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Abstract
Graphene aerogel (GA), a 3D carbon-based nanostructure built upon 2D graphene sheets, is well known for being 
the lightest solid material ever synthesized. It also possesses many other exceptional properties such as high specific 
surface area and large liquid absorption capacity thanks to its ultra-high porosity. Computationally, the mechanical 
properties of GA have been studied by molecular dynamics (MD) simulations, which uncover nanoscale 
mechanisms beyond experimental observations. However, studies on how GA structures and properties evolve in 
response to simulation parameter changes, which provide valuable insights to experimentalists, have been lacking. 
In addition, the differences between calculated properties via simulations and experimental measurements have 
rarely been discussed. To address the shortcomings above, in this study, we systematically study various mechanical 
properties and the structural integrity of GA as a function of a wide range of simulation parameters. Results show 
that during the in silico GA preparation, smaller and less spherical inclusions (mimicking the effect of water clusters 
in experiments) are conducive to strength and stiffness but may lead to brittleness. Additionally, it is revealed that 
a structurally valid GA in the MD simulation requires the number of bonds per atom to be at least 1.40, otherwise 
the GA building blocks are not fully interconnected. Finally, our calculation results are compared with experiments 
to showcase both the power and the limitations of the simulation technique. This work may shed light on the 
improvement of computational approaches for GA as well as other novel nanomaterials.

Introduction

Graphene is a two-dimensional (2D) structure of carbon atoms with extraordinary electronic,1, 2 thermal,3-6 and 
mechanical7-10 properties. However, when graphene is encapsulated into polymers, the properties of resulting 
polymeric composites are not as good as theoretical predictions, due to the poor dispersion quality of the 2D 
graphene materials in the matrix. To fully exploit the high potential of graphene, various 3D structures such as 
graphene foams,11-13 graphene aerogels14-16 and graphene networks17-20 are explored, which are better at preserving 
the unique properties of graphene in real use cases. Among these 3D structures, graphene aerogel (GA) stands out, 
thanks mainly to its ultra-low density and high porosity up to 99%.14, 21 As the lightest solid material ever 
synthesized, GA has been proposed as a substitute for rare and expensive helium.22 As a highly porous material 
with a large surface area, GA has been explored as a sorbent for environment remediation23-26 and effective catalytic 
scaffolds27-29. Additionally, GAs show many other useful physical properties such as high conductivity15, 30 and 
compressibility16, 31. Therefore, GAs have also been considered as a promising material for supercapacitors,32-34 gas 
sensing,35, 36 energy absorption,16, 37, 38 among many other applications.

Among the various properties of GAs, the mechanical property has been widely researched, since the graphene 
building block is the strongest material ever tested. Both experimental and computational studies have been 
conducted on the mechanical property of GA. Experimentally, Zhu et al. fabricated GAs via 3D printing and showed 
that GAs exhibit supercompressibility and are much stiffer than bulk graphene of comparable density.31 Cheng et 
al. showed that a GA cylinder with a density of 56.2 mg·cm−3 could support at least 26,000 times its own weight 
and recover to its original state without permanent deformation39. Zhang et al. reported that GA–
polydimethylsiloxane composites exhibit extremely large deformability in both tension and compression.40 
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Computationally, molecular dynamics (MD) simulations have been favored by researchers due to their capability 
in shedding light on detailed mechanical responses of nanomaterials that are beyond the experimental capabilities. 
Qin et al. showed in MD simulations that GA can be 10 times as strong as mild steel at a density of 4.6% that of 
mild steel, but the mechanical properties decrease with density faster than those of polymer foams22. Patil et al. 
studied the fracture behavior41 and the shock wave response42 using MD simulations, and showed that GAs have 
good shockwave and energy absorption abilities. Zheng et al. quantified the uncertainty of GAs arising from the 
structure randomness using Gaussian process metamodels.43 

However, there have been some shortcomings in previous MD simulation works. First, the properties of GAs have 
not been extensively studied in response to changes in simulation variables. Previous studies have only examined 
very few parameters (mainly the radius of inclusions) while many other parameters such as the inclusion-to-flake 
ratio, the total number of particles in the simulation, and the annealing properties can have a great impact on the 
GA properties. Second, the structural integrity of GAs in MD simulations has not been studied against changes in 
the variables. Number of bonds per atom has been used as a metric to quantify how well graphene flakes are 
connected inside a GA structure. However, it has not been investigated how this metric changes in response to 
changes of simulation parameters. Third, there has been a deviation of an order of magnitude between densities in 
MD simulations and experiments. GAs with a density below 10 mg·cm−3 have been fabricated in experiments, while 
the lowest density studied in MD simulations is around 100 mg·cm−3. Lastly, to the best of our knowledge, there 
has not been any reported research that directly compares MD simulation results with experimental data. 

