ChemComm

Perfluoroalkoxylation Reaction via Dual Concurrent Catalysis

Journal:	ChemComm	
Manuscript ID	CC-COM-05-2023-002485.R1	
Article Type:	Communication	

Perfluoroalkoxylation Reaction via Dual Concurrent Catalysis

methodology also provides high functional group compatibility and tolerance of sterically hindered substrates.

Shota Fujioka, a Keiichi Hirano, *a Naoyuki Hoshiya, b Akiyoshi Yamauchi, b Yosuke Kishikawa, b and

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

A catalytic amount of CsI enables dual concurrent activation of poorly reactive perfluoroalkoxide and alkyl halides, especially alkyl chlorides, leading to the formation of diverse perfluoroalkoxylated organic compounds. Installation of perfluoroalkoxy groups by this methodology is cost-effective, circumventing the need for over-stoichiometric cesium or silver salts. This

Introduction

Perfluoroalkylated compounds are important especially in materials science¹ and catalysis² due to the strongly electronwithdrawing character of the perfluoroalkyl (R_F) group. They have fascinating bulk properties, such as hydrophobic character leading to water repellency, high melting temperature, low electronic permittivity, and so on, arising from the interaction between $R_{\text{\tiny F}}$ chains, which can be explained in terms of the stratified dipole array model.³ Nevertheless, R_F groups are not widely utilized except for the minimum homologue, the CF₃ group,⁴ largely due to the lack of synthetic methods. Moreover, recent advances in perfluoroalkylation reactions,⁵ including our contributions,⁶ have mainly focused on direct linkage between an R_F group and a carbon atom, and compounds possessing a heteroatom between these structural elements are still quite inaccessible. In other words, there is no synthetic method offering low cost, wide substrate scope, and sufficient scalability for industrial application for such classes of compounds, even though the expected drastic differences in properties, for instance between R_F and R_FO groups, would be potentially useful for the design of novel functional materials and drugs. These differences are exemplified by a comparison between CF₃ and CF₃O groups: electronegativity χ (3.5 vs 3.7),⁷ inductive effect $\sigma_{\rm I}$ (0.39 vs 0.51), and lipophilicity Π (+0.88 vs +1.04).⁸ A seminal report by Sokolenko on aliphatic perfluoroalkoxylation described nucleophilic substitution of α -bromoacetophenone with R_FOCs derived from perfluoroalkanoyl fluoride and CsF (Scheme 1A).9 The successful C–O bond formation appears to be due to the use of Cs^+ to facilitate perfluoroalkoxide (R_FO^-) formation in the equilibrium.¹⁰ Friesen elegantly prepared a series of tetraalkylammonium perfluoroalkoxides by the reaction of R_FOCH₃ with trialkyl amines, and these organic salts

Masanobu Uchivama*a,c

react with benzylic bromides¹¹ and alkyl iodides¹² with the aid of cationic silver salt (Scheme 1B). Although these pioneering works have had a significant impact, several issues remain. Specifically, the need for over-stoichiometric use of expensive metal reagents means that these reactions would not be costeffective on an industrial scale,¹³ and the substrates used for the synthesis of more diverse R_F-ethers are poorly reactive.¹⁴ Here, we describe an efficient and user-friendly dual concurrent CsI-mediated catalytic activation¹⁵ of inexpensive but poorly reactive R_FOK and poorly electrophilic substrates. Our strategy of employing a single alkali metal salt to simultaneously activate both the poorly reactive nucleophile and the electrophile provides ready access to a wide range of perfluoroalkoxylated compounds (Scheme 1C).

^aGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, E-mail: uchiyama@mol.f.u-tokyo.ac.jp; k1hirano@mol.f.u-tokyo.ac.jp

^bTechnology Innovation Center, DAIKIN Industries, Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan

