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A Maxwell relation for a reaction rate constant (or other dynamical timescale) obtained under
constant pressure, p, and temperature, T , is introduced and discussed. Examination of this rela-
tionship in the context of fluctuation theory provides insight into the p and T dependence of the
timescale and the underlying molecular origins. This Maxwell relation motivates a suggestion for
the general form of the timescale as a function of pressure and temperature. This is illustrated by
accurately fitting simulation results and existing experimental data on the self-diffusion coefficient
and shear viscosity of liquid water. A key advantage of this approach is that each fitting parameter
is physically meaningful.

1 Introduction
Practically every undergraduate physical chemistry student learns
about the Maxwell relations that provide important connections
between thermodynamic variables.1 These relationships arise
naturally from the fact that thermodynamic functions such as en-
thalpy and free energy are state functions. Further, they are used
to provide a deeper understanding of the properties of chemical
systems, e.g., how entropy changes with volume at constant tem-
perature.1

In examining chemical dynamics, one often faces the same is-
sue that motivates the Maxwell relations: How does a property
change with the independent thermodynamic variables like pres-
sure (p) and temperature (T )? The difference is that the fun-
damental quantities of interest are dynamical, e.g., reaction rate
constants, timescales, or transport coefficients. Indeed, the tem-
perature dependence of a reaction rate constant, expressed as the
activation energy, is a central feature of reaction rate theory.2–4

Similarly, while significantly less attention has been paid to it,
the activation volume characterizes the change of a rate constant
with pressure.5,6

In the Arrhenius perspective, the activation energy is as-
sumed to be constant and provides insight into the magnitude
of the (fixed) underlying energetic barrier of the process.1,4

However, for some processes non-Arrhenius behavior is quanti-
tatively and qualitatively important. The dynamics of liquid wa-
ter is one such case, where temperature-dependent activation en-
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ergies have been observed for diffusion,7–11,11–16 reorientation
dynamics,12,14,16,17 and viscosity;14,18–21 these processes have
a common underlying barrier associated with the exchange of
hydrogen-bond (H-bond) acceptors,22 which itself exhibits non-
Arrhenius behavior that are largely attributed to changes in the
H-bond network. Other cases are enzymatic reactions23 and re-
actions in which quantum mechanical tunneling represents a sig-
nificant contribution (typically at lower temperatures).24

The effect of pressure on dynamical processes is typically much
more modest than that of temperature and can often only be re-
solved by varying p by tens or hundreds of MPa.25–29 In many
cases, this behavior is Arrhenius-like, i.e., the activation volume
is constant with pressure. Then, the activation volume can be
obtained from an Arrhenius analysis based on measurement or
simulation of the rate constant, or other dynamical timescale, at
a few (widely different) pressures. In other systems, however,
the activation volume can change significantly, even in the sign,
as the pressure is varied. Because the activation volume repre-
sents the relative space taken up by the transition state configu-
ration compared to that of the reactants, this suggests a change
in the mechanistic details. Note that the “volume" difference here
applies to the entire system, including any arrangements of the
solvent, whether it is innocent in the reaction or not.30

In cases where the activation energy is not constant with ther-
modynamic conditions, a full understanding of the dynamics re-
quires a description of how the energy required to carry out the
process of interest changes with the temperature and pressure.
The same is certainly true of the activation volume. In this Pa-
per we explore this issue theoretically, in the context of an ef-
fective Maxwell relation for dynamical timescales. Based on this
relation, we propose a method for global fitting of a dynamical
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timescale based on these ideas that is parameterized only by phys-
ically meaningful quantities and demonstrate it by analysis of the
extensive existing experimental data for the water diffusion co-
efficient and shear viscosity as well as simulation results for the
former.

2 Theory
2.1 Maxwell Relation for a Dynamical Variable
In the isothermal-isobaric (N pT ) ensemble, we can consider a
generic rate constant, transport coefficient, or (inverse) timescale
– which we will denote as k – as a function of the independent
thermodynamic variables, for fixed N, such that its total differen-
tial is given by

dk =
(

∂k
∂T

)
p,N

dT +

(
∂k
∂ p

)
T,N

d p. (1)

It will be convenient to consider lnk rather than the rate constant
itself and to use β = 1/kBT instead of T as an independent vari-
able (where kB is Boltzmann’s constant). Then, we have

d(lnk) =
(

∂ lnk
∂β

)
p

dβ +

(
∂ lnk
∂ p

)
β

d p, (2)

as the total differential of interest.
The partial derivatives appearing in eqn (2) can be identified

as physically meaningful, measurable quantities in reaction rate
theory (and in the theory of transport coefficients). Namely, the
activation energy, Ea, is given by the first derivative with respect
to β : (

∂ lnk
∂β

)
p
=−Ea, (3)

i.e., a measure of the temperature dependence of k. Similarly,(
∂ lnk
∂ p

)
β

=−β∆V ‡, (4)

gives the activation volume, ∆V ‡, reflecting how k is influenced
by pressure. Thus, the total differential of k, can be written as

d(lnk) =−Eadβ −β∆V ‡d p, (5)

which suggests that we can think of β and p as natural variables
of the rate constant (or transport coefficient).

We can then proceed in complete analogy to the derivation of a
thermodynamic Maxwell relation, by noting that the rate constant
k is a state function and thus,(

∂ 2 lnk
∂ p∂β

)
=

(
∂ 2 lnk
∂β∂ p

)
. (6)

Evaluating these cross-derivatives yields the Maxwell relation(
∂Ea

∂ p

)
β

= ∆V ‡ +β

(
∂∆V ‡

∂β

)
p
. (7)

This equation demonstrates the relationship between the pres-
sure dependence of the activation energy to the temperature de-
pendence of the activation volume. Because the meaning of k is
general, this equation should hold for rate constants, transport

coefficients, and other dynamical timescales. Such Maxwell re-
lationships for dynamical activation barriers have not been much
explored, but, as we discuss here, they can prove useful and im-
portant. We note that previously Kelm and Palmer argued that
an analogous Maxwell relation should exist for the activation en-
thalpy and volume defined with transition state theory,31 and
Brauer and Kelm verified, through measurements on the Men-
shutkin reaction, the validity of the relation.32 In the following,
we examine the underpinnings of this Maxwell relation.

