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Abstract

Shape memory vitrimers (SMVs) are an emerging class of advanced materials that have garnered 
significant interest from researchers in the past five to six years. These materials can return to their 
original shape when exposed to a stimulus, while also healing damage they have sustained. 
However, achieving both high healing/recycling efficiency and a high glass transition temperature  
(Tg) in SMVs has been challenging, due to the conflicting requirements between molecular chain 
mobility and the formation and reaction of dynamic covalent bond exchange. Based on the 
understanding of chemo-physical properties, this study firstly leverages machine learning (ML), 
involving supervised and unsupervised learning approaches, to navigate this complex design space 
of SMVs. Furthermore, we elaborated the basic mathematical frameworks of ML approaches and 
compressively compared their performances. Based on the best performing model, we designed 
four types of thermally robust shape memory vitrimers (TRSMVs) which boast high recycling 
efficiency, elevated Tg, and exemplary shape memory effects, overcoming conventional barriers. 
One of the discovered samples exhibited outstanding performance with a Tg of 233.5°C, recycling 
efficiency of 84.1%, and recovery stress of 33 MPa in experiment. It aligns well with ML 
predictions and showcasing the potential of our ML framework in driving innovative materials 
design and advancing the field of smart polymers.

Introduction
According to the response to heat, the formation processes of  polymers are different, resulting in 
two types: thermoplastic polymer and thermoset polymer. Each type has its own advantages and 
disadvantages. Thermoplastic polymers have physical crosslinks or entanglement of polymer 
chains, which allow for easy recycling. However, these polymers are not suitable for applications 
requiring rubbery solids or high temperature stability, as the physical crosslinks or entangled 
chains can break down under high temperature. In contrast, thermoset polymers have stable 
chemical crosslinks formed by covalent bonds, which grant them excellent rubbery stiffness and 
thermal stability. Nevertheless, due to the excellent stability of covalent crosslinks, thermoset 
polymers are difficult to reuse. Fortunately, the recent discovery of vitrimers overcomes the 
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limitations of both polymers. According to Zee and Nicolaÿ 1, vitrimers can empower permanent 
chemical networks with recycling capability through dynamic covalent bonds, allowing the 
polymer network to change topology but maintain the number of chemical bonds at temperature 
below decomposition. Since Montarnal et al. 2 found the first vitrimer in 2011, this polymer has 
gained significant interest and attention in a short time span of about 10 years 1,3–6. Compared to 
traditional thermoplastic polymers, vitrimers exhibit higher mechanical strength and longer service 
life, leading to a reduction in resource waste 7,8. So far, vitrimers have found wide applications, 
including shape memory polymer (SMP) 9,10, 3D printing 11, in-space assembly for the complex 
structure 12, flame-resistant material 13–15, etc. 

Synthesis of vitrimers with high recovery efficiency and comparatively low glass transition 
temperatures (0 °C< Tg < 150 °C) has been widely reported in the previous research 16–19. However, 
it remains challenging to increase Tg of vitrimers while maintaining high recovery efficiency. In 
the previous studies, only a few samples have achieved this goal 19,20, as demonstrated in Fig. 1. 
The difficulty in simultaneously achieving high Tg and high recovery efficiency arises from the 
fact that a high Tg needs low mobility of polymeric chains and segments, while high 
healing/recovering efficiency needs high mobility of the polymeric chains and segments. In other 
words, these high Tg polymers exhibit low mobility, which is unfavorable for formation and 
reaction of dynamic covalent bond exchange. Another challenge is that the intrinsic healing of 
vitrimers depends on the formation of reversible dynamic covalent bonds at a certain high 
temperature, which is the topology freezing transition temperature (Tv). Usually, the Tv is higher 
than the Tg. Therefore, vitrimers with high Tg may make the Tv close to or even higher than the 
decomposition temperature, leading to difficulty in maintaining self-healing. Nevertheless, 
developing vitrimers with high Tg and high recovery efficiency would significantly broaden their 
application windows. For example, vitrimer-made structures are able to perform self-healing at a 
wider temperature range and perform under heavy load-carrying conditions, as high Tg vitrimers 
typically possess high strength. Additionally, polymers with high Tg offer notable advantages in 
outer space. For example, the temperature on the surface of Mars can reach 120 °C, while on Veras, 
the temperature can even soar up to 462 °C. Polymer with high Tg can maintain their mechanical 
strength under these extreme conditions, making them highly desirable for potential future 
colonization on other planets and presenting a promising application outlook. Meanwhile, tough 
working conditions in outer space often necessitate polymers to exhibit multiple functionalities. 
As such, we aim to design vitrimers with exceptional shape recovery performance, allowing it to 
assume two different shapes under actuation. Shape memory effect is desired such as in deployable 
structures 21 or in damage self-healing 22. In addition to space structures, shape memory polymers 
with high Tg are highly desired as proppants or lost circulation materials in the oil & gas and 
geothermal drilling applications 23,24 . In this study, we refer to these new materials as “thermal 
robust shape memory vitrimer (TRSMV) ”.

Due to the conflict design requirement between mobility of molecular segment and glass transition, 
it is challenging for the design of TRSMV. Although innovative materials such as shape memory 
polymer 25, vitrimer 2,  piezoelectric materials 26 have been developed, creating cutting-edge 
materials typically requires significant talent, time, domain knowledge, and a bit of luck, rendering 
the process difficult to perform and slow. Particularly, when we design TRSMVs, the different 
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properties and functionalities such as high thermal stability, shape memory, and dynamic covalent 
bond, may reside in different composition spaces, identifying the overlapping compositional space 
becomes more challenge. Hence, developing a comparatively easy material design method is 
highly desired. 
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Fig. 1 Tg vs recycling efficiency. It is evident that only a few samples can exhibit both high Tg 
(>150 °C) and excellent recovery efficiency (>85%).

According to Yan and Li 27, the key for polymer design is to understand the relation between 
microscopical structure and macroscopical properties, such that

(2)   arg minS L 
w

w w w，

in which S represents the appropriate polymer structure, w is the inputs tensor, and L is the loss 
function or objective function. 