In this paper, we aim to address the above challenges as well as to discuss the limitations of MD simulations in 
modeling GAs. First, various mechanical properties as a function of a broad set of simulation parameters are studied. 
Second, the structural integrity of GAs is quantified and evaluated as simulation parameters change. Additionally, 
the reason why the density of GA in MD simulations cannot reach the low values obtained experimentally is 
discussed. Finally, our findings are compared with experimental results to showcase both the power and the 
limitations of the simulation technique.

Results and Discussion

Graphene aerogel structure generation in molecular dynamics simulations
Adopting the approach of previous simulation studies,22, 41, 43 a GA structure is formed via condensing an initially 
sparse and disconnected system into an integrated structure. The initial system for the GA preparation is a cubic 
box consisting of graphene flakes and spherical inclusions, as shown in Fig. 1a. The periodic boundary condition is 
applied in all three dimensions to approximate an infinitely large system. The inclusions mimic the effect of water 
clusters in freeze-casting porous graphene materials44. The numbers of graphene flakes and inclusions are denoted 
by  and . The initial density is set as low as 1 mg·cm−3 to minimize the probability of overlapping atoms. 𝑁flake 𝑁inc
Graphene flakes are square-shaped with a side length , while the inclusions are modeled as spheres with an 𝐿
effective radius , as illustrated in Fig. 1b.  is mathematically defined as , where  is a parameter 𝑅eff 𝑅eff 𝑅eff = 21 6𝜎 𝜎
of the Lennard-Jones potential that models the equilibrium spacing between two particles (detailed in the Methods 
section). Because  and  are proportional, in this paper, “the effect of ” and “the effect of ” are used 𝑅eff 𝜎 𝑅eff 𝜎
interchangeably. In our study, the values of  within one simulation system follows various distributions, which has 𝐿
not been studied in previous work. We consider the distribution of  a variable and aim to study its effect on the 𝐿
mechanical and structural properties of GAs. One distribution that  follows is the log-normal distribution, of which 𝐿
the probability density function is

𝑝(𝐿) =
1

𝐿𝜎ln 2𝜋e
―

1
2(log 𝐿 ― 𝜇ln

𝜎ln )2

(1)

where
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𝜎ln = log (𝐿std

𝐿2 + 1) (2)

and

𝜇ln = log 𝐿 ―
𝜎2

ln

2
(3)

In this study,  and 22 are used. By default,  follows the log-normal distribution.  is also 𝐿 = 12 Å 𝐿std = 4.8 Å 𝐿 𝐿
modeled with half normal distributions, of which the probability density function is

𝑝(𝐿) =
2
𝜋

1
𝜎hn

e
―

1
2(𝐿 ― 𝜇hn

𝜎hn )2

, 𝐿 ≤ 𝜇hn
(4)

where  and  are the location and the scale parameters. In this study,   is set as the largest  that is sampled 𝜇hn 𝜎hn 𝜇hn 𝐿
by the log-normal distribution to favor larger graphene flakes.  is a variable that controls the “width” of the half 𝜎hn
bell curve: larger  gives wider half bell curve.𝜎hn

Figure 1. Construction of GA structures in the MD simulation. (a) Initial material system where  𝑁flake = 500
and . (b) Dimensions of the graphene flake and the spherical inclusion. (c) Pressure and temperature 𝑁inc = 1000
profiles during one annealing cycle. (d)  as a function of , where  denotes the side length of log (𝐿box) 𝑁cycle 𝐿box
the cubic simulation box. (e) Condensed material system after 10 annealing cycles. (f) Final GA structure after 
the removal of inclusions.