2.2 Fluctuation Theory and the Maxwell Relation

It is instructive to examine how the Maxwell relation in eqn (7)
arises naturally within fluctuation theory. We can consider an
ensemble of N pT trajectories, each with a different (fixed) energy
and volume, such that the rate constant is given by

k = 〈ki〉=
1

Ω(N, p,T )
Tr
[
e−β (Ui+pVi)ki

]
, (8)

where Ui and Vi are the fixed internal energy and volume of
the ith trajectory and Tr indicates a sum over all the trajecto-
ries, Ω(N, p,T ) = Tr[e−β (Ui+pVi)] is the isothermal-isobaric parti-
tion function, and thus 〈· · · 〉, indicates an ensemble average. Note
that ki is itself an average over the ith constant energy and volume
trajectory, typically a time correlation function, e.g., for a reaction
rate constant limt→long〈Fs(0)θ [s(t)]〉i where Fs is the flux across
the transition state dividing surface defined by s = 0 and θ is the
Heaviside step function. Recall, however, that k can also be a
transport coefficient or other dynamical quantity, which are also
expressible as averaged time correlation functions.

We have earlier shown33–35 that the derivatives of eqn (8) with
respect to the independent thermodynamic variables can be ex-
pressed in terms of fluctuations. Namely, it is straightforward to
show that

∂k
∂β

=−〈[δUi + pδVi]ki〉, (9)

where δUi = Ui−〈Ui〉 and δVi = Vi−〈Vi〉 are the fluctuations in
energy and volume respectively of the ith trajectory from the av-
erage of all the (constant volume and energy) trajectories that are
prepared in the N pT ensemble. Similarly, the pressure derivative
is given by

∂k
∂ p

=−β 〈δVi ki〉. (10)

Both of these quantities can be directly calculated from an ensem-
ble of isothermal-isobaric trajectories at a single temperature and
pressure;12,34,35 see Sec. 3.

The activation energy can be obtained by combining eqns (9)
and (3) to yield

Ea =
〈[δUi + pδVi]ki〉

〈ki〉
. (11)

This fluctuation theory result has a straightfoward and useful
physical interpretation. The activation energy is the correlation
of the enthalpy of the system, Hi =Ui+ pVi with the rate constant.
Thus, if, when the enthalpy is larger (smaller) than average the
process is faster (slower), Ea is positive. The greater the effect of
an enthalpy fluctuation on the rate constant, the larger the mag-
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nitude of the activation energy. This activation energy includes,
as one component, the activation volume. This can be seen by
using eqns (10) and (4), to find

∆V ‡ =
〈δVi ki〉
〈ki〉

. (12)

This is the first term on the right-hand-side (rhs) of the Maxwell
relation, eqn (7). It also has an analogous interpretation to the
activation energy in that it measures the effect of the volume on
the rate constant.

The remaining terms in the Maxwell relation are more chal-
lenging to interpret as they involve higher, cross derivatives.
However, the second term on the rhs of eqn (7) can be obtained
by taking the derivative of eqn (12) with respect to β . This gives

∂∆V ‡

∂β
=

1
〈ki〉

∂ 〈δVi ki〉
∂β

+∆V ‡ Ea. (13)

The derivative in the first term is more explicitly written as

∂ 〈δVi ki〉
∂β

=
∂

∂β

1
Ω(N, p,T )

Tr
[
e−β (Ui+pVi)δVi ki

]
, (14)

which involves three terms due to the temperature dependence
of Ω(N, p,T ), the Boltzmann factor, and the average volume ap-
pearing in δVi. Evaluating the derivative yields

∂ 〈δVi ki〉
∂β

= 〈Ui + pVi〉〈δVi ki〉−〈[Ui + pVi]δVi ki〉

− ∂ 〈Vi〉
∂β
〈ki〉

= −〈[δUi + pδVi]δVi ki〉−
∂ 〈Vi〉
∂β
〈ki〉. (15)

Thus, we find

β
∂∆V ‡

∂β
= −β

〈[δUi + pδVi]δVi ki〉
〈ki〉

− β
∂ 〈Vi〉
∂β

+β∆V ‡Ea, (16)

is the second term on the rhs of the Maxwell relation.
The left-hand-side (lhs) of eqn (7) can be derived in a com-

pletely analogous fashion. From eqns (11) and (10), we have

∂Ea

∂ p
=

1
〈ki〉

∂ 〈[δUi + pδVi]ki〉
∂ p

+Ea β ∆V ‡. (17)

The first term has three pressure-dependent quantities and pro-
ceeding as before, it is straightfoward to show that

∂Ea

∂ p
= −β

〈[δUi + pδVi]δVi ki〉
〈ki〉

+∆V ‡

+ β∆V ‡Ea−
∂ 〈Ui〉

∂ p
− p

∂ 〈Vi〉
∂ p

, (18)

represents the lhs of the Maxwell relation in eqn (7).
Comparing the fluctuation theory results for the lhs and rhs of

the Maxwell relation using eqns (18) and (16), it is clear that it

holds if
∂ 〈Ui〉

∂ p
+ p

∂ 〈Vi〉
∂ p

= β
∂ 〈Vi〉
∂β

. (19)

This equation does not involve any dynamical property and is
a purely thermodynamic relationship that involves the averages
present in the fluctuations. It is not hard to show that it is
equivalent to the connection, derived using a thermodynamic
Maxwell relation, between the pressure derivative of the enthalpy,
H = 〈Ui + pVi〉, and the temperature derivative of the volume(

∂H
∂ p

)
T
= T

(
dS
d p

)
T
+V = β

(
dV
dβ

)
p
+V, (20)

where S is the entropy.