Although the structure-property relation is well-defined since all the mechanical behaviors follow 
Newton’s laws of motion, quantifying the molecular and topological structures of polymers is 
challenging, and the computational cost is often significantly high 28. Specifically, different from 
general properties, both the experiment for dynamic bond exchange and shape memory effect need 
a couple of hours to one day, while the molecular dynamic (MD) approach can only accurately 
simulate atomic-level mechanisms of vitrimers in scale of nanosecond (limited by current 
computational capacity). This disparity in timescales results in the MD simulations being 
considerably misaligned with experimental results. For instance, there is a significant discrepancy 
of 223% between the MD prediction of recovery stress, which is 55MPa29, and the experimental 
result, which is 17MPa30. Hence, employing ML approaches to model the structure-property 
relationship has become a wise and attractive solution. 

The recent rapid development in both hardware and algorithm for ML has opened up new 
possibilities for material discovery. Over the last decade, there has been a surge in the discovery 
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of new materials, thanks to the application of ML across various domains 31–33. Specifically, in the 
realm of SMPs, addressing the challenge of limited datasets, Yan and his collaborators 
innovatively employed a dual-convolutional network 34 and a transfer learning-variational 
autoencoder (TL-VAE) 35

 in their research. This led to the discovery of two groundbreaking 
thermoset shape memory polymers (TSMPs), both surpassing existing performance metrics for 
SMPs. In a subsequent cutting-edge development, Yan and colleagues introduced a novel self-
enhanced deep neural network (SDNN) by firstly incorporating a self-attention algorithm for the 
prediction of flame retardancy, resulting in a highly efficacious ML model 36. In the field of metals 
and alloys, Lee et al. designed a MVAE framework that is able to generate 10 new alloy entries 
with higher yield strength and ultimate tensile strength 37. In the field of metamaterials, Adithya et 
al. designed new cellular structures and lattice structures with improved properties (load-carrying 
capacity, natural frequency, Energy absorption capabilities) by generative adversarial network 
(GAN) 38,39. Despite the previous successes, no ML based methods have been applied to the field 
of vitrimer discovery, hence we decided to employ a design framework based on ML to address 
the gap in this field. 

In our study, three new innovative strategies are employed to design new TRSMVs, which are our 
important contributions. First, by comparing properties and performance, we selected the best 
performing model from four ML models, which was based on our understanding of different 
properties. Second, in the absence of any open database for both vitrimer and SMP, we manually 
gathered data points from references and created three different databases. Lastly, to perform 
effective virtual screening for TRSMVs, we developed a set of novel screening criteria for virtual 
material screening, aiming to overcome the barriers imposed by small datasets.

The paper is structured as follows. Section 2 begins by outlining a material discovery framework 
for TRSMV. We then proceed with a qualitative analysis to identify the key features for 
fingerprinting TRSMVs, and further discussed these fingerprinting methods and ML prediction 
models. After that, we leveraged four different ML approaches to predict the properties of 
TRSMVs, comparing their respective performances. Furthermore, based on the best-performing 
ML model, we identified several promising new TRSMVs and experimentally validated one of 
them. Section 3 provides important conclusions drawn from our study.

2. Method

2.1 Machine learning framework
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(a)

Fig.2 Framework to discover TRSMV: (a) Forward prediction and (b) Inverse mining.

The framework to discover TRSMVs is shown in Fig. 2. It is primarily composed of two parts, 
i.e., forward prediction and inverse mining. Beginning with forward prediction, it operates based 
on the data gathered from references in Fig. 2a(1). This element of the framework involves training 
three ML models i.e., MRe (model for recovery efficiency Re ), MTg (model for glass transition 
temperature Tg), MRm (model for rubbery modulus Rm ), as denoted in Fig. 2a(3). The training 
process employs an appropriate fingerprinting method (Fig.2a(2)), and details will be presented in 
Section 2.3.

Subsequently, inverse mining component is employed. Its objective is to search for the desired 
samples through the established database. This involves eight steps (see Fig.2(b)), details of which 
are elucidated as below:

1. Gather monomers and crosslinkers from references to create databases for SMVs.

Page 5 of 28 Physical Chemistry Chemical Physics



2. Randomly pair monomers and crosslinkers capable of polymerizations to produce potential 
SMPs.

3. Represent potential SMPs as Simplified Molecular Input Line Entry System (SMILES) 
strings for fingerprinting purposes.

4. Input these SMILES groups into pre-trained machine learning models for recycling 
efficiency, Tg, and rubbery modulus. Evaluate and select the best-performing models 
comprehensively.

5. Predict Tg, Re and Rm of all potential TRSMVs using chosen models.
6. First, The SMPs with functional groups that can lead to bond exchange reaction will 

initially be selected as targets. Next,  apply a set of screening criteria to remove retardant 
targets. Finally, identify material champions for TRSMVs.

7. Further screen material champions using chemical knowledge.
8. Validate the TRSMVs through a series of experimental testing.

2.2 Key features analysis 
In our model design,  we aim to predict three targets in the model, including Tg, recycling efficiency, 
and recovery stress. These three targets involve a combination of intricate chemical and physical 
processes, necessitating a thorough understanding to select the suitable fingerprinting method.