^cResearch Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 566-8585, Japan

^{*} Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

Journal Name

ARTICLE

Results and discussion

Initially, we examined the reaction between 4-bromobenzyl chloride (2a) and R_FOK derived from $C_5F_{11}COF$ (1) and KF, which is a very inexpensive fluoride source, in CH₃CN, but found that the desired perfluoroalkoxylated product 3a was not formed (entry 1, Table 1). Addition of a catalytic amount of KI to activate 2a promoted the reaction, albeit the yield was very low (entry 2). Solvation of K⁺ with glycol ethers is expected to favor the formation of R_FO^- species in the equilibrium, and the use of tetraglyme (TG) as a co-solvent increased the yield to 47% (entry 3). Nal and tetrabutylammonium iodide showed comparable reactivities to that in the case of KI (entries 4 and 5), whereas employment of CsI as a catalyst drastically improved the reaction efficiency (entry 6). It is noteworthy that RbI, an alkali metal iodide that is rarely used in organic synthesis, also showed similar activity to that of CsI (entry 7). The marked decrease of the yield of 3a when CsBr was used emphasizes the importance of the synchronous action of I⁻ and Cs⁺ in the catalysis (entry 8). The unique character of CsI was seen even more strikingly when 1 mol% catalyst was used; 3a was still obtained in 42% yield under slightly harsher conditions (entry 9), whereas KI afforded only 18% yield (entry 10).

With the optimized conditions in hand (entry 6, Table 1), we examined the substrate scope of benzylic halides (Table 2). The reaction progress was little affected by the substitution Table 2. Scope of Benzylic Substrates.^a

pattern of the aromatic ring, and R_F -ethers with the synthetically useful Br substituent **3a-3c** were obtained in good yields. Electron-rich substrates are particularly suitable for this etherification (**3d** and **3e**), and a gram-scale reaction successfully afforded **3d** in high yield. Electron-neutral benzyl

Table 1. Optimization of Reaction Conditions.				
0 F C ₅ F ₁₁ 1 (2 equiv) + KF (2 equiv)	$ \underbrace{F}_{KO} \underbrace{F}_{C_{5}F_{11}} $	Br 2a (1 equiv) Catalyst 45 °C, 24 h Br		
Entry	Cat. (mol%)	Solvent	Yield (%) ^a	
1	None	CH₃CN	0	
2	KI (20)	CH₃CN	7	
3	KI (20)	CH ₃ CN/TG (4:1)	47	
4	Nal (20)	CH ₃ CN/TG (4:1)	47	
5	Me ₄ NI (20)	CH ₃ CN/TG (4:1)	45	
6	Csl (20)	CH ₃ CN/TG (4:1)	76	
7	RbI (20)	CH ₃ CN/TG (4:1)	71	
8	CsBr (20)	CH ₃ CN/TG (4:1)	14	
9 ^b	Csl (1)	CH ₃ CN/TG (4:1)	42	
10 ^b	KI (1)	CH ₃ CN/TG (4:1)	18	

^{*a*} Determined by ¹H NMR using 1,4-bis(trifluoromethyl)benzene as an internal standard. ^{*b*}Run at 75 °C for 48 h. TG = tetraglyme.

^{*a*} Yields were determined by ¹H NMR using 1,4-bis(trifluoromethyl)benzene as an internal standard. Isolated yields are shown in parentheses. ^{*b*} Run with Rbl (20 mol%) in lieu of Csl. ^{*c*} Run on 5.0 mmol scale. ^{*d*} Run with C₅F₁₁COF (3 equiv), KF (3 equiv) at 75 °C. ^{*e*} Run with C₅F₁₁COF (4 equiv), and Csl (40 mol%). ^{*f*} The yield is approximate, because the NMR spectrum was complex due to the presence of the mono-substituted product and the starting material **2s**. ^{*g*} Amounts of all reagents were tripled except for Csl. Run with Csl (30 mol%) for 72 h.

chloride and a range of substrates with an electronwithdrawing substituent were well tolerated (**3f-3k**). Furthermore, sterically demanding substituents were not detrimental (**3l** and **3m**), and even secondary benzylic chlorides were available with this dual concurrent catalytic system (**3n** and **3o**). Both electron-deficient and electron-rich heteroaromatics were tolerated (**3p-3r**), and the 1*H*benzo[*d*][1,2,3]triazolylated R_F-ether **3s** was also obtained in high yield. This methodology enables the formation of multiply perfluoroalkoxylated compounds by simply doubling or tripling the amounts of **1** and KF (**3t** and **3u**). It is worth noting that RbI also serves as an alternative catalyst to CsI for the formation of diverse benzylic R_F-ethers (**3b**, **3c**, **3g-3k**, **3n** and **3u**).