Thus, we have evaluated the Maxwell relation for a dynamical
quantity, eqn (7), within the context of fluctuation theory. A key
result is that the central quantity is the second-order correlation
of the fluctuations,

−β
〈[δUi + pδVi]δVi ki〉

〈ki〉
, (21)

that describes both the pressure dependence of the activation en-
ergy and the temperature dependence of the activation volume.
This illustrates the microscopic origin of the Maxwell relation as
the cross-correlation of the enthalpy and volume fluctuations with
the dynamics. While not the focus of the present work, we have
previously shown how similar quantities can be calculated from
MD simulations, e.g., Ea, ∆V ‡, and ∂Ea/∂β ,12,36 and the same
should be true of eqn (21).

In Sec. 4 we consider this Maxwell relation in the context of liq-
uid water self-diffusion and viscosity. It is known that water diffu-
sion exhibits an interesting temperature dependence of ∆V ‡ (and
consequently pressure dependence of Ea)7–13,34,37–39 The gener-
ality of the equations shown above for a nominal rate constant
k are straightforwardly applied to the case of the water diffusion
coefficient and viscosity.

3 Computational Methods

We have calculated the water self-diffusion coefficient at a range
of temperatures and pressures using molecular dynamics simu-
lations of 343 TIP4P/200540 water molecules. The simulations
were carried out with the LAMMPS code.41 For each p and T a
10 ns N pT trajectory was propagated using a three-chain Nosé-
Hoover thermostat and barostat.42,43 A simulation timestep of
1 fs was used, and the thermostat and barostat damping parame-
ters were 100 fs and 1 ps, respectively. The molecules were held
rigid using the SHAKE algorithm with a 1.0× 10−4 tolerance pa-
rameter. The Particle-Particle-Particle-Mesh (PPPM) method44,45

was used to calculate long-range electrostatic interactions (toler-
ance parameter of 1.0× 10−4). Tail corrections were included to
achieve the correct density. From each simulation, 10,000 config-
urations, each separated by 1 ps, were used as starting points for
20 ps NV E trajectories. From each NV E trajectory, the mean-
squared-displacement, MSD(t) = 〈|~r(t)−~r(0)|2〉, was calculated
for t = 0 to 20 ps with multiple time origins separated by 1 ps,
the last 10 ps of which was fit to a line to compute Di = slopei/6.
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All uncertainties were calculated over 10 blocks (each of 1,000
trajectories) and represent a 95% confidence interval based on
the Student’s t-distribution.46

4 Results and Discussion

The Maxwell relation given in eqn (7) and its origins suggest
a way to describe the pressure and temperature dependence of
a dynamical quantity in a physically motivated way. Here, we
explore this approach for the particular case of the water self-
diffusion coefficient, D, and shear viscosity, η , but it is completely
general and could be equally well applied to reaction rate con-
stants or dynamical timescales, as long as they are measures of
activated processes.

4.1 Water Self-Diffusion

The water diffusion coefficient (like other dynamical properties of
liquid water) is well-known to be significantly non-Arrhenius.7–13

We can describe this behavior by a second-order Taylor series ex-
pansion in p and β about a set of reference values,

lnD(p,β ) = lnD(p0,β0)+
∂ lnD

∂β

∣∣∣∣
0
(β −β0)

+
∂ lnD

∂ p

∣∣∣∣
0
(p− p0)+

1
2

∂ 2 lnD
∂β 2

∣∣∣∣
0
(β −β0)

2

+
1
2

∂ 2 lnD
∂ p2

∣∣∣∣
0
(p− p0)

2

+
∂ 2 lnD
∂ p∂β

∣∣∣∣
0
(p− p0)(β −β0), (22)

where the subscript “0" on the derivatives indicates evaluation
at the reference point, p0 and β0. However, we can identify the
derivatives of lnD as the activation energy and volume so that this
can be written as,

ln
D(p,β )

D(p0,β0)
= −Ea,0∆β −β0∆V ‡

0 ∆p− 1
2

∂Ea

∂β

∣∣∣∣
0

∆β
2

− β0

2
∂∆V ‡

∂ p

∣∣∣∣
0

∆p2− ∂Ea

∂ p

∣∣∣∣
0

∆p∆β , (23)

with ∆β = β − β0 and ∆p = p− p0. Here, we have noted that,
in this explicitly non-Arrhenius description, the activation energy
and volume are functions of p and β so that Ea,0 and ∆V ‡

0 indicate
their values at p0 and β0. This approach follows and extends prior
work involving low-order expansions of the activation energy in
temperature47,48 and the activation volume in pressure.31 There
is some evidence, however, that at very high pressures a second-
order expansion may not suffice.49

Note that the Maxwell relation, eqn (7) can be used to express

0 50 100 150 200 250
p (MPa)

1

1.5

2

2.5

3

3.5

D
 (1

0-5
 c

m
2 /s

)

277.2 K

283.2 K

298.2 K

308.2 K

318.2 K

Fig. 1 Comparison of measured D(p,T ) (circles) from Woolf (Ref. 7)
compared to its fit (dashed lines) to eqn (24).

the last term in eqn (23), which, after some rearrangement, gives

ln
D(p,β )

D(p0,β0)
= −Ea,0∆β −β∆V ‡

0 ∆p

− 1
2

∂Ea

∂β

∣∣∣∣
0

∆β
2− β0

2
∂∆V ‡

∂ p

∣∣∣∣
0

∆p2

− β0
∂∆V ‡

∂β

∣∣∣∣
0

∆p∆β . (24)

Either of these two equivalent formulas, eqns (23) and (24), can
be used to fit experimental measurements of the diffusion coeffi-
cient as a function of temperature and pressure. A key advantage
of these expressions is that the fitting parameters represent physi-
cally meaningful properties: The activation energy, activation vol-
ume, and their first derivatives with respect to β and pressure,
which represent the clearest measures of non-Arrhenius behavior.

While we will show that this is an excellent description of the
diffusion coefficient over a wide pressure and temperature range,
it would not be expected to describe the behavior of deeply su-
percooled water, i.e., as the Widom line is approached.50,51 Al-
ternative formulations of D(p,β ) that explicitly incorporate the
two liquids behavior52 and the dynamical Maxwell relation are,
however, possible.