Tg is primarily influenced by factors such as polymer structure, molecular weight, intermolecular 
forces, crosslink density, and degree of polymerization. Among them, the most pivotal factor is 
segment mobility, which is determined by polymer structure. For example, rigid chains (e.g., 
benzene ring) result in high Tg, while soft chains (e.g., long aliphatic chains) lead to low Tg. 
Nonetheless, the current discussion provides only an approximated, qualitative description of Tg, 
selectively omitting several factors for the sake of brevity. As presented above, the molecular mass 
has an important role in determining Tg, a relationship that has been rigorously investigated and 
validated by prior studies. For instance, the works of Novikov and Rössler40, as well as Wolf et al. 
41, have elucidated the quantitative relationship between Tg and molecular mass. Meanwhile, 
Zhang and Xu 42 have employed molecular traceless quadrupole moment and molecule average 
hexadecapole moment in a machine learning model to predict Tg, marking another notable 
approach in this multifaceted exploration. Furthermore, it's imperative to acknowledge that Tg is 
influenced not only by the static factors mentioned, but is also significantly affected by 
thermodynamic state changes, a concept explored by the Random First-Order Transition (RFOT) 
theory43. Recycling efficiency hinges on three decisive factors. First, the monomers used for 
vitrimer synthesis play a vital role, as they directly determine the number of dynamic bonds. 
Polymer networks with more dynamic bonds generally yield more dynamic chemical reactions, 
thus improving recycling efficiency. Taking phosphate vitrimer as an example, a phosphate 
vitrimer synthesized by phosphoric acid 2-hydroxyethyl methacrylate ester and EPON-826 44 has 
a high recycling efficiency than the vitrimer synthesized by Bis[2-(methacryloyloxy) ethyl] 
phosphate 15 due to larger number of dynamic bonds in phosphates (99% vs 75.5%). Specifically, 
phosphoric acid 2-hydroxyethyl methacrylate ester has three dynamic bonds while Bis[2-
(methacryloyloxy) ethyl] phosphate has one dynamic bond, hence the former can lead to more 
recycling efficiency under suitable reaction conditions.  Secondly, recycling efficiency is partially 
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determined by Tg; a low Tg requires a lower recycling temperature, resulting in less aging, hence 
leading to high recycling efficiency. Specifically, the recycling temperature of vitrimers should 
exceed their Tg, establishing that a lower Tg typically prescribes a correspondingly lower 
recycling temperature. In this context, operating at a diminished recycling temperature decreases 
the likelihood of chain scission and cross-linking, thereby ensuring a minimal attenuation of the 
mechanical properties of SMVs. Concurrently, reduced aging sustains a superior molecular 
mobility and potentially lessens the packing density in the polymeric glass, thereby amplifying 
reactivity during the chemical recycling process. For example, Epoxy vitrimers were synthesized 
by curing of bisphenol A diglycidyl ether (DGEBA)  with adipic acid (AA) possess a low Tg=47°, 
hence resulting a high recycling efficiency Re = 97%45. In contrast, a SMV formulated using 
bisphenol A glycerolate dimethacrylate (BPAGMA) exhibits a Tg of 150°, which corresponds to a 
lower recycling efficiency Re = 69.5%10. Lastly, activation energy plays a role in determining 
recycling efficiency. A lower activation energy means a less energy threshold to activate a dynamic 
bond, rendering more appearances of dynamic reactions and improving the recycling efficiency. 
Activation energy is typically determined by the types of functional group and network structures. 
For instance, Zhu et al. synthesized a  vinylogous urethane vitrimer with Acetoactylated castor oil 
(ACO) and Aminated DL-limonene (ADL). This vitrimer has a low activation energy 26 kJ/mol , 
resulting in a relatively recycling efficiency Ere=103.63% 46. On the other hand, Ma et al. 
developed a vitrimer named MDS-EPO using 4,40-Methylenedianiline (MDA) and IS-EPO 47. 
This vitrimer possesses an activation energy of 106 kJ /mol and displays a medium recycling 
efficiency Ere = 82.6%. 

Recovery stress prediction is challenging due to the interplay between experimental conditions 
and microscopic structures. However, based on general experience, higher rubbery modulus 
correlates with higher recovery stress. Hence, we employed a rubbery modulus prediction model 
as a surrogate for the recovery stress prediction model, a method proven effective in previous 
works35. Rubbery modulus is primarily determined by the number of rigid chains in the polymer 
network, and this is also viewed as macroscopic expression arising from physical behavior of the 
underlying macroscopic structures. Fig. 3 displays the qualitative correlations for all the three 
prediction targets .  Upon reviewing the three prediction targets, it becomes apparent that molecular 
structure is the most crucial factor for all of them, followed by functional groups rank. As a result, 
our feature extraction should prioritize by capturing these structural details. In ML, Simplified 
Molecular Input Line Entry System (SMILES) is a widely used chemical linear notation for 
representing 3D molecular structures. While SMILES effectively captures the primary elements 
and bond types,  it has limitations in representing complex structures. Direct SMILES encoding 
places a great emphasis on individual element and is highly dependent on underlying dictionary 
35. As a result, it may not yield satisfactory performance for model prediction. Consequently, it is 
essential to select a fingerprinting method that is able to further capture more topological structures 
of polymer network. To account for functional groups factors, we employed multiple screening 
approaches to enhance our model prediction, which will be demonstrated in section 2.5.2.
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Fig. 3   Correlation between basic features and ground truths

2.3 Fingerprinting methods
In this study, we applied two different feature extraction approaches: (1) Transferred Variational 
Autoencoder (TL-VAE) and (2) Morgan fingerprinting. Detailed descriptions of each approach 
are provided below.

