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Abstract  
Transition metal dysregulation is associated with a host of pathologies, many of 

which are therapeutically targeted using chelators and ionophores. Chelators and 
ionophores are used as therapeutic metal-binding compounds which impart biological 
effects by sequestering or trafficking endogenous metal ions in an effort to restore 
homeostasis. Many current therapies take inspiration or derive directly from small 
molecules and peptides found in plants. This review focuses on plant-derived small 
molecule and peptide chelators and ionophores that can affect metabolic disease states. 
Understanding the coordination chemistry, bioavailability, and bioactivity of such 
molecules provides the tools to further research applications of plant-based chelators and 
ionophores.  

 

1. Brief Introduction to Chelators and Ionophores in 
Therapy 

Transition metals are pervasive in biology and are increasingly recognized for their 
essential biological activity beyond their traditional role as tightly bound structural 
cofactors. It has long been established that redox-active transition metals serve as static 
cofactors for an estimated one-third of all proteins as well as DNA and RNA.1 Conversely, 
the main group alkali earth metals that are identified for participation in signaling pathways 
use labile metal pools.2 Progressively however, transition metals (most notably copper, 
iron, zinc, and manganese) are being studied for their involvement in signaling pathways 
through labile pools.3 The makeup of these populations remains elusive, but observed 
differences in labile transition metal pools is associated with a host of disease states.4–6  
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Due to their potential toxicity, transition metals are tightly regulated in biology. 
Dysregulation of transition metals is correlated with a wide range of pathologies including 
cancer, cardiovascular disease, neurodegenerative diseases, and metabolic diseases.7–
12 Metabolic diseases include inherited disorders, such as Wilson and Menkes diseases, 
and chronic conditions including diabetes mellitus and non-alcoholic fatty liver disease 
(NAFLD). Some metabolic diseases, like Wilson and Menkes diseases, have clear 
connections to metal metabolism through mutations in metal trafficking proteins. Others, 
including NAFLD and metabolic syndrome, have no direct relationship to metal 
metabolism, but have been correlated with transition metal dysregulation7,12 As such, 
treatments for these diseases include attempts to restore metal homeostasis through 
employment of chelators and ionophores (Figure 1).  

Chelation therapy is well-established in the treatment of Wilson disease and has 
gone through clinical trials for the treatment of cancer and Alzheimer’s disease.7,13,14 
These treatments use chelators which are small molecules that selectively bind, 
sequester, and evacuate metal ions from the cell. Conversely, ionophores are small 
molecules that bind and import metal ions into the cell circumventing standard metal ion 
importers. While chelators and ionophores serve different purposes, they share 
necessary properties for metal trafficking. These properties include a low molecular 
weight, hydrophobicity that is sufficient for crossing cell membranes, and the ability to 
specifically bind metal ions.15–18  

Medicinal chemistry has long taken inspiration from nature, with many drug 
candidates emulate small molecules and peptides found in plants.19 Due to the 
association between many chronic metabolic diseases and diet, it is natural to look 
towards food sources in treatments of such diseases. This review will focus on plant-
derived small molecules towards therapy for metabolic diseases. One of the common 
health benefits of plant products is antioxidant activity.20 Classes of small molecules such 
as polyphenols and carotenoids have long been studied for radical scavenging activity 
and protection against oxidative stress. These small molecules often possess antioxidant 
activity through interactions with metal ions. Metal ions such as iron and copper perform 
Fenton or Fenton-like chemistry which is a source of reactive oxygen species (ROS).21,22 
ROS production is linked to metabolic regulation, and as such, perturbation in ROS 
production is associated with metabolic diseases. For detailed information on the 
pathways affected by ROS production in metabolic regulation, see the review by Forrester 
et al.23 Oxidative damage induced by redox-active metals can be combatted by reduction 
or chelation of said metal ions. Thus, small molecules that can bind metal ions may reduce 
their reactivity and thereby reduce oxidative stress. However, some plant-based chelators 
and ionophores may offer their beneficial effect independent of their redox activity, but 
the mechanisms for such activity remain uncertain. The bioactivities discussed in this 
review are subdivided into structural categories of plant-based molecules in an effort to 
highlight molecular components that may be associated with function. 
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Figure 1: Chelators (purple arcs) are small molecules that can cross cell membranes, bind metal ions 
(represented by spheres; the different colors – blue and orange – convey the presence of different metal 
ions), and subsequently evacuate bound ions from the cell. Conversely, ionophores (green arcs) are small 
molecules that extracellularly bind metal ions and import them into the cell passing through the cell 
membrane.  

2. Background on Metal Dysregulation in Metabolic 
Diseases and Therapeutic Applications of Metal Binders  
 

2.1 Hereditary Diseases Related to Metal Dysregulation  

2.1.1 Wilson Disease 

Wilson disease (WD) is a hereditary disease affecting an estimated 1 in 30,00024 
people worldwide. WD involves a mutation in the ATPase copper transporting beta protein 
(ATP7B) resulting in the obliteration of the copper transporter’s ability to export copper 
via the biliary excretion pathway and uncontrolled copper accumulation in several organs  
(Figure 2).25 The copper overload in patients with WD leads to deleterious neurological 
and hepatic outcomes, such as steatosis and cirrhosis.26–28 While the exact mechanisms 
of liver damage in WD is unclear, the generation of excess oxidative stress due to the 
buildup of copper culminating in an increase in lipid peroxidation and hepatic 
dysfunction.29,30 Moreover, the reduction in intracellular copper transport from the 
mutation in ATP7B prevents adequate copper loading into the ferroxidase ceruloplasmin 
as it matures through the trans-Golgi network.31  This results in a drastic increase of 
apoceruloplasmin, or non-copper binding ceruloplasmin, relative to holoceruloplasmin 
which contains copper. Currently, the diagnostic criteria for WD involves screening 
patients relies on serum ceruloplasmin and copper levels, which are often significantly 
lower and higher, respectively.27,28 The increase in non-ceruloplasmin bound copper is 
believed to be a direct result of the release of copper from degrading hepatocytes.27,32 
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Although damage can occur if copper imbalance in not remedied, if diagnosed early, WD 
can be managed.  