We can illustrate and test the global description of the pressure
and temperature dependence of the water diffusion coefficient by
using eqn (24), or its equivalent eqn (23), to fit existing mea-
surement data in the literature.7–11 We consider results from five
separate studies that have examined D(p,T ) for H2O using NMR
and diaphragm cell measurements over different ranges of pres-
sure and temperature.

We first consider the measurements by Woolf of THO diffusion
in H2O using the diaphragm cell method;7 note that these results
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Table 1 Summary of nonlinear least-squared fits of eqn (24) to experimental measurements of the water self-diffusion coefficient as a function of p
and T , 7–11 the present simulations, and direct fluctuation theory simulation results for TIP4P/2005 water. 36 Except for the direct calculations, each
quantity in the table, including D, is determined from the fit with ∂Ea/∂ p obtained from eqn (7). Values are for T0 = 298.15 K and p0 = 0.1 MPa for which
D = 2.299×10−5 cm2/s is the accepted experimental value. 13,53

Woolf7a Krynicki Harris Prielmeier TIP4P/2005 TIP4P/2005

Quantity et al.8 et al.9,10 et al.11b Fitc Directd Units

D 2.24 2.23 2.29 2.20 2.02 2.37±0.01 10−5 cm2/s

Ea 17.96 18.43 17.49 17.13 17.00 17.15±0.21 kJ/mol

∆V ‡ -1.32 -0.14 -1.09 -2.25 -1.21 −1.19±0.13 cm3/mol
∂Ea
∂β

90.65 36.16 63.39 111.93 48.26 (kJ/mol)2

∂∆V ‡

∂ p 1.18 0.83 1.01 1.82 0.69 10−2 cm3/(mol MPa)
∂Ea
∂ p -9.43 -5.53 -5.02 -9.19 -9.75 cm3/mol

β
∂∆V ‡

∂β
-8.12 -5.39 -3.93 -6.94 -8.54 cm3/mol

RMSE 0.018 0.25 0.030 0.018 0.017 10−5 cm2/s

χ2 1.07 0.60e 1.14 f 0.88g 1.86h

Avg. Fit Error 0.69 2.30 0.89 2.10 0.61 %

Max. Fit Error 2.37 7.42 3.44 6.75 3.41 %
aResults are for THO in H2O.

bOnly results for T ≥ 252 K were considered.
cThese simulation results do not include corrections for finite-size effects,54,55 which would give a larger value of D = 2.36×10−5 cm2/s
at 298.15 K and 0.1 MPa.36

dDirect calculations at 298.15 K and 0.1 MPa using fluctuation theory.36

eAssumes 5% error for all data points.8

f Assumes 1% error for all data points.56

gAssumes 3% error for all data points.11

hErrors used in calculation of χ2 are 95% confidence intervals.

may exhibit some isotope effect compared to neat water. Temper-
atures from 277 to 318 K and pressures from 0.1 to ∼ 240 MPa
were considered and the results are shown in Fig. 1 and com-
pared to the fit to eqn (24). The resulting fitting parameters are
given in Table 1 and will be discussed below; note that six of
the parameters are unique while ∂Ea/∂ p and β (∂∆V ‡/∂β ) are
related through eqn (7). Woolf fit the diffusion data to an eight-
parameter expression that has the characteristics of a polynomial
in 1/T and obtained a root-mean-squared error (RMSE) from the
data of 0.014× 10−5 cm2/s. The present fitting approach gives a
comparable RMSE of 0.018×10−5 cm2/s with two fewer parame-
ters. Overall, Fig. 1 shows that eqn (24) does an excellent job of
describing the experimental data with an even representation of
the data at all p and T .

One of the largest data sets for water diffusion was provided by
Krynicki et al. based on proton spin echo NMR measurements.8

These data extend from 0.1 to 170 MPa and 275 to 498 K and are
plotted in Fig. 2 where they are compared to their fit to eqn (24).
In this case, the fit is not as good as that in Fig. 1, with the most
marked deviations occurring in the 298.2 and 472.2 K isotherms.
In particular, the fit underestimates D at room temperature for
all pressures and also at 323.2 K for pressures above ∼ 40 MPa.
At 472.2 K the fit underestimates the rate of decrease of D with
increasing pressure. There is reason to believe that the data of

Krynicki et al. suffers from issues associated with the method of
calibration used (see, e.g., Ref. 10) that may make it less reliable
than the other experimental studies considered here. We note
that, in particular, the activation volume and its pressure deriva-
tive are lower than that obtained from the other data sets. Set-
ting these deficiencies aside, however, the fit agreement is good
for most of the temperatures and pressures explored; the average
absolute error is 2.3%, on the same order of the error estimates
of the measurements of 1.5-4%. Krynicki et al. fit their data with
an empirical, six-parameter formula that appears to have compa-
rable accuracy to the present fit.

Harris and Woolf reported measurements of D for 277-333 K
and for pressures up to 300 MPa.9 Using the same instrument,
Harris and Newitt measured the diffusion coefficient at T be-
low room temperature extending to pressures around 350 MPa.10

Given their common origin, we have combined these data into a
single set for fitting. It is worth noting that they observed some
significant differences with the measurements of Krynicki et al.,8

the primary one being that the latter observed the maximum in D
with increasing p at lower pressures than Harris and Woolf (see
Fig. 2 of Ref. 9). The data from Refs. 9 and 10 are presented in
Fig. 3 and compared to the result of fitting to eqn (24). The fit
is in excellent agreement with the measured D across the range
of pressures and temperatures, even down to the lowest temper-
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Fig. 2 Comparison of measured D(p,T ) (circles) from Krynicki, Green,
and Sawyer (Ref. 8) compared to its fit (dashed lines) to eqn (24) at high
(top panel) and low (bottom panel) temperatures.
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Fig. 3 Comparison of measured D(p,T ) (circles) from the Harris and
Woolf (Ref. 9) and Harris and Newitt (Ref. 10) compared to the fit of the
combined data sets (dashed lines) to eqn (24) at high (top panel) and low
(bottom panel) temperatures. (Note the single point at 252 K is grouped
with the data at 253 K to show its fit.)
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Fig. 4 Comparison of measured D(p,T ) (circles) from Prielmeier et al.
(Ref. 11) compared to its proposed fit (dashed lines) to eqn (24).

ature of 252 K, with an average absolute error of < 1% and a
maximum error of < 3.5%. Harris and Woolf fit their data with
the same eight-parameter empirical function used in Ref. 7 and
obtained a RMSE of 0.016× 10−5 cm2/s, essentially of the same
quality as we find if we fit that data alone.