Next, a number of designed annealing cycles are applied to condense the material system and to connect graphene 
flakes into an integrated structure. The total and the current number of annealing cycles is denoted by  and 𝑁cycles

, respectively. Each annealing cycle consists of four stages and each has a time duration : (a) in the 𝑁cycle 𝑡p = 50 ps
isothermal–isobaric (NPT) ensemble the pressure increases linearly from 1 atm to 1000 atm and the temperature is 
maintained at 300 K; (b) in the canonical (NVT) ensemble the temperature increases linearly from 300 K to the 
annealing temperature ; (c) in the NVT ensemble the temperature is held at ; (d) in the NVT ensemble the 𝑇A 𝑇A
temperature decreases linearly from  to 300 K. The annealing cycle design is similar to previous MD simulation 𝑇A
work22, 41, 43. However, in this work, the annealing temperature  is considered a variable. Because the temperature 𝑇A
affects the level of movements of graphene flakes, it dictates the probability of graphene flakes encountering each 
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other and forming bonds, thus affecting the final GA structure. The annealing cycle design described above is 
illustrated in Fig. 1c. 

During the annealing process the system volume decreases sharply in the first cycle and gradually in subsequent 
cycles, as shown in Fig. 1d. After many annealing cycles, a compact system with interconnected graphene flakes 
and inclusions can be obtained, as shown in Fig. 1e. Inclusions resemble water clusters in experiments which will 
be removed from the system during a drying process. Deleting the inclusions and followed by another NVT process 
for 50 ps, the final stable GA structure in the simulation is obtained, as shown in Fig. 1f. The final relaxation is 
intended to eliminate the initial stress after annealing cycles. Stress-strain curves with and without the relaxation 
process are provided in the SI (Figs. S1 and S2), where the latter introduces an initial stress. Full details of MD 
simulations are provided in the Methods section.

Mechanical properties of graphene aerogels
After the in silico fabrication of the GA structure described in the previous section, uniaxial tensile and compressive 
loads are applied to calculate the mechanical properties of the GA. In this work, loads are applied in a quasi-static, 
incremental manner. At each step, the simulation box is deformed for a 1% uniaxial strain in the x direction in the 
NPT ensemble with a temperature of 300 K and a pressure of 1 atm maintained in the two unloaded y and z 
directions. Each strain increment is followed by an energy minimization and equilibration process in the NVT 
ensemble at 300 K. Under these loading conditions, a range of mechanical properties of GAs including density , 𝜌
tensile strength , tensile failure strain (defined as the strain at the maximum tensile stress), tensile and 𝜎u  𝜀u
compressive moduli  and can be computed. We are interested in systematically investigating how these 𝐸t 𝐸c 
mechanical properties change in response to changes of an extensive set of simulation variables, and we aim to 
cover more variables than previous studies. In the following, the effects of various simulation variables are studied, 
including the effective radius of inclusions  (or ), inclusion-to-flake ratio , the total number of 𝑅eff 𝜎 𝑅 = 𝑁inc 𝑁flake
particles , the annealing temperature , and the distribution of the side length of graphene 𝑁total = 𝑁inc + 𝑁flake 𝑇A
flake . When a parameter is not studied as a variable, the following values will be used as default: 0, 𝐿 𝑁flake = 20

, , , , and  follows the log-normal distribution described in Eq. 1, unless 𝑅 = 1.0 𝜎 = 5.0 Å 𝑁cycles = 10 𝑇A = 2000 K 𝐿
otherwise specified.

We start by studying the effect of effective radius of inclusions  (or equivalently, ) on the mechanical properties 𝑅eff 𝜎
of GAs. Intuitively, larger inclusions result in a higher porosity because these inclusions tend to push the graphene 
flakes away from each other, as illustrated in Fig. 2a. Here, various mechanical properties of GA as a function of  𝜎
are calculated. Each data point on these graphs is based on 5 different random seeds and the error bar represents 
one standard deviation. Fig. 2b shows that as  increases, the density  decreases. This is consistent with previous 𝜎 𝜌
studies43. Fig. 2c shows that as  increases, the tensile strength  decreases. However, this result presents larger 𝜎 𝜎u
error bars compared to the density results. This is because the failure of the GA structure has a stronger dependency 
on local structural details, and different random seeds give rise to diverse GA structures despite similar densities. 
The similar applies to the tensile failure strain , which also depends strongly on the local structure. However, the  𝜀u
trend is opposite to the tensile strength, as shown in Fig. 2d – as  increases, the failure strain  increases. This 𝜎  𝜀u
suggests that GAs with a more loosely interconnected microstructure exhibit higher ductility compared with those 
with a tightly packed microstructure. The moduli under tension and compression are also calculated. Both tensile 
and compressive moduli  and  decrease as  increases, and GAs are stiffer under tension than under 𝐸t 𝐸c 𝜎
compression, as shown in Figs. 2e and 2f. The effect of another Lennard-Jones parameter , the depth of the potential 𝜖
well, is also studied. It is shown in the SI (Fig. S3) that the mechanical properties of GAs are not strongly dependent 
on .𝜖
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Figure 2. Mechanical properties of GA as a function of , proportional to the effective radius of inclusions. (a) 𝜎
Illustration of the effect of . (b) Density , (c) tensile strength , (d) tensile failure strain , (e) tensile and (f) 𝜎 𝜌 𝜎u 𝜀u
compressive moduli  and  of GA as a function of .𝐸t 𝐸c 𝜎