2.3.1 TL-VAE model
In a previous study, Yan et al. 35 demonstrated that the Transferred TL-VAE is a better options 
than direct SMILES encoding for featurization of polymer network structures. In this study, we 
continue to employ this feature extraction methods. TL-VAE is a reasonable choice for two reasons. 
Firstly, the input of TL-VAE is derived from SMILES,  making it naturally capture the features of 
primary elements and functional groups. When coupled with the molar ratio between monomers 
and crosslinkers used in polymer synthesis (detailed in section 2.5.1), this method can effectively 
capture the type of functional groups and reaction types. Secondly, VAE often requires a large 
amount of data points. In our previous study, it was shown that drug molecules have exhibited 
similar structures with monomers or crosslinkers of SMPs. Therefore, in our case, the TL-VAE 
model can also resort to this large dataset of drug molecules, rendering it an appropriate approach 
for our purpose. It should be mentioned that we have adopted two parameter optimizations for the 
TL-VAE model, including the dimension of latent space and loss function (see supplementary 
materials in our previous publication 35). To implement this model in our current study, we firstly 
trained the model with 420,000 drug molecules and then trained the last two layers with 389 
monomers or crosslinkers from SMPs or vitrimers (see Fig. 4). The rationale for employing 
Transfer Learning Variational Autoencoders (TL-VAE) can be appreciated from three 
perspectives. First, TL-VAE must effectively grasp the syntax of SMILES, a linear notation system 
that can be challenging, particularly when dealing with monomers featuring multiple ring 
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structures. For instance, accurately mapping the high-dimensional vector of 4'-diaminodiphenyl 
sulfone (DDS), which has four rings, back to its original SMILES representation is a complex task. 
The SMILES notation for DDS is "C=CCc4ccc(OCC1CO1)c(c2cc(CC=C)ccc2OCC3CO3)c4". 
To achieve precise mapping, the VAE model must correctly identify the number of rings and match 
all closing brackets, a task that often poses a challenge to this model. Second, the crosslinkers and 
monomers of SMV possess unique functional groups not found in drug molecules, necessitating 
fine-tuning of the model. Third, VAEs typically involve a large number of fitting parameters (our 
model includes 1,087,565 parameters), making it essential to train it with sufficient data points. 
Otherwise, we inevitably encounter overfitting. As illustrated in Fig.4, 389 SMP monomer or 
vitrimers monomer SMILES are insufficient for our TL-VAE model.

Fig. 4 Training strategy for the network of VAE model. The detailed model pipeline can be found 
in supplementary materials.

VAE can be mainly divided into encoder and decoder. The encoder maps inputs into vectors in a 
hidden space, which can be written as

(2) E q z x

where x and z represent the input and the vector in the hidden space. On the contrary, decoder 
maps the vector in the hidden space back to the inputs, such that

(3) D q x z

The aim of the VAE model is to render the output close to the input as much as possible, hence we 
leverage “categorical cross entropy” as the loss function, which can be written as
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(4)     1
, logNL p q p x q x 

where p(x) is the expected value and q(x) is the predicted probability for the expected value, and 
N is the number of categories, i.e., the number of symbols in the dictionary for SMILES in a batch.

The VAE model is composed of four types of layers, i.e., convolutional layer (CNN), long-short 
term memory layer (LSTM), flatten layer and fully connected layer (FL). Among them, CNN layer 
aims at extracting features from binary image representing SMILES, which can be written as

(5) g f h

where f is the filter tensor and h is the image tensor, “*” represents convolution operation. The 
piecewise function “Relu” and piecewise function “Softmax” are the activation functions used in 
the network and which read

(6) Re

0   if  0
   if  0

x
x

x x



  

(7) 
1

i

j

x

s ki x

j

e
e







x

LSTM is a type of recurrent neural network (RNN). The basic cell for a LSTM is shown in Fig. 5. 
It is believed that the current state is not only dependent on the last state but also the previous 
history, so it defines two types of hidden states, namely ct and ht. With input vector xt in ith state 
and the last hidden state inputs ct-1 and ht-1 , the intermediate vector Qt (which can be ft,it,gt,ot, see 
Fig.5) can be calculated by the same method as

(8) 1t t t t t   tQ W x U h B

where I is an identity tensor, Wt, Ut and Bt are weight tensor for input, weight tensor for hidden 
state and bias vectors, respectively. Evidently, a total of four weight tensors and four bias tensors 
are calculated. It should pay attention that the calculation between weights and inputs are matrix 
multiplication. 𝜙 is an activation function, which can be logistic function 𝜎 or hyperbolic function 
tanh and read

(9)  1
1 xx

e
 



(10) 
2

2

1tanh
1

x

x

ex
e






The two hidden states ct and ht can be calculated by

(11) 1 , tanht t t t t t t tc h  f g i g o ge e e

where represents Hadamard product. e

Page 10 of 28Physical Chemistry Chemical Physics



Fig. 5 The basic structure of a LSTM cell

Based on the network architecture we've designed (refer to the supplementary material for details), 
the loss function (as per Eq.(4)) can be characterized as a function with a multitude of parameters. 
Our objective is to accurately estimate these parameters. To achieve this, we employ Taylor's 
theorem. Consequently, the loss function or objective function at the (i+1)th step can be expressed 
as a function of weights and biases48 

(12)         1 1 1 ,
T T

i i i i i i iL L L O          θ θ θ θ θ θ θ θ W B，

where 𝜃 is updatable tensor (which represents weight tensor W and bias tensor b). Stipulating a 
positive learning rate α (a constant) and let 𝜃i+1−𝜃i = −α∇L(𝜃i), then the loss function Eq. (12) 
can be written as

(13)      2
1 1i i i i iL L L O     θ θ θ θ θ

Apparently, the loss function continues to reduce with iterative updating of 𝜃. In other words, the 
comprehensive error between prediction and ground truth can be minimized. This model took 
about 20 hours for training in our workstation equipped with RTX2080 Ti.

2.3.2 Morgan fingerprinting
In addition, we utilized Morgan fingerprinting to extract features, which has been commonly 
recognized as an effective finger printing approach for structure featurization. We implemented 
this method for comparison purposes. Morgan fingerprinting is also good at describing polymer 
network structures. The method was originally proposed by David and Mathew 49, which can be  
simply described as following. Firstly, through daylight atomic invariants rule 50, identity 
information is assigned to each non-hydrogen atom in the molecule, i.e., atomic number, atomic 
mass, number of nearest-neighbor atoms, etc. Secondly, bond information around an atom is 
described based on the first step, which generates a new vector group for each atom, and can then 
produce a new identity by a hash function. Through multiple iteration (in each iteration, radius 
enlarges 1, see Fig. 6), every atom and their neighbors are finally fingerprinted as a new vector 
with desired length. In this process, the repeated molecule fragments will be deleted, and the radius 
range should be defined according to the complexity extent of the molecules. Considering some 

Page 11 of 28 Physical Chemistry Chemical Physics



monomers possess a couple of benzene rings, we employed a bigger radius, i.e., R = 13, which 
aims to avoid the potential confusions due to small radius definition. 