Next, we turn to the fitting of the results of Prielmeier et al.,11

who measured the diffusion coefficient for deeply supercooled
water down to 203.5 K. We find that the fit quality is very good
for the data where T ≥ 252 K (see Table 1), but begins to degrade
when data below 252 K are included. For the higher tempera-
tures, we obtain a similar or smaller RMSE to the other three
data sets with an average fit error of 2.10%.

It is important to note that the expansion in eqn (23) or (24)
is based on an assumption of a relatively smooth variation of D
with pressure and temperature. It is thus not expected that it
would accurately describe the dramatic slowdown in the diffusion
coefficient upon lowering the temperature toward the Widom
line that lies at or below ∼ 230 K.50–52 It is therefore all the
more encouraging that the approach works satisfactorily down
to such low T for the data sets from Refs. 9 - 11. The behav-
ior of water in the deeply supercooled regime that lies at even
lower T has been a subject of intense interest with considerable
evidence supporting a smooth, “two liquids," transition from a
high-density liquid (HDL) to a low-density liquid (LDL) at the
Widom line (the extension of the liquid-liquid coexistence curve
beyond its terminal critical point57,58).17,50–52,59 We anticipate
that the fitting approach described here, which does not account
for this effect, will not be adequate at significantly lower tem-
peratures, and this indeed appears to be the case when consid-
ering the data of Prielmeier et al..11 However, the two-liquids
perspective points to a natural extension,12,17,51,59 where one
writes D(p,T ) = s(p,T ) lnDLDL(p,T ) + [1− s(p,T )] lnDHDL(p,T )

with DLDL and DHDL described analogously to eqn (24); here,
s(T ) is a switching function that goes smoothly from zero at low
T to one at high T . This is an interesting avenue for future inves-
tigations.

We now turn to an examination of the results of the fitting,
namely, the optimized parameters obtained for each data set that
are provided in Table 1. All the fits naturally give values of
D(0.1 MPa, 298.15 K) that are the same or close to the actual
measured value. More interesting is the activation energy, for
which values between 17.13-18.43 kJ/mol are obtained. These
are close to the values of Ea = 18.28 and 18.11 kJ/mol found di-
rectly by Arrhenius analyses in Refs. 7 and 8, respectively. The
results are also in good agreement with recent simulations using
the TIP4P/2005 model36 that are also provided in Table 1. There
is considerably greater spread in the values obtained for the acti-
vation volume. All of the fits give ∆V ‡ < 0, as do simulations,36

but with magnitudes that vary from -0.14 to -2.25 cm3/mol.

The other fitting parameters represent higher derivatives of the
diffusion coefficient with respect to β and p. The non-Arrhenius
behavior is most directly expressed in ∂Ea/∂β , which has values
of 36.16 to 111.93 (kJ/mol)2 at 298.15 K and 0.1 MPa based on
the fitting. We note that this quantity can be written as

∂Ea

∂β
= E2

a −
1
D

∂ 2D
∂β 2 , (25)

which indicates that it is determined by the cancellation of two
opposing terms that are both significant in magnitude. However,
the fits to experimental data clearly indicate that ∂Ea/∂β is posi-
tive and the average of all the results is 75.53 (kJ/mol)2.

The situation is a bit clearer for the pressure dependence of
the activation volume. This dependence is weak and found to be
(0.83 – 1.82) ×10−2 cm3/(mol MPa). Note that this derivative
and the value of ∆V ‡(p0,β0) indicate that the activation volume
changes in sign as the pressure is increased, but this requires an
increase of the pressure by ∼ 100 MPa.

Finally, the key elements of the Maxwell relation, eqn (7), are
also obtained from the fitting. Namely, ∂Ea/∂ p is negative with
values of −5.02 to −9.43 cm3/mol. This is related to β (∂∆V ‡/∂β )

by ∆V ‡, the former of which is thus also negative with values of
−3.93 to −8.12 cm3/mol.

Taken as a whole, differences between the experimental data
sets prevent a precise determination of the pressure and temper-
ature dependencies of D(p,T ). However, the results do present a
consistent semi-quantitative physical picture. The diffusion coef-
ficient and activation energy are quite well determined and in
agreement across the different measurements. Greater uncer-
tainty exists in the activation volume and the higher derivatives,
but all the data sets agree on the sign of each property. Moreover,
the fitting approach illustrates how these fundamental properties
of the diffusion coefficient can be determined given sufficiently
extensive and accurate measurements.

Lastly, we consider the results of the MD simulations described
in Sec. 3. The calculated D(p,T ) are shown in Fig. 5 along with
the present fit using eqn (24). We note that the fitting is carried
out to values of D that do not include a correction for the finite
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size of the simulation box based on the viscosity.54,55 This correc-
tion would certainly modify D but should have only a minor effect
on the activation energy and volume.60 Thus, we expect that us-
ing the uncorrected diffusion coefficients will have only modest
effects on the thermodynamic properties derived from the fitting.