Next, the effect of the inclusion-to-flake ratio  is studied, which has not been researched in previous studies. 𝑅
Intuitively, the higher the inclusion-to-graphene ratio, the lower the GA density, since inclusions (which will 
eventually be removed from the system) occupy larger and larger volume, as illustrated in Fig. 3a. This effect should 
be similar to the effect radius of inclusion, but via a different mechanism. Results are summarized in Figs. 3b-f, 
where each data point is based on 5 random seeds. The trends resemble those with  as the variable, where , , 𝜎 𝜌 𝜎u

,  decrease and  increases as   increases. However, the error bars are larger, indicating that adding more 𝐸t 𝐸c 𝜀u 𝑅
inclusions introduces more uncertainty compared with enlarging . The result also hints that to achieve a low-𝜎
density GA, one can use a large  together with a high . The caveat is that too many inclusions together with a 𝜎 𝑅
large  can result in disconnected graphene flakes after the annealing cycles, as shown in the example in the SI 𝜎
(Fig. S4). Additionally, it is shown that increasing the number of annealing cycles does not resolve the issue, as 
shown in the SI (Fig. S5). A remedy for this issue is to increase the annealing temperature, hoping to increase the 
possibility of graphene flakes bumping into each other and forming bonds. The temperature effect on the GA 
structure will be presented in a later section. It is worth noting that fracture-related properties such as  and  are 𝜎u 𝜀u
sensitive to local GA structures, which varies across different random seeds. Consequently, these results bear larger 
error bars in Figs. 2 and 3. On the contrary, fracture-independent properties such as ,  and  bear smaller error 𝜌 𝐸t 𝐸c
bars. We have quantified the uncertainty of GA mechanical properties in our previous research using Gaussian 
process metamodels.43
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Figure 3. Mechanical properties of GA as a function of the inclusion-to-flake ratio . (a) Illustration of the effect 𝑅
of . (b) Density , (c) tensile strength , (d) tensile failure strain , (e) tensile and (f) compressive moduli  𝑅 𝜌 𝜎u 𝜀u 𝐸t
and  of GA as a function of .𝐸c 𝑅

Next, the effect of the total number of particles is studied, and the results are summarized in the SI (Fig. S6). The 
inclusion-to-flake ratio is fixed at  and various  values are used to achieve material systems of different 𝑅 = 2.0 𝑁flake
sizes. as illustrated in Fig. S6a. In our simulations the periodic boundary conditions are applied in all three spatial 
dimensions, which approximate an infinitely large system by repeating the unit cell. However, it is more realistic 
and ideal to use a relatively large repeating unit cell to add to the structural diversity and to reduce randomness. The 
mechanical properties as a function of the total number of particles is less intuitive compared with the previous two 
variable choices. Again, , , , , and  are evaluated as a function of . Results are shown in Figs. S5(b-𝜌 𝜎u 𝜀u 𝐸t 𝐸c 𝑁flake
f), where all the mechanical properties of interest decrease as  increases. In addition, for all properties, the 𝑁flake
error bars become smaller as the number of particles increases. This suggests that using more particles approaches 
a homogenized material system which is less sensitive to local randomness. This effect shows especially for the 
tensile failure strain  which depends on local structures most. Nevertheless, the computational cost grows 𝜀u
exponentially with the increase of number of particles in the simulation.