(c) Radius = 1

(d) Radius = 2(a) Integer assignment for each atom

(b) Radius = 0

Fig. 6 A typical iteration process for generating the Morgan fingerprinting tris[2-(acryloyloxy) 
ethyl] isocyanurate, a monomer molecule of shape memory polymer. Starting with element 4 
(Oxygen) as the center, the morgan fingerprinting progressively expands its radius to represent 
molecular structures (see the highlighted regions). With R= 13, the iteration process will count all 
the elements.

2.3.3 TSMP fingerprinting
By utilizing the Variational Autoencoder (VAE) model or Morgan fingerprinting, it is possible to 
extract features from any monomer or crosslinker through the use of an encoder. Subsequently, a 
Thermoset Shape Memory Polymer (TSMP) network can be characterized through fingerprinting. 
Let's consider that a TSMP network is synthesized using 'n' distinct types of monomers or 
crosslinkers. These can be represented as vectors, denoted as m1, m2,…, mn. In parallel, their 
corresponding molar percentages are represented as a1, a2,…, an. Consequently, this polymer 
network can be depicted as a high-dimensional resultant vector as

 (14)1 2 2 3 3 ... n na a a a       1S m m m m

This vector will be used in the following forward prediction model as features for input.
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2.4 ML model
For the forward prediction model, we leveraged two types of ML models in this study, i.e., 
Artificial neural network (ANN) and  support vector method (SVM) 51. Their basic math 
frameworks are illustrated as follows. 

2.4.1 ANN model
ANN is a type of engineering optimization method and aims to solve a minimization problem 
through high-dimensional Taylor theorem. The network architecture is shown in Fig.7. In a 
regression problem, we employed the activation functions “ReLU” and “linear” function, which 
can be written as

(15)   
  if 0,

ReLU , ar
0  otherwise.
x x

x Line x x


 


The function for output can be represented as

                   (16)
 

 
( ( ( ( ( (

             ) ) ) ) ) )

f Linear ReLU ReLU ReLU ReLU ReLU

ReLU

     

      
7 6 5 4 3 2

1 1 2 3 4 5 6 7

X W W W W W W

W X b b b b b b b

The loss function that we chose is “mean average percentage error (MPAE)”, which reads

(17) 
 

1

i

iy y
L

i





θ

)

where  and  are prediction outcome and ground truth, respectively. The loss can be reduced ˆiy iy
by Eq. (13). Also,  the weights and bias in ANN can also be optimized following 𝜃i+1−𝜃i = −α∇L(𝜃i). 
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Fig. 7 Basic pipeline structures for the artificial neural network 

Table 1. Hyperparameters adopted in the training of the ANN model

Hyperparameter names Values or items
Ratio between training data and 
test data

80/20

Batch size 32
Learning rate 0.01
Activation function for 1-5 
hidden layers

ReLU

Activation function for output 
layer

Linear

Neuron number in hidden layers 
1-6

2048, 1024, 256, 64,64, 32

Random state in Tg, Re, Rm 24, 1, 7

2.4.2 Support vector regression (SVR)
Another ML method that we used here is SVR . The structure-property relation for SVR yields a 
non-linear relation given by 52

(18)       
1

  with  
N

i i i
i

f b    



    x w x w x

where αi and  are Lagrange multipliers, and b is bias. 𝜙(x) is the feature mapping function. The 𝛼 ∗
𝑖

dual form of Eq. (18) can be written as 

(19)     
1

,  
N

i i i
i

f K b  



  x x x

The kernel function K is Radial basis function (RBF), which can be expressed as
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(20)   2, expi iK   x x x x

The objective function is to minimize the error outside the ε-insensitive tube and model complexity, 
which can be expressed as a function as below, 

(21)  2

1 ,

1min  subject to  and  
2

N

i i i i i i
i i j

C t y t y        



 
        

 
  w

where C is a constant, and are the upper boundary and lower boundary, respectively. N is the i 
i 

total number of samples, and ε is a small margin. This objective function can be written as dual 

formula by introducing Lagrange multipliers ,  as below, i 
i 

(22)        
, 1 1 ,

1max ,
2i i

N N

i i i i i i i j j i j
i i i j

t K
 

        
 

       

 

 
      

 
   x x

subject to

(23) 
1

0 ,0  and 0
N

i i i i i
i

a C a C a a   



      

where N is the total number of samples. Our aim is to solve the Lagrange multipliers and bias. By 
leveraging quadric programming, this problem can be quickly solved. This can be realized by a 
software machine learning library Scikit-learn 53. 
It is apparent that both of the aforementioned approaches involve intricate iterative computations. 
However, leveraging the robust parallel processing capabilities of Graphics Processing Units 
(GPUs), these models can be efficiently executed within a matter of minutes.

2.4.3 Results comparison
By integrating two fingerprinting methods and two supervised learning methods, we employed 
four unique approaches to predict Tg, rubbery modulus and recycling efficiency, respectively. The 
results are exhibited in Table 2 and Fig. 8 and Fig. 9, respectively. Herein we introduced three 
different indices, including mean average percentage error (MAPE), coefficient of determination 
(R2) and percentage of correct point (PCP) to evaluate the performance of the models. Given more 
datapoints in Tg and less data points for rubbery modulus and recycling efficiency in the training 
dataset, we established a prediction accuracy threshold. For Tg, prediction with an error 15% or 
less were considered accurate, while for rubbery modulus and recycling efficiency, prediction with 
an error 20% or less were deemed accurate.  Upon thoroughly comparing with the four approaches, 
we found that the approach “VAE+ANN” and “Morgan encoding + ANN” possess the best 
performance among the group. We can mathematically understand this outcome by examining the 
forms of fitting functions and fitting parameters. First, the assumed function for ANN appears to 
be better than the function for SVM. The comparison reveals that SVM’s results are not well-
performed, implying that the assumed exponential function in SVM (Eq.(20)) might not well fit 
the structure-relation of TRSMVs. On the contrary, the combinations of 5 linear piecewise 
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functions (ReLU) are employed in ANN, proving to be a more suitable choice. Second, the number 
of fitting parameters in the two ML approaches differs. In SVM, the number of parameters can be 
calculated as

