singular Value Decomposition
(SVD)10–13. This Note uses a version of SVD14 generalized to
multiple matrices. For reference, recall that the SVD of a m× n
matrix A, m ≥ n, is its numerical factorization into three matrices

A =USV ′

where the columns of m×n matrix U are the left singular vectors,
the diagonal entry s j in n×n diagonal matrix S is the jth singular
value, and the columns of n× n matrix V are the right singular
vectors. The inverse of V in SVD is V−1 = V ′. The energy of A
oriented in the column-vector direction (V ( j, :)−1)′ is

EA((V ( j, :)−1)′) = ||AV (:, j)||2 = s2
j > 0,

the squared singular value. The projection direction computed by
SVD for the largest singular value is optimal in the sense that no
other direction achieves a greater oriented energy for matrix A15.

Higher Order Generalized SVD (HOGSVD)16–18 is akin to SVD
but extended to multiple matrices which are full rank and have
the same number of columns (they can have different numbers
of rows). For our purposes, HOGSVD is a simultaneous singular
value-based decomposition of multiple matrices which can reveal
the numerical similarities (quantified in oriented energy ratios)
that all the matrices have in common as well as pairwise dissimi-
larities that distinguish one matrix from another.

Let A1,A2, . . . ,AN for N > 1 be N matrices of respective sizes
mi ×n, mi ≥ n, for i = 1,2, ...,N with all matrices being full rank n.
HOGSVD is the simultaneous decomposition of these N matrices

in the form

A1 = U1S1X ′

A2 = U2S2X ′

...

AN = UNSNX ′

where for matrix Ai the columns of mi × n matrix Ui are the left
singular vectors and the diagonal entry sik in n×n diagonal matrix
Si is the kth singular value. The same n×n matrix X occurs in the
decomposition of every matrix, and its columns are the right sin-
gular vectors for all N matrices. The matrix X has a well-defined
inverse X−1 and the projection direction vectors for oriented en-
ergies are the column vectors of (X−1)′. The row-k diagonal entry
sik in the diagonal matrix Si is the singular value of matrix Ai in
the direction (X(k, :)−1)′ and the oriented energy of Ai in that di-
rection is s2

ik. The generalized singular value for matrix Ai over
matrix A j in that direction is the ratio

gsi jk =
sik

s jk

and the corresponding oriented energy ratio is gs2
i jk.

An individual generalized singular value is computed for a spe-
cific pair of matrices; however, information about all N matrices
simultaneously is available in the form of n eigenvalues of a sec-
ondary matrix computed in the HOGSVD algorithm17,18. These
eigenvalues Λ = {λ1,λ2, . . . ,λn} are real numbers (not complex),
equal to or greater than 1, and related to the generalized singular
values as follows:

• λk = 1 if and only if gsi jk is 1 for all pairs of matrices Ai,A j

• λk > 1 if and only if gsi jk is not 1 for at least one pair of
matrices Ai,A j.

The value λk = 1 signifies that all N matrices have the same ori-
ented energy (in a certain projection direction), whereas increas-
ing values of λk > 1 signify an increasing dissimilarity among pairs
of matrices with respect to oriented energies.

Since an eigenvalue λk can be very large, it is convenient to
look instead at 1/λk which is in the bounded range 0 to 1. The
distribution of the n values in 1/Λ is ensemble information about
similarity of the N matrices with respect to their oriented energy
ratios. In comparative terms, the more skewed the distribution
of 1/Λ is towards 1, the more similar are the N matrices in their
oriented energy ratios; the more skewed 1/Λ is towards 0, the
less similar are the N matrices. Statistical characteristics of these
distributions are used as numerical features for comparing one
set of matrices with another.

2.3 HOGSVD-DTW Features for fs-LIBS Spectra
The feature vector of each fs-LIBS spectrum LS consists of (i) the
error in an optimal alignment computed by Dynamic Time Warp
(DTW) and (ii) statistical measurements of the distribution of 1/Λ

for the n eigenvalues Λ = {λ1,λ2, . . . ,λn} computed by HOGSVD.
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DTW3,19 computes an alignment of two 1-D vectors optimally
to minimize an error measure and has been used in diverse appli-
cations in spectroscopy20,21. In this Note, the DTW error is one
numerical feature—essentially a baseline comparison of a candi-
date spectrum with a training data reference for a known assay
value.

The remaining features are statistical information about the
distribution of 1/Λ for the n HOGSVD eigenvalues Λ discussed
in section 2.2. Specifically:

1. The median22 partitions the samples ordered by magnitude
into two equal subsets and is an informative measure of cen-
tral tendency in asymmetrical distributions.