Of high interest is how the various mechanical properties change as a function of density , which are properties 𝜌
without variables of simulation artifacts and can relate better to the real material. We plot tensile strength , tensile 𝜎u
failure strain , tensile and compressive moduli  and  as a function of density  with all simulation results in 𝜀u 𝐸t 𝐸c 𝜌
this work to observe the general trends, as shown in Fig. 4. The tensile strength and moduli increase as the density 
increases, which agrees with our intuition, as shown in Figs. 4(a, c, d). On the contrary, as shown in Fig. 4b, the 
tensile failure strain decreases as the density increases, which agrees with the results in reference41.
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Figure 4. Mechanical properties of GA as a function of density  for all well-formed GAs. (a) tensile strength 𝜌
, (b) tensile failure strain , (c) tensile and (d) compressive moduli  and  of GA as a function of .𝜎u 𝜀u 𝐸t 𝐸c 𝜌

Structural integrity of graphene aerogels in molecular dynamics simulations
The application of annealing cycles does not guarantee that a well-connected GA structure can be formed. In this 
work, many failed GA structures are observed where graphene flakes are not properly interconnected even after 
more than 10 annealing cycles, examples shown in the SI (Figs. S3 and S4). This aspect of MD simulations of GAs 
has not been discussed in the literature, and may explain why the ultra-low density of real GAs has been difficult 
to be achieved in MD simulations. In this work we aim to shed light on this aspect.

Previous work used the number of bonds per atom  to quantify the connectivity of graphene flakes. For 𝑁bond/atom
an infinitely large planar graphene sheet,  equals 1.5. Therefore, a value close to 1.5 should indicate a 𝑁bond/atom
good interconnection between graphene flakes, thus a well-formed GA structure. However, previous studies only 
calculated  to illustrate that graphene flakes have been sufficiently interconnected by showing the plateau 𝑁bond/atom
of  with increasing . In this work,  is further evaluated as a function of simulation 𝑁bond/atom 𝑁cycle 𝑁bond/atom
parameters, as it can serve as an important indicator of the structural properties of GAs and whether a GA can be 
formed by annealing cycles.  is calculated and plotted as a function of  under different simulation 𝑁bond/atom 𝑁cycle
conditions (Bonds are considered to form if the distance between two carbon atoms is smaller than 1.7 Å.), as shown 
in Fig. 5. Fig. 5a shows the effect of  (or equivalently, ). Error bars are calculated based on 5 different random 𝜎 𝑅eff
seeds. Results show that as  increases from 3.0 Å to 13.0 Å,  after 10 cycles decreases from over 1.46 𝜎 𝑁bond/atom
to around 1.40, suggesting that a high  leads to low connectivity. Nevertheless, for simulations where , 𝜎 𝜎 = 13.0 Å
all 5 random seeds can still generate valid GA structures, an example provided in the SI (Fig. S7). Fig. 5b shows 
the effect of the inclusion-to-flake ratio  on .  varies from 0.5 to 5.5 while other parameters are fixed. 𝑅 𝑁bond/atom 𝑅
Error bars are calculated based on 5 different random seeds. Results show that as  increases from 0.5 to 5.5, 𝑅

 decreases from over 1.46 to around 1.42, suggesting that a high  leads to low connectivity. For 𝑁bond/atom 𝑅
simulations where , all 5 random seeds can still generate valid GA structures, an example provided in the 𝑅 = 5.5
SI (Fig. S8).
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Figure 5. GA connectivity property in response to changes in various simulation parameters.  versus 𝑁bond/atom
 plots (a) under various  with  and , (b) under various inclusion-to-flake ratios  with 𝑁cycle 𝜎 𝑁flake = 200 𝑅 = 1.0 𝑅

 and , (c) under various  with  and , and (d) under various 𝑁flake = 200 𝜎 = 5.0 Å 𝑅 𝑁flake = 200 𝜎 = 15.0 Å
annealing temperature  with , , and .𝑇A 𝑁flake = 200 𝑅 = 1.0 𝜎 = 5.0 Å

However, combining a high  and a high  can cause very low  values, as shown in Fig. 5c, where 𝜎 𝑅 𝑁bond/atom
 and  increases from 1.0 to 7.0.  decreases from slightly below 1.42 to around 1.37. At 𝜎 = 13.0 Å 𝑅 𝑁bond/atom