Current treatments include zinc supplementation and copper chelator therapy. 
Zinc supplementation is believed to inhibit copper uptake in the gastrointestinal tract by 
inducing metallothionine production,33 which in turn results in increased metallothionein 
bound copper and subsequent excretion by intestinal sloughing.34. While zinc 
supplementation has consistently been effective in WD maintenance, it has been 
suggested that it is not as effective as chelating therapies in preventing liver damage.35 
Chelation therapy for WD was first suggested in the early 1950’s when researchers found 
that administering 2,3-dimercaptopropalol (also called BAL) lead to a significant decrease 
in neurological symptoms observed in patients.36 However, despite BAL showing a 
profound impact in increasing quality and length of life for patients with WD, it required 
regular invasive intramuscular injection, prompting the development more accessible 
treatments.37  

 

 
Figure 2: Hereditary diseases including Menkes and Wilson diseases are linked to mutations in copper-
trafficking proteins. These mutations result in dysregulation of copper populations and subsequent 
detrimental symptoms. Chelates are clinically employed for management and treatment of these disease. 
Symptoms of metabolic disorders such as type 2 diabetes are alleviated by molecules known to have 
chelation or ionophoric properties (indicated with purple arcs), but their mechanisms of action require further 
investigation. While blue spheres represent copper centers and orange spheres represent iron centers in 
the figure, further mechanistic insight is required to determine chelator selectivity in vivo as well as the role 
and interaction metal-binding serum proteins (yellow blobs) may play in metal availability and ligand 
exchange. 

 
 
The most common chelators used in current treatments of WD are D-penicillamine 

(DPA) and trientine (TETA), which are taken orally. DPA, first used as a therapeutic 
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1956,38 contains three main functional groups: thiol, amine, and carboxylic acid. D-
penicillamine is reported to be a bidentate chelator binding copper(I) with the amine and 
thiol functional group and a tridentate chelator for copper(II) where the carboxylate is 
thought to participate.39  Once binding to copper, the D-penicillamine-copper complex is 
excreted via the urine. While an improvement to BAL, DPA has been associated with 
various disadvantageous side effects, such as gastrointestinal irritation, cytopenia, 
proteinuria, myasthenic syndrome, and degenerative dermopathy.40,41 Triene is the other 
commonly administered copper chelator used to treat WD. TETA is a polyamine 
containing a total of four nitrogen groups with two primary amines and two additional 
secondary amines separated by two aliphatic carbons (-CH2CH2-). The four nitrogen 
atoms coordinate copper resulting in a square planar complex. Similar to DPA, once 
copper is bound by TETA it is excreted via the kidneys. Moreover, it has been shown to 
have efficacy in reducing copper absorption if taken prior to eating.  However, despite 
TETA being distributed throughout various tissues post administration, the copper pool 
that TETA chelates is believed to be primarily in the blood whereas DPA can extract 
copper from tissues.42  

 

2.1.2 Menkes disease 

Menkes disease (MD), and the less severe occipital horn syndrome (OHS), is 
another hereditary disease involving the dysregulation of copper.43 The X-linked genetic 
disorder involves the mutation of the copper transporter ATP7A, which regulates copper 
by utilizing ATP to transport copper across cell membranes. Classical MD is often lethal 
with an average life expectancy of less than three years44 while those with OHS exhibit a 
longer lifespan.  ATP7A is heavily involved in the transport of copper from the intestine 
after import by CTR1 and DMT1 into the blood where it is transported to the liver and 
other organs for utilization in various proteins. Mutations in ATP7A result in the aberrant 
transport of copper through the intestine resulting is low copper levels in serum, liver, and 
brain.45 Diagnosis does not usually occur until the age of 3-6 months due to the 
appearance of hypopigmented hair that is prone to fraying, failure to thrive, vomiting, 
diarrhea, and loss consistent seizures. Later symptoms often include blindness, 
respiratory failure, and vascular complications which ultimately lead to death.  

Currently, the only treatment of MD and OHS is through the subcutaneous injection 
of copper histidine (CuHis), which is comprised of copper coordinated by histidine in a 1:2 
stochometric ratio. Early and sustained intervention with CuHis leads to an increase in 
life expectancy and been shown to increase serum copper, CSF copper, and 
ceruloplasmin levels.46–48 The mechanism of action has not been fully elucidated, 
however, the injection of CuHis complex into the subcutaneous tissues bypasses the 
gastrointestinal track and is introduced in the bloodstream. Once in the bloodstream the 
copper can be chelated by the various copper chelating proteins, such as albumin, or 
exist as the CuHis.  
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2.2 Metabolic Diseases with Genetic and Environmental 
Contributions 

2.2.1 Type 2 Diabetes, Obesity, and Metabolic Syndrome 

Type 2 diabetes mellitus (T2D) is a rapidly expanding disease affecting millions of 
people worldwide. It is a metabolic disorder involving the dysregulation of lipid and 
glucose metabolism. The dysregulation has been directly linked to impaired insulin 
secretion by the pancreas and insulin resistance in peripherical tissues such as the liver 
and adipose.49,50 Various factors have been associated with the onset of T2D including 
the dysregulation of metal micronutrients, such as iron, copper, and zinc.51,52 In patients 
with T2D, there is a positive association between serum copper to zinc ratios T2D as well 
as glycated hemoglobin.53  