(24)p train LagN N N 

wheren Ntrain and Nlag are the numbers of training samples for Tg and the numbers of Lagrange 
multipliers ( it can be clearly seen that Nlag=2 in Eq. (22)). In ANN, the number of parameters can 
be calculated by

(25)
1

2
n n n

n

p neo neo neoN N N N


  

where  calculates the number of weights between (n-1)th layer to nth layer. 
1n nneo neoN N




nneoN
represents the number of biases in nth layer. Accordingly, the number can only reach up to 389×2 
= 778  in SVM, while there are a total of 2,909,633 parameters in ANN. As polymer features are 
relatively complex, more parameters are essentially needed to fit. This further enhances the results 
of ANN model. Among them, VAE+ANN possesses a slight advantage. It means that TL-VAE 
does extract some hidden structure features from the initial SMILES notation, including the 
number of rigid chains, number of soft chains and the influences from different fragments, etc. 

Consequently, our model proves to be a viable and effective option and will work as the desired 
ML model for subsequent virtual screening. In addition, the other reason why we choose TL-VAE 
is that this model has the potential to produce new monomers or crosslinkers, which has been 
validated in our previous research 35. 

Table 2. The comparison of prediction discrepancies among VAE+ANN model, VAE+SVM, 
Morgan encoding +SVM, Morgan encoding +ANN.

Fingerprinting 
methods

Supervised 
learning 
model

Model 
output

R2 in 
training 

data

PCP in 
training 

(%)

MAPE 
in 

training 
data (%)

R2 in 
test data

PCP in 
test (%)

MAPE 
in test 

data (%)

MTg 0.98 99.68 1.25 0.64 94.87 4.33

MRe 0.98 99.15 1.95 0.65 76.67 15.90VAE encoding VAE+AN
N

MRm 0.99 91.67 7.60 0.89 63.27 25.75

MTg 0.76 93.57 5% 0.65 96.15 5

MRe 0.56 82.05 16.00 0.19 73.33 38.00VAE encoding VAE+SVR

MRm 0.33 61.98 35 0.52 42.86 44.00

MTg 0.81 94.53 4 0.43 94.87 5

MRe 0.64 83.76 14.00 0.26 70.00 37.00Morgan 
encoding

Morgan 
encoding 

+SVR MRm 0.3 65.10 31.00 0.48 36.73 47.00

MTg 0.96 99.68 2.06 0.54 92.31 5.55Morgan 
encoding

Morgan 
encoding 
+ANN MRe 0.84 97.44 7.59 0.57 63.33 16.80
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MRm 0.99 96.35 6.82 0.95 61.22 29.81

   

(a) Tg training data                                              (b) Tg test data

           (c) Re training data                                (d) Re test data
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(e) Rm training data                                                   (f) Rm test data

Fig. 8  Visualization comparisons for Tg, Re and Rm based on VAE+ANN model

       (a) Tg training data                                              (b) Tg test data

(c) Re training data                                                   (d) Re test data

(e) Rm training data                                                   (f) Rm test data
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Fig. 9  Visualization comparisons for Tg, Re and Rm based on Morgan+ANN model

Among the models for three different design targets, the model for Tg exhibits superior 
performance over the other two models, which can be partially understood by the larger number 
of data points and close to Gaussian data distributions. Evidently, the dataset of Tg has the most 
data points than the other two datasets, thus allowing the ML model capture more underlying 
patterns and relationships in the datasets. Furthermore, as illustrated in Fig. 10, the distribution of 
Tg  closely resembles a Gaussian distribution, while the distributions of the other two datasets show 
neither Gaussian distribution nor uniform distribution. As a result,  the data points for Tg may 
possess better generalization capabilities. These discrepancies could arise from the current 
research trend, which focuses on high-recycling efficiency vitrimer or extremely softer polymers. 
Consequently, more extreme values emerge, increasing the likelihood of overfitting and reducing 
generalization for the models pertaining recycling efficiency and rubbery modulus. It should be 
noted that we did not implement cross validation in this work. That is, our datasets, comprised of 
390, 147, and 250 data points for the three respective datasets, posed unique challenges that 
rendered traditional methods like cross-validation less suitable. One primary concern was the 
skewed distribution within our datasets, which could severely impact the predictive performance 
of our model if cross-validation was employed. For instance, due to the skewed selection of 
academic journals (only excellent results have the chance to be reported), only a scant number of 
SMPs can achieve a rubbery modulus exceeding 220MPa as depicted in Fig.1 of the manuscript. 
Should these entries be excluded from the training data, our model might struggle to identify 
vitrimers with high recovery efficiency owing to the inherent fitting nature of our machine learning 
models. This scenario could lead conventional cross-validation to magnify biases, detrimentally 
affecting predictive performance in the chemical space. To address this, we adopted an alternative 
approach. We explored 50 distinct random states, from 1 to 50, aiming to find an optimal data split 
that ensures model performance while controlling overfitting. This method, although 
unconventional, was deemed necessary due to the constraints of our data collection methodology. 
Our results, as presented in Table 2, support our approach. The variance in MAPE between training 
and testing sets for all models is consistently below 20%. When this is considered in conjunction 
with two other performance metrics, we observe only minimal signs of overfitting. Thus, we're 
confident that our chosen method provides a balanced and pragmatic solution to the challenges 
inherent in our datasets.
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Fig. 10 Histograms for Tg, recycling efficiency and rubbery modulus in the training datasets, 
which consists of 389, 147 and 250 data points respectively.