 (where  after 10 cycles is about 1.40), GA structure fails to form properly where graphene flakes 𝑅 = 2.0 𝑁bond/atom
cannot sufficiently interconnect, as shown in the SI (Fig. S4). This structure has a density of 146 mg·cm−3, which 
is slightly higher than the lowest density previous simulation studies have studied but still about more than 10 times 
denser than the lightest GAs fabricated in experiments. Even though simulation techniques can be fine-tuned to 
achieve a lower density, this result sheds light on one of the biggest limitations of MD simulation in modeling GAs. 
This is because the pore size in experiments is an order of magnitude larger than the pore size in the unit cell of the 
MD simulations. But increasing the MD simulation scale to match the pore size in experiments is infeasible due to 
high computational cost.

One possible solution is increasing the number of annealing cycles . In theory, the more annealing cycles the 𝑁cycles
material system experiences, the higher the possibility of graphene flakes encountering each other and forming 
bonds. Nevertheless, it is found that only increasing  shows a minimal effect on . As an example, 𝑁cycles 𝑁bond/atom
we calculate GA structures with , ,  and .  after these 𝑁flake = 200 𝑅 = 5.0 𝜎 = 15.0 Å 𝑁cycles = 10, 20, 50 𝑁bond/atom
annealing cycles are 1.384, 1.386, 1.389, respectively. The GA structure after 50 annealing cycles is not properly 
formed, and GA structures under the three cases are provided in the SI (Fig. S5). Another solution is to increase the 
annealing temperature . In theory, a higher temperature will lead to intensified atom movements, which will 𝑇A
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further increase the possibility of graphene flake encounters and therefore new bond formation. The dependency of 
 on  is shown in Fig. 5d, where GAs are constructed by the following set of parameters: , 𝑁bond/atom 𝑇A 𝑁flake = 400

, , , and . As  increases from 1000 K to 3000 K, 𝑅 = 3.0 𝜎 = 15.0 Å 𝑁cycles = 10 𝑇A = 1000, 2000, 3000, 4000 K 𝑇A
 after 10 annealing cycles increases from ~1.38 to ~1.40, a more significant improvement compared to 𝑁bond/atom

increasing . However,  at 4000 K is smaller than at 3000 K. This is because the high temperature 𝑁cycles 𝑁bond/atom
has caused some of the bonds to break and GA to begin to become thermally unstable (i.e., the inability to maintain 
the structure integrity and functionality at an elevated temperature), thus a smaller . An illustration of 𝑁bond/atom
such effect is provided in the SI (Fig. S9). This temperature agrees with the melting point of graphite which ranges 
from 4000 to 5000 K45 and that of freestanding graphene monolayers which ranges from 4000 K to 6000 K46. 
Therefore, the annealing temperature can be moderately increased to improve the structural integrity of GA 
structures.

Effect of flake size distribution
Another opportunity to improve the connectivity of GAs is to use a different flake size distribution than the log-
normal distribution, which has not been covered in the previous research. To examine whether larger graphene 
flakes will help improve the interconnection of graphene flakes, half-normal distributions (expressed in Eq. 4) are 
considered with the center set as the largest  value sampled by the log-normal distribution to bias towards larger 𝐿
graphene flakes. The  of the half normal distribution is a variable and  and  are used.  𝜎hn 𝜎hn = 3.0 Å 8.0 Å 𝜎hn = 3.0 Å
favors larger flakes more than . The probability densities of all distributions for the graphene flake size 𝜎hn = 8.0 Å
in this work are compared in Fig. 6a.

Figure 6. Mechanical properties of GA under different probability distributions of the graphene flake side length 
. (a) Probability densities of the log-normal distribution, and half-normal distributions with  and 𝐿 𝜎hn = 3.0 Å

. (b) Density , (c) tensile strength , (d) tensile failure strain , (e) tensile and (f) compressive moduli  8.0 Å 𝜌 𝜎u 𝜀u 𝐸t
and  of GA as a function of  under three  distributions.𝐸c 𝜎 𝐿