The association with iron and T2D has been observed in patients with hereditary 
hemostasis (HH) which is an iron disorder leading to iron accumulation in various tissues 
and increased serum ferritin.54,55 However, there is a growing interest on the role of dietary 
iron and non-hereditary iron overload with T2D disease progression.56 The use of iron 
chelators to treat iron overload has been well documented with various animal studies 
illustrating their utility. Early studies showed that obese (ob/ob lep-/-) mice were protected 
from deleterious effects of diabetes onset such as glucose intolerance and insulin 
resistance by the iron chelator FBS0701 administration.57 Moreover,  it was found that 15 
day interparental administration of deferoxamine (DFO) for 15 days led to decreased 
insulin resistance in adipose tissues of ob/ob mice.58 The exact mechanism of these 
preventative outcomes have yet to be fully elucidated. One explanation is there is a 
reduction of oxidative stress associated with dysregulated iron levels that produce 
reactive oxygen species (ROS). The increase of ROS can lead to lipid peroxidation and 
advanced glycation end products.58–60 There seems to be a link between iron chelation 
and preventing excess weight gain, which has been linked to a decrease in systemic 
oxidative stress. A recent study showed that mice who were fed a high fat diet 
supplemented with the iron chelator deferasirox (DFS) weighed less than non-chelator 
high fat diet (HFD) control and obese mice on a HFD supplemented with DFS also led to 
a reduction in weight gained compared to HFD ob/ob mice.61  

Flavonoids have been linked to a decrease in T2D prevalence, obesity, and 
involved in glucose metabolism. A cross-sectional study showed a strong negative 
association between daily quercetin intake and the prevalence of T2D62 while another 
study showed that daily flavonoid intake lead to a lower prevalence of diabetes and the 
inflammation marker – C-reactive protein.63 Moreover, the daily intake of flavonoids was 
found inversely related to the prevalence of obesity. Administration of quercetin to 
Sprague-Dawley rats with streptozocin induced diabetes showed improvements in 
hepatic glucose and lipid metabolism through increased Akt activity.64 Studies conducted 
in skeletal muscle L6 myotubes showed that quercetin acts through the AMPK pathway 
in a manner similar to metformin,65 as well as GLUT4 translocation to the membrane in 
mouse skeletal muscle66. A further link between the beneficial aspects of dietary quercetin 
and the reduction of ferroptosis, a mechanism in which lipid peroxidation catalyzed by 
iron leads to programmed cell death, was demonstrated in mouse pancreatic islets.67 
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Interestingly, the authors also found that administration of DFO resulted in similar 
protective outcomes for ferroptosis induced by high glucose, potentially suggesting a 
mechanism where quercetin directly interacts with iron to prevent the generation of ROS, 
protecting the cell from the onset of ferroptosis.  

 

2.2.2 Cancer 

Cancer is defined by a dysregulation of biochemical processes that govern proper 
cell homeostasis, leading to uncontrolled cell proliferation and resistance to cell death.68  
Aberrant  metal micronutrients levels, such as copper, have been linked to various types 
of cancers.69–72 Copper levels in the tumor microenvironment have been directly related 
to cancer cell proliferation and angiogenesis.73 The mechanism of how metals such as 
copper influence tumor progression and metastasis is relatively unexplored. However, 
recent research has elucidated copper trafficking through ATP7A, ATOX1, and LOX as a 
key pathway in breast cancer migration.74 Furthermore, recent studies have elucidated 
copper as a key regulator of the autophagic kinases ULK1/2 through direct metal binding 
in lung adenocarcinoma.75    

Due to the role of copper in cancer progression, there is growing interest in the 
application of copper depletion therapies for cancer treatments. Application of the copper 
chelator tetrathiomolybdate (TM) decreases the metastases of triple negative breast 
cancer to the lungs.76 The exact mechanism of TM reducing cancer metastasis remains 
elusive, but recent research illustrates a link between the tumor microenvironment and 
collagen processing through the lysyl oxidase axis.77 Additional research has revealed 
that TM mediates the inhibition of the mitochondrial Complex IV, which is involved in 
mitochondria energy production, via copper depletion.69 

Beyond copper, the application the zinc chelator N,N,N,N-Tetrakis(2-
pyridylmethyl)-ehtlyenediamine (TPEN) to pancreatic cancer results in increased cell 
apoptosis and autophagy in vitro.78 Iron chelation by deferasirox  (DFX) inhibited the 
migration and reduced invasiveness of pancreatic cancer by reducing the activity of Rac1 
and Cdc42, which are involved in a plethora of pro-cancer mechanisms such as tumor 
growth, migration, and angiogenesis.79 This finding was significant as DFX can be given 
orally in contrast to DFO, which has been shown to decrease in tumor size in patients 
with hepatocellular carcinoma but requires intravenous application.80 Beyond this 
example, the potential role of iron chelation in affecting oncogenic pathways has been a 
wide topic of interest in the past few decades, and we refer the reader to extensive 
reviews and recent reports in this area.81–88 

Anti-cancer properties of quercetin have been explored and show promise in 
reducing the severity of cancer. Mice given quercetin via oral gavage post tumor induction 
had a five-fold increase in life span compared to the vehicle.89 The authors illustrated that 
quercetin intercalates with the DNA in cancer cells leading to S phase cell cycle arrest 
and subsequent apoptosis.  Quercetin can also act by repressing expression of the 
receptor to advanced glycation end products (RAGE) leading to an increase in apoptosis 
and autophagy in pancreatic cells.90  
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3. Plant-derived with bioactivity related to transition metal 
interactions 
3.1 Phenolic Compounds 
 

Plants have been historically used for medicinal purposes predating modern 
science. As such, plant metabolites have been extensively studied for their potential 
biochemical activity, and many drug candidates resemble compounds found in nature. 
The most well-studied class of plant-derived compounds in applications of metabolic 
diseases are the phenolic compounds. Plant phenolic compounds, often referred to as 
polyphenols, are a class of small molecules that include molecules such as flavonoids, 
coumarins, and lignans. By definition, polyphenols are compounds that are composed of 
multiple phenolic rings. However, the term has been colloquially used to describe phenolic 
compounds including diphenols like catechol. To read more about the history and 
definition of the term polyphenols, you can read a review by Quideau et al.91  

Polyphenols are secondary metabolites from fruits and vegetables and serve a 
variety of purposes in plants including aroma and color. Polyphenols are found in all plant 
products we consume and are often the source of the health benefits advertised for 
various herbs, fruits, and vegetables. Most plant polyphenols exist as conjugated forms 
(glycosides, esters, and amides) rather than in their free forms. The seemingly endless 
identification of novel plant phenols broaches the variety of roles they play in plant biology. 
Plant phenols are involved in activities ranging from protective effects (against predators 
or radiation) to reproduction to signaling.91 The vast range of plant phenols necessitates 
categorization. Each subgroup of plant polyphenols shares a core structure and has a 
wide range of substitutions on the ring structure. Of the subgroups of plant polyphenols, 
flavonoids are the most prevalently studied. 
 