The fit, the parameters for which are given in Table 1, accu-
rately describes the simulation data with average and maximum
fit errors comparable to those found for the experimental data
sets. The simulation data fitting gives values for the diffusion
coefficient, activation energy, and activation volume that are con-
sistent with our earlier calculations in which the latter two are
determined directly from simulations at 298.15 K and 0.1 MPa.36

Further, they are in accord with the results from the experimen-
tal data. The values of ∂Ea/∂β and ∂∆V ‡/∂ p are also within
(or close to) the range of experimental results. However, the
cross-derivative in β and p, i.e., ∂Ea/∂ p or ∂∆V ‡/∂β , is larger
in magnitude (more negative) than that obtained from any of the
experimental data sets. It does have the same sign, indicating
that the TIP4P/2005 water simulation results are consistent with
the qualitative thermodynamic properties of the idealized transi-
tion state for diffusion as derived from the experimental measure-
ments. However, the model clearly exhibits an activation energy
(volume) that is too sensitive to pressure (temperature).

4.2 Interpretation
A century ago Tolman introduced an alternative, rigorous inter-
pretation of the activation energy.4,61 The essence of the ap-
proach can be simply illustrated by consideration of the cumu-
lative reaction probability, N (E,V ), which is the total probability
of reaction at a given total energy E and total volume V .62 The re-
action rate constant at constant pressure and temperature can be

obtained from this cumulative reaction probability by appropriate
averaging:35,63

k(p,T ) =
1

2π h̄Ωr(p,T )

∫
∞

0
dE
∫

∞

0
dV e−β (E+pV )N (E,V ), (26)

where Ωr(p,T ) is the isothermal-isobaric ensemble partition func-
tion of the reactants. It is then straightforward to show that the
activation energy, eqn (3), is given by

Ea =

∫
∞

0 dE
∫

∞

0 dV e−β (E+pV )(E + pV )N (E,V )∫
∞

0 dE
∫

∞

0 dV e−β (E+pV )N (E,V )

+
1

Ωr

∂Ωr

∂β
. (27)

The second term is just equal to the negative of the average re-
actant enthalpy, −〈H 〉r, while the first term can be simplified by
defining the normalized probability of reacting at a given E and
V ,

Preacting(E,V ) =
e−β (E+pV )N (E,V )∫

∞

0 dE
∫

∞

0 dV e−β (E+pV )N (E,V )
. (28)

Then, the activation energy can be written in an intuitive form as

Ea = 〈H 〉reacting−〈H 〉r, (29)

where

〈H 〉reacting =
∫

∞

0
dE
∫

∞

0
dVe−β (E+pV )

× (E + pV )Preacting(E,V ). (30)

eqn (29) is the isothermal-isobaric ensemble version of Tolman’s
result,4 which provides the important interpretation of the activa-
tion energy as the average enthalpy of all reacting species minus
the average enthalpy of all reactants. This is an alternative to
the typical meaning ascribed to Ea as the (approximate) barrier
that must be overcome by reactants to react, replacing it instead
with the additional energy reacting species have (above the av-
erage energy of the reactants) that allows them to overcome the
barrier. Note that the latter interpretation enables a rigorous de-
composition of the activation energy into different kinetic and
potential energy contributions (that help or hinder passage from
reactants to products), while the standard barrier interpretation
does not.35,36,64–67

A completely analogous approach can be used to show that the
activation volume in eqn (4) is given by

∆V ‡ = 〈V 〉reacting−〈V 〉r, (31)

where

〈V 〉reacting =
∫

∞

0
dE
∫

∞

0
dVe−β (E+pV )V Preacting(E,V ). (32)

This provides the Tolman interpretation to the activation volume
as the difference in average volume of reacting species minus the
average volume of reactants. Note that these volumes include not
only the reacting molecules, but any solvent or other species that
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rearrange as part of the reaction.30 In the case of water diffu-
sion, the activation volume can be positive or negative depend-
ing on the pressure and temperature, but is negative at 298.15 K
and 0.1 MPa (Table 1), indicating that 〈V 〉reacting < 〈V 〉r, i.e., the
effective transition state for diffusion is more compact than the
reactants at ambient conditions.

A key feature of the relationships in eqn (29) and (31) is that
the averages over reacting species, 〈H 〉reacting and 〈V 〉reacting, in-
clude all the effects of transition state recrossing and require no
explicit definition of a transition state dividing surface. Instead,
they can be viewed as the thermodynamic properties of an ide-
alized transition state dividing surface that exhibits no recross-
ing.68 In addition to the obvious advantages this provides, it
makes the interpretation readily applicable to timescales that are
not obtained directly from rate constants, e.g., diffusion coeffi-
cients (vide infra), reorientation times, and viscosity.

For the present purposes, eqn (29) provides a simple interpre-
tation of the derivatives of the activation energy itself. Namely, it
is easy to see that non-Arrhenius effects are encapsulated in

∂Ea

∂β
=−kBT 2 [Cp,reacting−Cp,r

]
, (33)

where Cp,reacting = ∂ 〈H 〉reacting/∂β and Cp,r = ∂ 〈H 〉r/∂β are the
constant pressure heat capacities of all species that react and all
reactants, respectively. This interpretation of non-Arrhenius be-
havior that can be derived from Tolman’s perspective has been
previously recognized.23 The results for water diffusion given in
Table 1 show that for all the measured data sets, (∂Ea/∂β ) > 0,
which means that Cp,r > Cp,reacting. A molecular-level explana-
tion of this result is currently lacking, but should be an important
component of detailed models of water diffusion.

Similarly, the change in activation volume with pressure is
given a straightforward interpretation from eqn (31) as

∂∆V ‡

∂ p
=

∂ 〈V 〉reacting

∂ p
− ∂ 〈V 〉r

∂ p
. (34)

However, these properties are related to the corresponding
isothermal compressibilities, e.g.,

κT,reacting =−
1

〈V 〉reacting

∂ 〈V 〉reacting

∂ p
, (35)

for species that successfully react. This gives the derivative of the
activation volume with respect to pressure in terms of the differ-
ence in isothermal compressibility of reacting species relative to
reactants,

∂∆V ‡

∂ p
=−

[
〈V 〉reactingκT,reacting−〈V 〉rκT,r

]
, (36)

in analogy to eqn (33). For water diffusion, we find that
(∂∆V ‡/∂ p) is relatively small; large pressure increases are
required to change the activation volume. This derivative
is also positive at ambient conditions, indicating 〈V 〉rκT,r >

〈V 〉reactingκT,reacting, however, because 〈V 〉r > 〈V 〉reacting, it is not
possible to draw an umambiguous conclusion about the relative
magnitudes of κT,r and κT,reacting.