2.5 New TRSMV discovery

2.5.1 Chemical space creation
In order to discover new TRSMVs, we initially created a vast chemical space and then screened 
for the desired polymers within it. First, we gathered 184 crosslinkers and monomers from our 
dataset, which consisted of 9 alcohol molecules (-OH), 30 carboxylic acid molecules (-COOH), 
38 epoxy molecules (-OH3C2), 55 amine molecules (-NH2), 11 thiol molecules (-SH), and 41 
alkene molecules (-C=C). This chemical space can produce virtual thermoset polymers 
synthesized through five classic chemical reactions, including: (1) Epoxy-amine reaction, (2) 
Epoxy-hydroxy group reaction, (3) Thiol-ene click reaction (C=C reacting with -SH), (4) 
Hydroamination (C=C reacting with -NH2), and (5) Dimerization (C=C reacting with C=C). These 
five reaction types result in 7,959 virtual thermoset polymers. To decrease the computational 
workload, we restricted our space to dimers synthesized from only two monomers. 

We assume that a total of 1 mol molecules participates in the reaction. By varying the molar ratio 
of the two monomers between 0.1:0.9 and 0.9:0.1, we generated a vast chemical space containing 
71,631 virtual thermoset polymers. Since our training dataset only includes 389 polymers, at least 
99.45% of the polymers in the chemical space are new polymers. Furthermore, to accurately 
calculate the molecules participating in the reactions, we introduce effective stoichiometric ratio 
to model the varying crosslink densities. For instance, for epoxy (EPON 826) cured by a rigid 
isophorone diamine (IPD), given the molar ratios  0.1:0.9, the effective stoichiometric ratios are 
0.1:0.05, which is different from the initial molar ratio provided. Apparently, the actual chemical 
reactions also involve experimental conditions and catalysts; however, we have chosen to discard 
these factors and assumed that all chemical reactions can fully occur. This comprehensive 
chemical space can be explored through virtual screening to identify promising polymers with 
desired properties.

2.5.2 Virtual Screening 
Unavoidably, our model prediction has some discrepancy. To further improve the screening 
accuracy, we applied three screening criteria: threshold value screening, dynamic bond screening, 
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and flexible chain screening. Firstly, three threshold values are established for initial screening: Er 
> 250 MPa, Re > 70%, and Tg >473K.  Given that the highest Tg in our database is approximately 
572 K and no crosslinker has the functionality exceeding three, we anticipate that the highest Tg 
of our new TRSMVs will not significantly exceed this value, setting Tg < 600K. Secondly, while 
all the combinations of monomers and crosslinkers can be synthesized as thermoset polymers, they 
may not necessarily have the ability to possess the recyclability. Therefore, we performed further 
screening based on the presence of dynamic bonds. We counted the numbers of dynamic bond 
groups in each thermoset polymer, selecting only those that contained at least one carboxyl group 
(-COOH) and one hydroxyl functional group (-OH), or at least one imine functional group (C=N), 
or at least one disulfide bridge (S-S). This ensures that all selected polymers can form esters, 
carbonate, urethanes, or imines, or disulfides and related groups. Thirdly, to guarantee better 
structural rigidity in the screened polymers, we eliminate any polymers containing long flexible 
chains. Specifically, if a monomer or crosslinker had more than 20 flexible chains, they were 
eliminated from the target materials. This screening process ensures that the virtual screening 
results are reliable. Ultimately, we obtained four potential TRSMVs, their corresponding monomer 
and crosslinkers as well as their three targets are listed in Table 3. It can be seen that all the four 
candidates use triazine ring as a crosslinker, which is typically a rigid ring with robust thermostable 
structure, hence the discovered SMVs should process excellent rubbery modulus and high Tg. 
Meanwhile, given that candidates 1 and 2 have a higher percentage of triazine rings, they should 
be more satisfied with requirements of thermally robust shape memory vitrimer (TRSMVs). 
Furthermore, the monomer BIS-GMA (a type of BPA) in candidate 2 should have better strength 
and thermostability than the bicyclic compound structure in TAI in candidate 1. However, it is 
worth noting that the presence of rigid chains (triazine ring and BPA) could potentially impact 
their recycling efficiency. That is, rigid chains might reduce the mobility of polymer chains, 
making it harder for the material to flow during remolding or reprocessing steps in the recycling 
process. This challenge could be mitigated through strategic adjustments in the recycling 
experiments, such as optimizing processing temperature, employing isothermal curing, reducing 
the size of waste material, etc. In summary, candidate 2 stands out as a particularly promising type 
of  TRSMV, harmonizing robust thermal properties with shape memory effect and the potential 
for efficient recycling through methodical experimental design. 

2.5.3 Experimental validation
In order to further validate the predictability of the ML framework, we synthesized the second new 
TRSMV listed in Table 3. The polymer can be produced by two pairs of monomers (crosslinkers). 
One is Bisphenol A glycerol dimethacrylate (BPAGMA) cured by a photoinitiater 2-hydroxy-2-
methyl-propiophenone (HMP), purchased from Sigma Aldrich. The other was synthesized by 
curing tris[2-(acryloyloxy) ethyl] isocyanurate monomer (TAI) with a photo-initiator 
diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), also from Sigma Aldrich. To prepare 
the polymer network, we began by mixing 50 g of the BPAGMA monomer with 1.5 g of the photo-
initiator HMP in a 250 mL beaker and preheated it at 70 °C for 1 hour to decrease the viscosity 
and allow efficient mixing. Next, we added 200 g of TAI and 15.05 g of the TPO photo initiator 
into the BPAGMA/HMP mixture, resulting in a BPAGMA:TAI weight ratio of 20:80. The mixture 
was further stirred using a magnetic stirrer at 90 °C for a duration of 2 hours. It was cured in UV 
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chamber (IntelliRay 600, Uvitron International, USA) for 40 s under 50% irradiation intensity (232 
nm, ∼45 mW/cm2) followed by 3 hours thermal curing at 220 oC. 