3.1.1 Flavonoids   

Over 8000 molecules comprise the largest group of plant polyphenols, flavonoids. 
Flavonoids all share a core structure consisting of three rings: two phenyl rings (A and B) 
joined by a heterocyclic pyran ring (C).  Subclasses of flavonoids are defined by 
substitution on and oxidation of the heterocyclic C-ring. There are subclasses of 
flavonoids: flavanols, flavanones, flavonols, flavones, anthocyanins, isoflavones, and 
chalcones. Flavonoids, which are found in all parts of plants, are most often isolated via 
extraction from their natural sources.91 Extraction is most commonly performed via a 
mixture of organic and aqueous solvents, though more current methods are continually 
being optimized.92 Flavonoids have historic medicinal purposes, and modern techniques 
have been used to elucidate the bioactivity of flavonoids in diseases ranging from cancer 
to cardiovascular disease to metabolic diseases.93–96 In particular, extensive research, 
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including mechanistic and detailed structure-activity relationship studies, has ushed in 
important developments, understanding, and applications of flavonoid/metal interactions 
in neurodegenerative disorders.2,97–102 

Flavonoids have been used in the treatment of diabetes, non-alcoholic fatty liver 
disease (NAFLD), and hyperlipidemia.94,103,104 Yi et al. highlight the advances of the 
flavonol quercetin in clinical trials for treatment of metabolic diseases.103 Quercetin has 
entered clinical trials in the treatment of type 2 diabetes mellitus (T2DM), hyperlipidemia, 
hypercholesterolemia, and NAFLD. The results from these clinical trials support the use 
of quercetin for increasing insulin secretion and improving insulin resistance, regulating 
glucose homeostasis, and reducing oxidative stress. Like quercetin, the flavanol (-)-
epicatechin, shows beneficial effects in the treatment of NAFLD-related symptoms.105 In 
all of these applications, flavonoids are known to exhibit antioxidant and anti-inflammatory 
activity.95,106  

 
 

 
 
Figure 3: Phenolic plant compounds are known to affect biological function under metabolic disease states. 
Additionally these phenolic compounds interact with d-block metal ions with little known about the 
intersection between effects on metabolic disease states.  
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The exact mechanisms of flavonoid antioxidant activity continue to be explored. It 
is understood that one path by which flavonoids prevent oxidative damage is by 
interacting with reactive metal species including iron and copper ions.107–110 Flavonoid-
metal complexes exhibit different behaviors than flavonoids alone.111,112 Flavonoids have 
experimentally been shown to bind and reduce metal ions.110,113,114 Samsonowicz et al. 
identify three main interaction sites on the flavonoid core structure at the B-ring 3’,4’-
dihydroxy group, the C-ring 3-hydroxy or 5-hydroxy group, and the C-ring 4-carbonyl 
group.115 These interaction sites have are supported both experimentally and 
computationally.108,116 Karlíčková et al. found that isoflavones containing a 5-hydroxy-4-
keto substitution pattern were able to chelate ferric, ferrous, and cupric ions. The 
presence of a free 4’-hydroxyl group and the absence of a 5-hydroxyl group corresponded 
to redox activity in reducing Cu(II) ions.117 However, many studies of flavonoid-metal 
complexes are contradictory in their characterization.115 Binding affinities, binding ratios, 
and binding locations are all dynamic under varying experimental conditions. Further 
investigation of the effects of experimental conditions is warranted, but it is clear that 
flavonoid-metal interactions contribute to their antioxidant activity.118  

Conversely, interactions between flavonoids and metal ions have also been 
implicated in pro-oxidant activity which contributes to observed anticancer and 
apoptogenic activity.119 Similar to chelation ability, pro-oxidant interactions of flavonoids 
with metal ions are structure-dependent. The number of adjacent hydroxy groups and 
conjugation throughout the molecule affects prooxidant activity.95 The distinction between 
anti- and pro-oxidant interactions between flavonoids and metal ions is slight and must 
be considered when thinking about these complexes in therapeutic contexts.  

3.1.2 Phenolic acids  

Phenolic acids contain a carboxylic acid and are the most produced phenolic 
compounds by plants. Plant phenolic acids are most abundant in the seeds, leaves, and 
skins of fruits.120 There are two main groups that comprise plant phenolic acids: 
hydroxybenzoic and hydroxycinnamic acids.121 Some of the more abundant 
hydroxybenzoic acids including syringic, vanillic, and protocatechuic acids exhibit many 
of the beneficial health effects previously discussed. 

Hydroxybenzoic acids have been demonstrated to possess protective effects 
against a host of diseases including cancer, cardiovascular disease, and diabetes.122–125 
Of particular interest to metabolic diseases, Chang et al. found that vanillic acid has 
protective effects against hyperinsulinemia, hyperglycemia, and hyperlipidemia in a study 
with HFD fed rats.126 Treating HFD rats with vanillic acid decreased blood glucose levels 
and increased expression of proteins associated with insulin signaling and lipid 
metabolism. Sreelekshmi et al. identify activation of glucokinase and reduction of lipid 
peroxidation by vanillic acid under hyperinsulinemic conditions in HepG2 cells.127,128  
Similarly, syringic acid protects against fat accumulation in the liver of albino rats treated 
with acetaminophen as reported by Ramachandran et al.129 Protocatechuic acid can also 
affect lipid and glucose metabolism in NAFLD conditions and ameliorate insulin 
resistance associated with diabetes.130,131 The biological pathways affected by 
hydroxybenzoic acids continue to be investigated, but acids such as protocatechuic acid 
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is known to activate mitogen-activated protein kinases (MAPKs) which are involved in 
inflammatory responses.123  