Next, , , , , and  of GAs originating from the three distributions are evaluated, as shown in Figs. 6(b-f). 𝜌 𝜎u 𝜀u 𝐸t 𝐸c
Results for log-normal distributions plotted here are the same as those in Fig. 2. To compare fairly, , 𝑁flake = 200 𝑅

 are also used for the two half-normal distribution cases. Fig. 6b shows that for , half-normal = 1.0 𝜎 < ~6.0 Å
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distributions produce higher ; for , three distributions do not distinguish. Similar trends can be observed 𝜌 𝜎 > ~6.0 Å
for tensile strength  and moduli  and , as shown in Figs. 6(c, e, f). However, for tensile failure strain , half-𝜎u 𝐸t 𝐸c 𝜀u
normal distributions are less sensitive to  compared with the log-normal distribution, as shown in Fig. 6d, 𝜎
suggesting that using larger graphene flakes may help reduce property randomness.

Next, the connectivity properties of GAs are studied under different flake size distributions.  as a function 𝑁bond/atom
of  under  and  are shown in Fig. 7. Results show that as graphene flakes get more dominated 𝑁cycle 𝜎 = 5.0 Å 11.0 Å
by larger ones,  increases. This suggests that using larger graphene flakes may help improve the structural 𝑁bond/atom
integrity of GAs.  Results of  are provided in the SI (Fig. S10). 𝜎 = 3.0, 7.0, 9.0, 13.0 Å

Figure 7. GA connectivity property under different distributions of graphene flake side length .  𝐿 𝑁bond/atom
versus  plots with (a)  and (b) .𝑁cycle 𝜎 = 5.0 Å 𝜎 = 11.0 Å

Comparison between simulations and experiments
Our simulation findings are compared with experimental results to showcase both the power and the limitation of 
the simulation modeling technique. The GAs were experimentally synthesized and characterized in our previous 
work47. The density of GA was tuned by loading with metal-organic framework (MOF) nanoparticles using 
chemical reduction method and supercritical drying. By adjusting the MOF/graphene oxide (GO) mass ratio of the 
precursors, MOF/GA composites of different densities were obtained. Fig. 8 shows experimental data for 
mechanical properties of GA including tensile strength , tensile failure strain , tensile and compressive moduli 𝜎u 𝜀u

 and  as a function of density . In comparison to the simulation results in Fig. 4, the general trends for strength 𝐸t 𝐸c 𝜌
and moduli are similar and matching. Specifically, ,  and  increase as  increases, as shown in Figs. 8(a, c, 𝜎u 𝐸t 𝐸c 𝜌
d). However, the experimental results for strain  shows the opposite trends to the simulations, and the values are 𝜀u
more than 10 times lower. This suggests that MD simulations cannot effectively capture the failure behavior of the 
GA, possibly due to the difference in microstructures and the defect properties. Images of GAs undergoing a 
catastrophic failure during tensile test are provided in the SI (Fig. S11). The comparison above between simulations 
and experiments indicates that MD simulations can overall capture the main trends of the mechanical properties of 
GA. The main limitation is that the density of the simulated GAs is much higher than our experimental GA samples, 
meaning that we cannot compare the values directly but only the trends. Additionally, it is worth noting that based 
on various synthesis recipes, the mechanical properties of synthesized GA samples vary substantially, making it 
very difficult to prepare ideal GA samples to compare with simulated GA structures.
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Figure 8. Experimental data of mechanical properties of GA as a function of density . (a) tensile strength , 𝜌 𝜎u
(b) tensile failure strain , (c) tensile and (d) compressive moduli  and  of GA as a function of .𝜀u 𝐸t 𝐸c 𝜌