The thermal behaviors were measured by DMA, where the glass transition could be identified by  
the peak of the tan delta curve, and the rubbery modulus was determined by examining the plateau 
region in the respective material's mechanical response. The Tg was first determined using Q800 
DMA by TA Instruments (New Castle, DE). The specimens used had a dimension of 4.91 mm 
wide, 3.16 mm thick, an effective length of 12.46 mm. The test was conducted under the multi-
frequency/strain test mode. The frequency was set to 1 Hz, and the amplitude was selected to be 
20 µm. During the temperature scan, we first equilibrated the chamber and specimen to -30 oC 
using liquid nitrogen and kept at this temperature isothermally for 5 minutes. After which, we 
started collecting data by ramping at 3 oC/min to 300 oC. The temperature corresponding to the 
peak of the tan was defined as Tg. From Fig. S2 in the supplementary materials, the Tg was 
determined to be 233.5 oC. A DSC 4000 calorimeter made by PerkinElmer (Waltham, MA) was 
also used to determine the Tg. Samples of approximately 4.30 mg were scanned from -50 °C to 
350 °C at 10 °C/min. The tests were performed in a nitrogen environment with a 20 mL/min gas 
flow rate. The second heating cycle was used to determine the Tg to remove the effect of thermal 
history. From Fig. S3 in the supplementary materials, the Tg was determined to be 244.72 oC. 
The recycling/healing efficiency of the synthesized polymer was determined via tensile test. We 
first tested the post-cured specimens with the dimension 59.98 mm × 5.70 mm ×1.44 mm until 
fracture. Then the fractured specimens were ball milled using a machine (PQ-N2 Planetary Ball 
Mill, Across International, New Jersey, USA) for 20 hours. The milled powders were gently 
introduced into a steel mold and recycled in the eXpert 2610 MTS (ADMET, Norwood, MA, USA) 
chamber at a pressure of 13 MPa for 2 hours at 220 oC. After demolding, rectangular specimens 
with dimensions 59.98 mm × 4.95 × 3.52 mm were obtained. The recycling efficiency was 
calculated by the equation provided below

(25)e 
0

R 100%r


 

where  is the tensile strength of the recycled specimen and  is the tensile strength of the initial  𝜎𝑟 𝜎0
specimen without damage. All the tests were repeated 3 times to obtain the mean value and 
standard deviation. As given in Table 3, the Tg, rubbery modulus and recycling efficiency from 
experimental measurements are 506.5 K (or 233.5 oC), 332.2MPa and 81.4%, respectively. The 
absolute percentage differences between ML predictions and experimental measurements are  
2.77%, 12.67% and 10.52%, respectively.  

We also tested the shape memory performance of the new TRSMV. The shape memory effect of 
the discovered BPAGMA-TAI polymer was determined by first heating the MTS chamber for 1 
hour at 220 °C to account for thermal expansion of the metal fixtures, and then loading cylindrical 
samples with dimensions of 5.75 mm diameter and 8.20 mm height at a loading rate of 0.5 mm/min 
to achieve a compression programming strain of 24%. The chamber was then cooled down to room 
temperature to fix the programmed shape. Both stress recovery and free shape recovery tests were 
conducted. The recovery stress was estimated by preheating the MTS chamber at 220 °C to 

Page 22 of 28Physical Chemistry Chemical Physics



eliminate the thermal expansion of the fixtures, and the programed cylinder of height 6.2 mm and 
diameter of 7.2 mm was quickly constrained in the fixtures. The recovery stress as a function of 
time was recorded as stress versus time curve, with recovery stress measured at approximately 33 
MPa.

In the free shape recovery test, the compression programmed specimens were placed in the heating 
chamber at 220 °C for 30 minutes, and the recovered height was measured. The shape fixity ratio 
F and shape recovery ratio R were calculated using the equations provided below

(26)100%, R 100%f rr

l f

F
 

 


  

where  is the fixed strain after load removal,  is the strain before removing the load, and  is 𝜀𝑓 𝜀𝑙 𝜀𝑟
the residual strain after free shape recovery. The tests were repeated more than 3 times to get the 
mean value and standard deviation.  

Finally, we obtain shape fixity ratio and shape recovery ratio as 99.24% and 98.17%, respectively. 
In a nutshell, the discovered new TRSMV possesses high shape memory performance and high 
recycling efficiency, validating the superiority of our ML framework. The experimental 
measurement shows the recovery stress is about 33 MPa under a compression programming strain 
of 24%. This shows that this polymer possesses a recovery stress almost equal to the highest record 
of 35.3 MPa in the previous study 10. Overall, this TRSMV has high glass transition temperautre, 
high helaing/recycling effciency, and excellent shape memory effect, satisfying the desing goals 
in this study. Table 3 ML discovered TRSMVs and their predicted target properties, as well 
experimental validation for one TRSMV

NO. Combination Chemical structures of 
monomers

Tg (K) Er 
(MPa)

Re (%)

1 HMA:TAI=0.2:0.8
       

ML 518.43 352.27 75.72

ML 520.51 374.28 72.83

2 BIS-GMA:TAI=0.2:0.8

     

Expt. 506.5 332.2 81.4

3 HMA:TAI=0.3:0.7

          

      

ML 503.71 259.39 78.55
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4 BIS-GMA:TAI=0.4:0.6

         

   

ML 492.82 348.68 73.19

3. Conclusion
In summary, relying on ML techniques, we developed a feasible framework to design TRSMVs 
for overcoming the conflicting requirements between molecular chain mobility and the formation 
and reaction of dynamic covalent bond exchange. The framework allows us to virtually screen the 
TRSMVs from a vast chemical space, and the designed TRSMVs are able to showcase high 
recycling efficiency, high Tg, and excellent shape memory effects. The framework exhibits great 
potential to design new polymers during a short period of time. It is expected that this framework 
can work as a useful tool for polymer scientists to design new polymers. Simultaneously, we 
acknowledge that the proposed framework still has certain limitations, such as limited accuracy in 
rubbery modulus prediction due to the small training datasets and absence of suitable property 
descriptors. In the future, we aim to gather more datapoints into our dataset and integrate the 
property descriptor into our model for further improvement.  
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