Commonly encountered hydroxycinnamic acids including chlorogenic, ferulic, 
caffeic, and sinapic acids share biological properties to their hydroxybenzoic 
counterparts. Notably, ferulic acid derived from cereals demonstrates anti-hypertensive 
effects which may be attributed in part to its antioxidant activity.132,133 Additionally, in 
obese mice and high-fat fed rats, caffeic acid and sinapic acid, respectively, modulate the 
gut microbiome to produce fewer microbiota associated with disease and 
inflammation.134,135 Associated with metabolic disease, chlorogenic acid has been 
extensively studied in vivo and clinical studies for its role as a nutraceutical against 
metabolic syndrome and related diseases including obesity, diabetes, and 
hypertension.136 Shi et al. found that treatment of NAFLD mice with chlorogenic acid leads 
to decreased activation of inflammatory cytokines (TNF-α and IL-6), reduced fasting blood 
glucose levels and blood lipids, and reduced insulin resistance.137 This work is supported 
by observations that the improved conditions of HFD mice treated with chlorogenic acid 
was related to changes in mRNA levels of genes involved in glucose metabolism like 
GYS2, PCK, GK, and PFKL.138 The same effects of chlorogenic acid were observed in 
human patients with NAFLD or T2D and exhibited similar results with improved metabolic 
readings.139  

Unsurprisingly, phenolic acids are known to interact with transition metal ions 
through their carboxylic acid and phenol moieties.140–143 Truong et al. used a density 
functional theory (DFT) approach to study the antioxidant versus pro-oxidant effects of 
ferulic acid interactions with iron ions at the carboxyl group.141 Antioxidant activities of 
ferulic acid are more prominent than pro-oxidative reduction of Fe(III) except under 
specific conditions such as high concentrations of ferulic acid. Mazzone also employed 
DFT to study the interactions of Fe(II) with caffeic acid.144 Using DFT coupled with 
experimental UV-Vis data, the binding site of caffeic acid with Fe(II) was identified as the 
carboxyl group, and caffeic acid-Fe(II) complex formation was found to be more 
energetically favorable than the production of H2O2 through Fenton chemistry. Oke et al. 
studied the activity of a vanillic acid-Zn(II) complex under hyperglycemic conditions.145 
Similar to previous studies, the anti-oxidant activity was highlighted as a key mechanism 
of bioactivity. Another plant-derived carboxylic acid, nicotianamine (NA), was shown to 
aid in Fe(II) import facilitated by the proton-coupled amino acid transporter SLC36A1 
(PAT1).146 Nicotianamine is a small organic molecule that can be obtained through 
consumption of fruits, vegetables, and legumes. Murata et al. use 59Fe(II) to track iron 
import in Caco-2 cells by NA. Intracellular Fe(II) levels track with the concentration of NA-
Fe(II) treatment, and the complex should be explored for use in iron deficiency treatments. 
While these studies explain a mechanism of antioxidant activity, there remains room to 
explore the interplay between metal chelation and protective effects against metabolic 
diseases of plant phenolic acids.  

3.1.3 Coumarins  

 Coumarins have a benzopyrone core and are found in all parts of plants though 
they are concentrated in fruits.147 Like the other phenolic compounds previously 
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mentioned, coumarins are used to treat a range of pathologies including cancer, 
depression, and Alzheimer’s Disease.148–151 A thorough review by Hussain et al. 
discusses the biological and pharmaceutical properties of coumarins and their 
derivatives.147 Some highlights pertinent to our topic include a study by Ali et al. where 
methanol extracts of Angelica decrusiva exhibited inhibitory activity of protein tyrosine 
phosphatase 1B (PTP1B) and α-glucosidase.152 Correspondingly, Islam et al. also found 
PTP1B and α-glucosidase inhibitory activity of coumarins extracted from Artemisia 
capillaris.153 As their involvement in diabetes is understood, PTP1B and α-glucosidase 
are targets for the treatment of diabetes, and thus coumarins which inhibit the activity of 
these enzymes possess therapeutic potential.154,155 In animal models, coumarins and 
their derivates exhibit protective effects against diabetes and associated renal 
damage.156,157 Kang et al. administered esculin, a coumarin derivative, to streptozotocin-
induced diabetic mice and found that esculin combatted diabetes-associated symptoms 
including elevated blood glucose levels and increased hepatic glucose-6-phosphotase 
expression.156 Non-obese diabetic mice were administered total coumarins extracted 
from Urtica dentata, and Wang et al. found that the treated mice showed decreased 
expression of the TLR4 gene which is involved in inflammation in type 1 diabetes.157  
 Coumarins are shown to interact with transition metal ions such as iron and 
copper.158–160 García-Beltrán et al. synthesized a fluorescent probe sensitive to Cu(II) 
based on 3-amino-7-hydroxycoumarin.159 While the proposed mechanism of the probe is 
through hydrolysis of an imine bond, Mergu et al. also designed a Cu(II)-sensitive probe 
which employs a coumarin moiety through which the copper ion is chelated.158 Mladěnka 
et al. investigated the interactions of coumarins with iron ions in vitro.160 At neutral pH, 
ortho-dihydroxy derivatives of coumarins, specifically, 7,8-dihydroxy-4-methylcoumarin, 
were able to tightly bind ferrous ions. However, at acidic pH, the same ortho-
dihydroxycoumarins demonstrated potential pro-oxidant activity through reduction of 
ferric ions. While the groundwork for coumarin-metal interactions exists, there remains 
room to investigate the relationship between coumarins, metals, and the protective effects 
of coumarins against metabolic diseases. 
 