The pressure dependence of the activation energy and the tem-
perature dependence of the activation volume are connected by
the Maxwell relation in eqn (7), which is a dynamical analogy to
the Maxwell relation in eqn (20). Namely, we have from eqn (29),

∂Ea

∂ p
=

∂ 〈H 〉reacting

∂ p
− ∂ 〈H 〉r

∂ p
, (37)

but using eqn (19) we have,

∂ 〈H 〉reacting

∂ p
= 〈V 〉reacting +β

(
∂ 〈V 〉reacting

∂β

)
p
,

= 〈V 〉reacting−T
(

∂ 〈V 〉reacting

∂T

)
p
. (38)

The second term can be expressed in terms of the coefficient of
thermal expansion,

αreacting =
1

〈V 〉reacting

(
∂ 〈V 〉reacting

∂T

)
p
. (39)

This gives the β derivative of the activation volume, using
eqn (31), as

∂∆V ‡

∂β
=−kBT 2[〈V 〉reactingαreacting−〈V 〉rαr] (40)

and, the pressure derivative of the activation energy, using
eqn (29) as

∂Ea

∂ p
= ∆V ‡−T [〈V 〉reactingαreacting−〈V 〉rαr]. (41)

In this way, these derivatives are related to the difference in the
thermodynamic properties of the reacting and reactant species.
From Table 1 we see that β (∂∆V ‡/∂β ) < 0 at 298.15 K and
0.1 MPa, so that 〈V 〉reactingαreacting > 〈V 〉rαr. Given that 〈V 〉r >
〈V 〉reacting, we can conclude that αreacting > αr.

4.3 Water Shear Viscosity

It is interesting to compare the results obtained from fitting the
water self-diffusion coefficient to that for the water shear viscos-
ity, η . The two are naturally linked through the Stokes-Einstein
(SE) relation

D =
kBT

Cπrη
, (42)

where r is the hydrodynamic radius of the diffusing particle and
C is a constant that is 4 or 6 depending on the diffusion bound-
ary conditions (slip or stick, respectively). The observation and
explanation of deviations of water diffusion from SE behavior has
attracted significant attention.7,8,14,17,59,60 The SE relation also
implies that the diffusion and viscosity activation energies are re-
lated by

Ea,D = Ea,η + kBT, (43)

where Ea,η = −(∂ lnη−1/∂β ); this eliminates any uncertainty in
evaluating the SE relation that can arise from the choice of the
value of C. We have previously used direct calculations of diffu-
sion coefficient and viscosity activation energies to test SE behav-
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Table 2 Summary of nonlinear least-squared fits of eqn (24) to experimental measurements of the water shear viscosity, η , as a function of p and
T . 7,14,17,19–21,37,38 Values are for T0 = 298.15 K and p0 = 0.1 MPa.

Cappi7,37,38 Harris & Singh Jonas Abramson21

Quantity Woolf19,20 et al.17 et al.14 Units

η 0.896 0.910 0.908 0.865 0.767 mPa s

Ea,η 16.52 16.11 16.81 15.41 13.97 kJ/mol

∆V ‡
η -0.69 -1.19 -1.73 1.06 2.07 cm3/mol

∂Ea,η
∂β

70.49 71.11 86.92 55.69 78.37 (kJ/mol)2

∂∆V ‡
η

∂ p 1.10 1.15 1.73 0.14 0.0073 10−2 cm3/(mol MPa)
∂Ea,η

∂ p -10.72 -3.74 -10.19 -0.36 3.28 cm3/mol

β
∂∆V ‡

η

∂β
-10.03 -2.55 -8.46 -1.42 1.21 cm3/mol

RMSE 0.0 034 0.021 0.056 0.028 0.081 mPa s

χ2 0.31a 1.17a 1.01 1.22b 1.62c

Avg. Fit Error 0.25 0.92 1.45 1.94 3.85 %

Max. Fit Error 0.84 3.90 5.92 7.07 12.28 %
aAssumes 1% error for all data points.

bAssumes 2% error for all data points.
cAssumes 3% error for all data points.

ior through eqn (43).60

An extended comparison involving a fuller set of activation
parameters can be made through the fitting approach proposed
here, in which we write

ln
η−1(p,β )

η−1(p0,β0)
= −Ea,η ,0∆β −β∆V ‡

η ,0∆p

− 1
2

∂Ea,η

∂β

∣∣∣∣
0

∆β
2− β0

2
∂∆V ‡

η

∂ p

∣∣∣∣∣
0

∆p2

− β0
∂∆V ‡

η

∂β

∣∣∣∣∣
0

∆p∆β , (44)

in analogy to eqn (24) for the diffusion coefficient. We have ap-
plied this to five data sets from experimental measurements re-
ported in the literature and the parameters obtained from the
fitting are given in Table 2.

The five viscosity data sets can be roughly divided into
three7,17,19,20,37,38 obtained at pressures < 400 MPa and two in-
cluding measurements at substantially higher pressures.14,21 We
first consider the former group, the results for which are given in
the first three data columns of Table 2 and plotted in Figs. 6, 7,
and 8. The fits to eqn (44) are in excellent agreement with the
data in all three cases, with average errors of less than 1.5% and
maximum errors of < 6%. The largest deviations occur at low
temperatures.