Conclusions

In this study, to address the shortcomings of previous simulation work on GAs, we systematically study various 
mechanical properties and the structural integrity of GA as a function of a wide range of simulation parameters. 
Our contributions to the GA simulation research field are as follows. First, we cover many more parameters than 
previous studies. For example, the effects of both Lennard-Jones parameters  and  are discussed, while previous 𝜖 𝜎
studies only considered . Second, we additionally model the graphene size with parametrized half normal 𝜎
distributions on top of the previous log-normal distribution. Third, thanks to the supercomputer resources, we 
simulate larger material systems up to 1,500 graphene flakes in comparison with the literature22, 41-43, and illustrate 
the size effect on the GA properties. Lastly, we quantify the structural integrity and connectivity quality of GA 
structures, which has not been previously discussed in the literature. Results show that smaller and less inclusions 
during the in silico GA preparation are conducive to strength and stiffness but may lead to brittleness. It is also 
observed that simulating larger material systems reduces the randomness in property calculations. For the structural 
integrity aspect, it is shown that overly large or overly many inclusions may lead to disconnected GA structures, 
and that moderately increasing the annealing temperature helps alleviate this issue. Different distributions of 
graphene flake size are also studied, and larger flakes may improve the structural integrity and reduce the property 
randomness. In our simulations, the lowest density achieved is still about 10 times higher than the experimental 
value. We attribute this to the difference in the pore size between the simulation and the experiment, and bridging 
or narrowing the gap requires building larger-scale simulation models. Finally, our findings are compared with 
experimental results to showcase both the power and the limitation of the simulation technique. It is shown that the 
general trends for strength and moduli are similar while the trend for failure strain is different, possibly due to 
difference in microstructures and the defect properties. This work may deepen the understanding of GA simulations, 
accelerate materials design cycles, offer value to experimentalists in materials synthesis, and shed light on the 
improvement of computational approaches for GA as well as other novel nanomaterials.

Methods

In this study, MD simulations are performed using the open-source program LAMMPS (Large-scale 
Atomic/Molecular Massively Parallel Simulator)48. The full atomic description is used. The total system energy is 
given by
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𝐸total = 𝐸C ― C + 𝐸C ― inc + 𝐸inc ― inc (5)

where , , and  denote the total energies of interactions between carbon atoms, between carbon 𝐸C ― C 𝐸C ― inc 𝐸inc ― inc
atoms and inclusions, and between inclusions, respectively.  is modeled by an Adaptive Intermolecular 𝐸C ― C
Reactive Empirical Bond-Order (AIREBO) potential49, including short-ranged, long-ranged, and torsional terms, 
given by

𝐸C ― C = 𝐸REBO + 𝐸LJ + 𝐸tors (6)

where , , and  are energy components corresponding to the REBO (short-ranged), Lennard-Jones 𝐸REBO 𝐸LJ 𝐸tors

(long-ranged), and torsional potentials.  and  are modeled by the standard 12/6 Lennard-Jones 𝐸C ― inc 𝐸inc ― inc
potential, expressed as 

𝐸C ― inc = 𝐸inc ― inc = ∑
𝑖
∑
𝑗 > 𝑖

4𝜖[( 𝜎
𝑟𝑖𝑗)

12

― ( 𝜎
𝑟𝑖𝑗)

6]Ξ (7)

where  is the distance between particle  and particle ;  is the depth of the potential well, which relates to the 𝑟𝑖𝑗 𝑖 𝑗 𝜖
stiffness of the inclusion;  is the distance at which the particle-particle potential energy is zero;  is the cutoff 𝜎 Ξ
function:  for , and   for , where  is the cutoff distance. In this work, 22;  Ξ = 1 𝑟𝑖𝑗 < 𝑟c Ξ = 0 𝑟𝑖𝑗 ≥ 𝑟c 𝑟c 𝜀 = 0.625 eV
For ,  is used. For ,  is used. We demonstrate in the SI (Fig. S12) 𝜎 < 15.0 Å 𝑟c = 𝜎 + 3.0 Å 𝜎 = 15.0 Å 𝑟c = 21.0 Å
that larger  values with an increased computational cost do not significantly change the results. The mass of each 𝑟c
spherical inclusion is set as 1 g/mol. A timestep of 1 fs is used. All carbon atoms and inclusions are initiated with a 
random velocity corresponding to a temperature of 300 K. The stress tensor is calculated by the following expression

𝑆𝛼𝛽 =
1
𝑉[∑

𝑖
∑
𝑗 > 𝑖

(𝑥(𝑖)
𝛼 ― 𝑥(𝑗)

𝛼 )
∂𝐸total

∂(𝑥(𝑖)
𝛽 ― 𝑥(𝑗)

𝛽 ) ― ∑
𝑖

𝑚𝑥(𝑖)
𝛼 𝑥(𝑖)

𝛽 ] (8)

where  and  take on ,  or  to generate the 6 components of the symmetric stress tensor;  and  are atom 𝛼 𝛽 𝑥 𝑦 𝑧 𝑖 𝑗
indices;  is the mass of one carbon atom;  is the volume of the simulation box. 𝑚 𝑉
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