3.1.4 Stilbenes  

With a core of 1,2-diphenylethylene, stilbenes are found as either trans- or cis- 
isomers.161 The most known stilbene is resveratrol which is found in edible fruits and 
seeds such as grapes, pistachios, and berries.161 Over 250 clinical trials have indicated 
health benefits of the trans- form of resveratrol in addressing cardiovascular diseases, 
neurological diseases, and metabolic diseases like diabetes.162 Singh et al. present a 
summary of clinical trial data of resveratrol in their review article.162 Some other notable 
bioactive stilbenes include oxyresveratrol, piceatannol, and pterostilbene.163 These 
stilbenes too possess bioactivities such as anticancer and anti-hypertensive effects.164–
166 In the context of metabolic disease, Choi et al. reported that oxyresveratrol combatted 
metabolic dysregulation in high-fat diet-fed mice by increasing the expression of proteins 
including AMP-activated protein kinase α, insulin receptor substrate 1, and insulin-
dependent glucose transporter type 4 which are involved in lipid and glucose 
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homeostasis.167 Two studies by Choi et al. and Pan et al. note the increase of energy 
expenditure in high-fat diet-fed mice administered oxyresveratrol.168,169 Both groups 
identify increasing expression of uncoupling protein 1 (UCP1), a mitochondrial membrane 
protein in brown adipose tissue, as a mechanism of induced thermogenesis by 
oxyresveratrol. Piceatannol exhibits anti-inflammatory and antioxidant activity in a variety 
of cell types and in vivo studies.170 Kitada et al. studied the effects of piceatannol from 
Passiflora edulis on metabolic health in humans.171 The preliminary results presented 
indicate that piceatannol increases insulin sensitivity and decreases blood pressure and 
heart rate.  Similarly, pterostilbene reduces adiposity in white adipose tissue at a higher 
efficacy than resveratrol.172 Resveratrol, though being the most-studied stilbene, has low 
oral bioavailability which supports the study of other stilbenes as potential therapeutics.173  

Stilbenes interact with metal ions, and their complexes have demonstrated 
biological activity. Stilbene-copper complexes have been studied for their antitumor 
activity.174,175 Resveratrol-Cu(II) and piceatannol-Cu(II) complexes induce apoptosis 
through production of ROS and DNA damage.175–177 Tamboli et al. use electrospray 
ionization mass spectrometry (ESI-MS) paired with DFT calculations to understand the 
mechanisms by which resveratrol interacts with copper.178 While the previously discussed 
phenolic compounds interact with metal ions mainly through oxygen-containing groups, 
resveratrol interacts with copper through its aromatic carbon atoms and alkenyl group. 
Though resveratrol does exhibit some copper chelating activity, Granzotto et al. suggest 
that resveratrol poses more of a risk of producing ROS than chelating copper.179 Metal-
interactions with resveratrol have been studied computationally180 in vitro, but the exact 
mechanisms of interaction in vivo remain elusive. Majewski et al. studied the effects of 
resveratrol on copper deficient Wistar rats and found resveratrol to increase copper and 
zinc levels as well as superoxide dismutase (SOD) and ferric reducing antioxidant power 
(FRAP) which are related to antioxidant activity. While the clinical relevance of stilbenes 
is well-established in diseases associated with metal dyshomeostasis, the direct effects 
of stilbene-metal interactions on pathological states remains largely unexplored.  

3.1.5 Lignans  

In plants, lignans serve as structural compounds in the formation of lignin in the 
cell wall.181 Lignans have a 2,3-dibenzylbutane structure and are consumed in fibrous 
foods like grains and legumes.182 Though relatively low-abundant, lignans, as with other 
plant phenolic compounds, exhibit a range of biological activity from anti-cancer 
activity.182 to gut microbiota modulation183 to cholesterol reduction.184 Lignans are 
consumed largely through cereals in western diets and are known to affect metabolic 
systems through nuclear receptors (NRs), particularly estrogen receptors (ERs).185 
Zanella et al. highlight the relationship between plant lignans and metabolic syndrome 
(MetS). Epidemiological studies show an inverse correlation between lignan intake and 
incidence of T2D, dyslipidemia, and fasting insulin serum levels. Additionally, the 
structural similarity of lignans to steroid hormones such as estrogen can play a role in 
modulation of hormone-related tumors by lignans.186 Lignans including pinoresinol, 
sauchinone, sesamin, and honokiol can combat hepatic oxidative stress which is often 
associated with metabolic diseases.187–192 Mice with liver injury induced by CCl4 or tert-
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butyl hydroperoxide were treated with lignans which activated pathways including AMPK, 
JNK, SIRT3, and Nrf2/ARE. Due to their potent antioxidant activity, it is no surprise that 
lignans can bind metal ions.  

Lignans have known interactions with metal ions, particularly iron. Donoso-Fierro 
et al. extracted, isolated, and studied the iron-binding abilities of lignans from F. 
cupressoides and A. chilensis.193 Five lignans with iron-binding capacity of over 87% were 
identified as isolariciresinol, isotaxiresinol, matairesinol, methylmatairesinol, 
secoisolariciresinol, and didemethylmatairesinol. This work was followed up by Fucassi 
et al. who focused on secoisolariciresinol digucoside (SDG) and found that SDG was able 
to bind calcium, copper, lead, nickel, iron, and silver ions.194 While some of these metals 
are implicated in metabolic diseases affected by lignans, the direct connections between 
metal chelation, lignan intake, and instance of metabolic disease remain largely 
unexplored.   
 

3.1.6 Curcuminoids  

Curcuminoids are found in the rhizome of turmeric and have gained attention for 
their bioactivity.195 The most common curcuminoid, curcumin, is a yellow polyphenolic 
pigment that contains two ferulic acid residues bridged by a seven-carbon methylene 
group. Clinical trials implicate curcumin in treatment for a range of disease states from 
rheumatoid arthritis to inflammatory bowel disease to Alzheimer’s disease. Reviews by 
Pivari et al. and Zheng et al. highlight current understanding of treatment of diabetes with 
curcumin.195,196 Yuan et al. performed meta-analysis of the effects of curcuminoids on 
blood lipids in adults with metabolic diseases.197 While the results are preliminary, 
consumption of curcuminoids correlated with decreased levels of triglycerides, total 
cholesterol, and LDL and an increase in HDL. Newer work by Ibrahim et al. demonstrates 
hepatoprotective effects of curcuminoids. Hepatic damage was induced in Wistar rats by 
administration of CCl4, and curcuminoids were administered in doses of 75, 150, and 300 
mg. Liver enzyme levels (alanine transaminase, aspartate transaminase, and alkaline 
phosphatase) increase with liver damage caused by CCl4 but are restored upon treatment 
with curcuminoids.  