2. The skewness22 is a measure of the asymmetry of the dataset
values around the sample mean. The numerical value of
skewness (or the skewness coefficient) quantifies the asym-
metry in terms of the sample mean, median, and standard
deviation.

If skewness is negative, the values of 1/Λ spread out more
to the left of the mean (towards value 0) than to the right. If
skewness is positive, the data spreads out more to the right
(towards value 1).

The HOGSVD-based values that complete the numerical features
are the skewness and median of 1/Λ.

3 Results and Discussion for UF6 Material

3.1 fs-LIBS Training and Test Data
The fs-LIBS datasets are obtained for UF6 material with five
known assay values: 0.287%, 4.615%, 18.525%, 38.103%,
61.740%. These values are the five disjoint classes of spectra.

Five datasets of 99 LIBS samples each are used for these five
disjoint classes. Each of the class datasets is partitioned randomly
into training data (66 samples) and test data (33 samples). Each
1×339 LIBS sample LS within a class is represented by its 2035×
339 matrix consisting of LS itself and its bootstrapped samples
(see section 2.1).

The total LIBS data used for training is 66 samples for each
class. In the training phase for class i, 33 samples are used as a
class reference set Ri and the additional 33 samples Ci( j) for j =
1,2, ...,33 are used to obtain 33 representative feature vectors for
within-class and across-class variations. The 33 training feature
vectors for class i are obtained as follows. For each of the 33
samples Ci( j) of class i and for each class k, the subvector FVk is
computed:

1. The DTW error is computed between the 1 × 339 sample
mean vector of Rk and the 1× 339 sample mean vector of
Ci( j).

2. The statistical feature values are computed for the eigenval-
ues of HOGSVD(Rk,Ci( j)).

The 1 × 15 feature vector of class i processed by Classification-
Learner is the concatenation of these five training class-subvectors
[FV1 FV2 . . . FV5]. These 33 feature vectors constitute the training
dataset for class i for the numerical classification algorithms.
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Fig. 1 Confusion Matrices for LIBS Datasets For HOGSVD-DTW 1×15
Feature Vectors. Top is Training Data (165 samples); Bottom is Test
Data (165 samples).

The validation option for training is 5-fold cross-validation
which protects against overfitting the class models to the train-
ing data3. A support vector machine has the best classification
performance for these fs-LIBS datasets.

The training phase for each of the five classes yields a classifi-
cation model for the class. In the subsequent classification exper-
iments, a feature vector is computed for a candidate spectrum,
say spectrum LST , and LST is assigned to the best-matching class
model. The feature vector of the candidate LST is obtained as
follows. The subvector is computed for each class k:

1. The DTW error is computed between the sample mean vec-
tor of Rk and the sample mean vector of LST .

2. The statistical feature values are computed for the eigenval-
ues of HOGSVD(Rk,LST ).

The 1×15 feature vector of candidate LST is the concatenation of
these five class-subvectors.

3.2 Classification Results: The Confusion Matrices
The classification results for the support vector machine are sum-
marized in the 5×5 classification confusion matrices in which di-
agonal counts are correct classifications and off-diagonal are mis-
classifications. Fig. 1 shows the confusion matrices for the five
assay classes labelled 1-5 respectively from the lowest 0.287% to
the highest 61.740%. The top matrix is the training data itself
(165 samples) classified by the models built from it. The bottom
matrix is the separate test data (165 samples) classified by the
models.
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Observations about Fig. 1:

1. The classification rates for the five classes are 96.97% for
training data and 96.97% for test data.

2. The classification rate is 100% in both confusion matrices for
the four largest assay values 4.615%, 18.525%, 38.103%,
61.740%.

3. All misclassifications are the lowest assay value 0.287% mis-
classified as the next higher 4.615%. There are no misclas-
sifications for any other values in these samples.

The differences between the spectra collected for the two
lowest assay samples (0.287% and 4.615%) are more subtle
than between the higher assay samples. The spectral emis-
sion lines associated with 235U are not prominent due to the
low assay. Further, the 0.287% and 4.615% samples are
closer in 235U content than any of the other samples. Hence,
a misclassification is more likely to occur between these two
samples than others in this research.

4 Conclusions
This Note presents a data-driven classification method with good
experimental performance on fs-LIBS spectra obtained from UF6

with five known assay values ranging from 0.287% to 61.740%.
Using the 1×15 HOGSVD-DTW feature vector and a support vec-
tor machine classification model, the five-class classification rate
is close to 97% and is 100% for the four highest assay values in
these datasets.

This research is relevant to future work using fs-LIBS data in
the estimation of the assay value of a candidate sample that
falls between the trained class values. In the ongoing develop-
ment of this estimation algorithm, the known classes serve as
fixed-reference landmarks and are incorporated into an expanded
HOGSVD-based computation.
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