The activation parameters from the three lower-pressure fits
are in excellent qualitative and reasonable quantitative agree-
ment. The activation energy at 298.15 K and 0.1 MPa is found
to be in the range 16.11−16.81 kJ/mol, in good agreement with
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Fig. 6 Comparison of measured η(p,T ) (circles) from Cappi (Refs. 7,37,
38) compared to its fit (dashed lines) to eqn (44).
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the value obtained by Woolf.7 These results are too high com-
pared to the Stokes-Einstein prediction, eqn (43), based on the
diffusion coefficient activation energies in Table 1, which would
give Ea,η = 14.65− 15.95 kJ/mol. This is consistent with our
previous comparison of the activation energies from MD simu-
lations, which found deviations from the Stokes-Einstein descrip-
tion for water diffusion.60 The remaining activation parameters
are in general agreement with those obtained for D given the
variations between the data sets. The viscosity activation vol-
ume is negative and on the same order as that for D (approxi-
mately −1 cm3/mol). Similarly, the temperature dependence of
the activation energy, ∂Ea,η/∂β is between 70−87 kJ/mol in ac-
cord with the diffusion results. Both D and η also have similar
pressure dependence of the activation volume, with ∂∆V ‡

η /∂ p on
the order of 1.1− 1.7× 10−2 cm3/(mol MPa). Finally, ∂Ea,η/∂ p
and ∂∆V ‡

η /∂β vary in magnitude between data sets for both D
and η , but are uniformly negative and of similar absolute values.
Overall, these similarities indicate the common process of the ex-
change of hydrogen-bond partners that underlies both diffusion
and viscosity,22,69 and point to the need for more precise and
detailed characterizations of the subtle mechanistic differences
between each property and the exchange rate constant.

The other two viscosity data sets, those of Jonas et al.14 and
Abramson,21 are concentrated on significantly higher pressures,
extending to ∼ 900 and nearly 5700 MPa, respectively. The fit
parameters using eqn (44) are given in Table 2 and the results
are plotted in Figs. 9 and 10. The fits are not as accurate as
for the lower pressure results in Figs. 6-8, but are in quite rea-
sonable agreement with the measured data across the range of p
and T , with average errors of less than 4%. However, the result-
ing activation parameters change significantly compared to the
lower pressure results. In particular, the activation energy is re-

0 100 200 300
p (MPa)

2

3

4

5

η 
(m

Pa
 s

)

244.3 K245.3 K

247.8 K

252.8 K

252.8 K

257.8 K

262.8 K

0 100 200 300
p (MPa)

1

1.5

2

η 
(m

Pa
 s

)

267.8 K

272.8 K

277.8 K

282.8 K

287.8 K

292.8 K

297.8 K
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17) compared to its fit (dashed lines) to eqn (44) at low (top panel) and
high (bottom panel) temperatures.
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duced and the activation volume becomes positive; both changes
appear to be correlated with the increase in pressures included
in the data set. Further, ∂∆V ‡

η /∂ p decreases substantially and
∂Ea,η/∂ p and ∂∆V ‡

η /∂β increase modestly. The non-Arrhenius
measure, ∂Ea,η/∂β is, however, largely unchanged. The results
indicate that, while the fitting approach represented in eqn (44),
is flexible enough to describe data sets over a wide range of p and
T , the activation parameters at a particular p0 and β0 are best ob-
tained from measurements (or simulations) that are focused on
nearby pressures and temperatures.

5 Conclusions
We have introduced a Maxwell relation for a reaction rate con-
stant, or other dynamical timescale, that is completely analogous
to the corresponding thermodynamic relationship. In particular,
this dynamical Maxwell relation connects the higher-order tem-
perature and pressure dependencies of the rate constant. Using
fluctuation theory we show how these are fundamentally related
to each other through the correlation of energy and volume fluc-
tuations with reactivity.

The Maxwell relation is used as the basis for proposing a
physically-motivated mathematical description of a rate constant
as a function of temperature and pressure. A key advantage of
such an approach is that the (six) fitting parameters are each
meaningful quantities, e.g., the activation energy, activation vol-
ume, and their derivatives with respect to pressure and tempera-
ture.

We have illustrated this description by using it to fit experimen-
tally measured values of the liquid water self-diffusion coefficient
and shear viscosity. The diffusion coefficients reported in several
NMR and diaphragm cell studies7–11 as well as simulation re-
sults for the TIP4P/2005 water model were first considered using
this Maxwell relation. Five experimental viscosity data sets were
also fit.7,14,17,19–21,37,38 The fits are highly accurate and, more
importantly, give quantitative insight into the activation param-
eters and their pressure and temperature dependence. Specifi-
cally, the experimental fits yield values at 298.15 K and 0.1 MPa
for the diffusion coefficient, (2.2− 2.29) ×10−5 cm2/s, and the
activation energy, 17.1− 18.4 kJ/mol, that are in good quantita-
tive agreement across the data sets considered. The quantita-
tive values of the other quantities vary more strongly between
the different measurements, but they are all in qualitative agree-
ment. Namely, the activation volume is negative, consistent with
the notion that increasing pressure from ambient conditions dis-
rupts the hydrogen-bonding network thereby accelerating water
diffusion. Non-Arrhenius effects are prominent, with the activa-
tion energy increasing as temperature is lowered. In contrast,
the activation energy decreases with increasing pressure, further
indicative of pressure-induced disruption of the water hydrogen-
bonding structure; this further requires, through the dynamical
Maxwell relation, that the activation volume decrease as the tem-
perature is lowered.

An interesting comparison of the viscosity and diffusion coef-
ficient activation parameters is provided by the fitting (limiting
ourselves to the lower pressure viscosity data). Notably, the vis-
cosity activation energies are higher than is predicted from the
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diffusion coefficient results assuming Stokes-Einstein behavior.60

Beyond this, however, the activation parameters are in reason-
able accord, within the variations in results between the data sets.
The activation volumes and their pressure dependence are quan-
titatively similar for D and η . Similarly, the activation energy
temperature and pressure dependences have the same sign and
magnitude for the viscosity and diffusion coefficient as well. In
this way, these fits provide useful insight into the similarities and
differences in the thermodynamic properties of the hypothetical
perfect transition states for water diffusion and shear viscosity.

These applications of the fitting approach illustrate how mea-
sured dynamical timescales as a function of pressure and temper-
ature can be described, and fit, in a physically meaningful way.
This should be a useful alternative method for fitting such exper-
imental data to the typical approaches based on empirical formu-
las. It also will provide closer connections to, and benchmarks
for, theoretical calculations by determining the values of activa-
tion parameters.
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