Expectedly, curcuminoids exhibit antioxidant activity and interact with metal ions. 
Pitchumani Violet Mary et al. used DFT in gas and DMSO solvent phases to study 
interactions of curcumin with Mn(II), Fe(II), and Zn(II). Curcumin-Zn(II) complexes are the 
most stable of the three, though DMSO solvent interactions destabilize the complex. The 
binding site is identified as the diketone moiety, and metal complexes show increased 
antioxidant activity as compared to free curcumin. These calculations are supported by 
experimental results by Hieu et al.198 Curcumin complexes with Fe(III), Ca(II), and Zn(II) 
were assessed for their solubility and antioxidant activity. Increased solubility of the metal 
complexes as compared to free curcumin correlated with increased antioxidant activity as 
assessed by the DPPH assay. A review by Prasad et al. summarizes the increased 
pharmacological activity of curcumin when complexed with metal ions.199 Curcumin-metal 
complexes modulate a host of biomarkers involved in metabolic diseases including 
inflammatory cytokines IL-6, TNF-α, and NF-κB. Yuan et al. exploit the anti-inflammatory 
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effects of curcumin-metal complexes in their Fe-Curcumin nanozyme employed for ROS 
scavenging and anti-inflammatory activity.200 The strong chelating behavior of curcumin 
paired with its therapeutic effects requires further investigation for modulation of metal 
populations in metabolic disease states.  
 

3.2 Carotenoids  
Over 700 compounds comprise the group of natural pigments called carotenoids 

which impart yellow, red, and orange colors.201 In plants, carotenoids serve roles in 
photosynthesis and in protection against oxidative damage.202 Carotenoids, like the 
previously discussed compounds found in plants, have been studied for their potential 
use in therapeutics for pathologies including cardiovascular disease and various 
cancers.203 Another key role of carotenoids in human health is as a precursor for vitamin 
A and antioxidants which implicates their protective activity against oxidative damage.202  

A study by Christensen et al. of 2003–2014 National Health and Nutrition 
Examination Survey (NHANES) data showed that increased intake and serum levels of 
carotenoids correlates with decreased instance of NAFLD.204 Specifically, α-carotene, β-
carotene, β-cryptoxanthin, and lutein/zeaxanthin show strong associations with 
decreased risk of NAFLD which was assessed using ultrasonography.205 While a healthy 
diet may largely affect the risk of disease onset, Christensen et al. show that including the 
healthy eating index of 2015 in their analysis did not eliminate the inverse relationship 
between increased serum carotenoid levels and risk of fatty liver disease.204 As such, 
carotenoids exhibit therapeutic effects towards fatty liver diseases through an unclear 
mechanism of action. Elvira-Torales et al. highlight some mechanisms by which 
carotenoids impart their protective effects against liver damage through reduction of 
oxidative damage and modulation of genes associated with lipid metabolism.206 
Researchers note that levels of inflammatory cytokines including TNF-α, IL-6, and MCP-
1 are repressed upon oral administration of carotenoids, specifically β-
cryptoxanthin.206,207 These cytokines likewise play a role in diabetes mellitus which is a 
chronic inflammatory disease. Expectedly, carotenoids present anti-diabetic properties as 
presented in a review by Roohbakhsh et al.208 Researchers highlight that carotenoids 
reduce insulin resistance by affecting JNK, IKKβ, and PPARγ. JNK and IKKβ regulate 
phosphorylation of insulin receptor substrates, specifically IRS-1; PPARγ assists in 
metabolism of carbohydrates and decreases inflammation in the cell.  

Unlike many of the previously mentioned plant-derived compounds, carotenoids 
have not been studied for chelation-based interactions with metal ions. Due to their 
lipophilic nature, the context under which carotenoid-metal ion interactions are studied is 
in reference to lipid oxidation.209 Interactions between carotenoids and redox-active 
metals may contribute to their pro-oxidant activity by producing carotenoid radical cations 
through electron-transfer.  
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3.3 Peptides  
Another group of plant-derived compounds that is of interest to human health are 

peptides. Peptide sequences within plant proteins are increasingly being recognized for 
their potential bioactivity and use as nutraceuticals.210  

 

 
Figure 4: Plant-derived proteins subjected to enzymatic hydrolysis generates bioactive peptides. Such 
peptides have been found to have metal-interacting properties with potential health benefits. 
 

 
Many bioactive peptides are hydrolysis products of plant proteins where the 

proteins themselves do not present the same bioactivity. The hydrolysis products 
naturally occur through consumption by digestive enzymes such as trypsin and pepsin.210 
A typical workflow for preparation of plant-protein derived bioactive peptides involves 
hydrolysis of proteins through one of three methods: gastrointestinal digestion, enzymatic 
hydrolysis, or fermentation.211 Enzymatic hydrolysis is the most common method and has 
been performed with a wide variety of enzymes derived from plants and microbes (Figure 
4).212 The proteolytic enzyme selected for digestion affects the potential bioactivity of the 
resulting peptides because of the varied cleavage sites.212 Hydrolysates from a range of 
foods consumed through diet have been studied for their bioactivity. Similar to their 
phenolic compound counterparts, plant protein hydrolysates are known to possess 
biological properties including anti-cancer, anti-inflammatory, and cardiovascular 
effects.213–220  Within the realm of metabolic disease, peptides from plant protein 
hydrolysates have exhibited anti-diabetic, anti-obesity, and anti-oxidant activity.221,222 
Jakubczyk et al. highlight specific peptide sequences that demonstrate bioactivity towards 
ameliorating metabolic syndrome in their review.221 Other recent reviews highlight 
therapeutic effects of plant-derived peptides towards diabetes and related 
complications.222,223  

There are known metal-binding amino acid residues, thus it is expected that plant 
protein-derived peptides have metal-binding capacity.224 Esfandi et al. hydrolyzed oat 
bran proteins using four proteases, Alcalase, Flavourzyme, papain, and Protamex.225 
Antioxidant assays and iron-chelating assays support the varied bioactivity of peptides 
produced by different proteases, with papain-hydrolyzed peptides having the highest iron-
chelating activity. Hu et al. further investigated iron chelation by oat bran protein 
hydrolysates prepared with papain, ficin, and bromelian, separating peptides by size.226 
Larger peptides (> 10 kDa) hydrolyzed by papain have higher iron-chelating capacity than 
those produced by ficin and bromelian whereas small peptides (< 1 kDa) hydrolyzed by 
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ficin have higher iron-chelating capacity than those produced by papain and bromelian. 
Kubgloḿsong et al. studied rice bran albumin hydrolysates from papain hydrolysis for 
their copper-chelating activity.227 Using gradient elution by HPLC, the more hydrophilic 
peptides demonstrated the highest copper-chelating activity. Identification of the peptides 
from the strongest chelating fraction showed characteristic moieties such as sulfur-
containing amino acids, repeating serine residues, tryptophan, and arginine. Similar to 
the plant phenolic compounds, the interplay between plant peptides, metal ions, and 
metabolic disease has much room to be explored.  

 

4. Metal complexes of plant-based molecules as potential 
therapeutics for metabolic diseases  
 

Current therapeutic design targeting metal dysregulation focuses largely on metal-
trafficking small molecules.14,15 Such molecules can act as metal chelators or metal 
ionophores. Chelators sequester metal ions from the intracellular space and evacuate 
them out of the cell; ionophores bind metal ions in the extracellular space and traffic them 
into the cell across the cell membrane. Physiochemical requirements of small molecule 
chelators and ionophores include a moderate binding affinity to specific metal ions, 
sufficient lipophilicity to penetrate the cell membrane, and adequate complex stability.14 
Plant-derived compounds deserve to be considered for their therapeutic potential as 
metal chelators and ionophores. With known metal ion interactions, a range of binding 
affinities and lipophilicities, and varying complex stabilities, plant-derived small molecule-
metal complexes possess the chemical properties to traffic metal ions. Indeed, small 
molecules like flavonoids have been studied in these contexts.  

Flavonoids are known to interact with redox active metals such as copper and iron 
which are implicated in metabolic disease states such as diabetes, Wilson and Menkes 
disease, and metabolic syndrome. To date, much of the research regarding flavonoid-
metal interactions focus on their antioxidant activity. A review by Selvaraj et al. highlights 
the potential of flavonoid-metal complexes as therapeutics mainly for antioxidant and anti-
inflammatory activity.228 However, flavonoids are good candidates to study for their 
potential chelator or ionophore activity. Dai et al. present their study on flavones as Cu(II) 
ionophores.229 Researchers highlight 3-hydroxyflavone as being the most effective 
copper ionophore. Using human hepatocytes, HepG2 cells, as a model system, 3-
hydroxyflavone is shown to import copper into the cell at up to a 150-fold change. While 
the experimental conditions induce cell death due to cuproptosis230, the ionophore activity 
of 3-hydroxyflavone can be harnessed to address diseases under which intracellular 
copper levels are decreased. Further studies of flavonoid-metal interactions by our lab, 
show that flavonoids can modulate expression of proteins involved in copper trafficking.118 
Copper chaperone for superoxide dismutase (CCS), which is used as a marker for 
intracellular copper, shows decreased expression upon treatment with 3-hydroxyflavone 
and Cu(II) and increased expression when treated with quercetin and Cu(II). Compared 
to the other molecules studied, 3-hydroxyflavone is the one of the more lipophilic 
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compounds. The lipophilicity paired with the binding ability of 3-hydroxyflavone maintains 
the important chemical properties of an ideal ionophore and should serve as inspiration 
for future investigations. 

5. Future Outlook 
 
The health benefits of plant-based molecules are richly reported in the literature, 

with growing evidence associating plant-based diets with reduced risk of metabolic 
diseases, including cardiovascular disorders, metabolic syndrome, and type II 
diabetes.231,232 Yet, much remains to be elucidated regarding the physicochemical 
properties of plant-based ingredients, how they differ from animal-based products, and 
the molecular mechanisms underlying their beneficial effects.231,233 Even less explored is 
how their ionophoric and chelating capacities may be linked to their mode of action. The 
surge in tools for visualizing metal trafficking in complex biological systems has shed new 
light on the importance of transition metal homeostasis and its perturbation in metabolic 
diseases.3,234,235 It is timely to revisit the mechanisms by which plant-derived molecules 
elicit their function with respect to their interaction with metal homeostatic pathways. 
Leveraging these new tools should link structural insight to medicinal uses of plant-
derived diets and components. 

In this review, we brought to the forefront examples wherein metal-binding abilities 
are associated with beneficial effects on metabolic disorders. The majority of the 
highlighted studies focus on how the redox chemistry of the metals impact the pro- and 
antioxidant activity of these molecules. As new roles emerge for labile metal pools in 
cellular signaling, alternative pathways by which plant-based metal binders may function 
in disease alleviation should be explored beyond redox-focused interactions. Recent 
reports have already demonstrated this potential with synthetic or microbe-derived metal 
binders. Iron-binding siderophores236,237 are gaining relevance not only in host-pathogen 
interactions in infection but also in the balance of the gut microbiota in healthy and 
dysmetabolic states82,238,239 Tissue-targeted ionophores are finding unique therapeutic 
mechanisms in shifting metabolic balance.14,230,240–242 It behooves researchers to 
consider such metal-trafficking functions when investigating metal associations of plant-
derived therapies. These insights should find valuable intersections in determining how 
nutrition, diet, and natural product-derived therapies might address pressing challenges 
in metabolic diseases.  
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