This protocol is not limited to benzylic chlorides, and diverse substrates are available (Table 3). Cinnamyl, geranyl, and farnesyl chlorides gave the corresponding products **5a-5c** in high yields. A substituent at the internal carbon of the C–C double bond of the allylic system slightly retarded the reaction, probably due to steric hindrance (**5d**). This catalytic system even promotes the reaction using the secondary allylic

Table 3. Additional Scope.^a F C₆F₁ CI 4 (1 equiv) 1 (2 equiv) Csl (20 mol%) C.F. CH₃CN/TG (4:1) KO C.F.I 45 °C, 24 h KF rt, 30 min 5 (2 equiv) ALLYLIC AND PROPARGYLIC Me Me F C5F11 5a: 84% (74%) 5b: 84%^b (76%) 5c: 78%b (61%) C5F11 5d: 44% (37%) 5e: 13% 5f: 58%d (53%) 36% (34%) OMe ò C-F C.F.I. 5g: 18%b (17%) 5h: 58% e (49%) 5i: 41% e (27%) TIVATED ALKYL F. F C.F.1 0 5k: 44%f (39%) 44%^{c,f} (37%) 51: 51%f (43%) 5i: 58%b (26%) 82%^{f,g} (73%) 5m: 47%f (44%) 5n: 41%f (38%)

^{*a*} Yields were determined by ¹H NMR using 1,4-bis(trifluoromethyl)benzene as an internal standard. Isolated yields are shown in parentheses. ^{*b*} Run in the dark at rt. ^{*c*} Run with RbI (20 mol%) in lieu of Csl. ^{*d*} Run with C₅F₁₁COF (3 equiv), KF (3 equiv) at 90 °C. ^{*e*} Run with C₅F₁₁COF (3 equiv), KF (3 equiv), and Csl (30 mol%) at 90 °C for 48 h. ^{*g*} Run with the corresponding alkyl bromide.

chloride (5e), and an R_FO group could also be installed at the propargylic position (5f). Clean conversion of α chloroacetophenone was not achieved, although the desired product **5**g was formed. Use of α -chloroacetate provided facile access to the R_F-ether with the synthetically versatile ester moiety (5h). Chloropretadalafil (4i), the synthetic precursor of tadalafil (a PDE-5 inhibitor),16 is also a suitable substrate for this transformation (5i). The unsymmetrically substituted acetal with benzyl and R_F groups is also accessible (5j). One of the highlights of this protocol is the transformation of unactivated alkyl chlorides in the presence of diverse functional groups such as ether, ester, and acetal (5k-5n), which suggests that this catalytic methodology might have great potential utility in organic synthesis. The present CsI catalysis was also effective for perfluoroalkoxylation of an unactivated alkyl bromide (5k).

Structural diversification of R_F-ethers focusing on the R_F unit was next investigated (Scheme 2). Besides the standard perfluoroalkanoyl fluoride **1** (C6), shorter (C5) and longer (C8) chain compounds were successfully employed (**6a** and **6b**), though the latter required slightly harsher conditions. An α -substituent of the perfluoroalkanoyl fluoride was not

^a Yields were determined by ¹H NMR using 1,4-bis(trifluoromethyl)benzene as an internal standard. Isolated yields are shown in parentheses. ^b Run at 75 °C. ^c Run at 90 °C for 48 h. ^d Run with KF (2 equiv), Csl (20 mol%), geranyl chloride (1 equiv) in CH₃CN/TG (4:1) at 45 °C for 24 h. ^e Methyl 2-iodobenzoate (1 equiv), **8** (1.5 equiv), Et₂Zn (1.5 equiv), Cul (10 mol%), DMPU, 90 °C, 16 h.

Journal Name

ARTICLE

detrimental (6c), and this result greatly expands the scope of the methodology. R_FO⁻ derived from methyl fluoroformyl 2,2difluoroacetate was also available, though 6d was isolated after reduction of the ester moiety of the primary product 6d' due to facile decomposition of the latter upon exposure to silica gel. Perfluoroalkanoyl chlorides are potentially useful as surrogates for their fluoride counterparts in this transformation, since commercial availability of the fluorides is limited. We considered that the acyl Finkelstein reaction to convert chlorides to the corresponding fluorides in situ prior to R_FO⁻ formation might be a good solution for the installation of diverse R_FO groups at will (Scheme 2B).¹⁷ Gratifyingly, the desired perfluoroalkylated ethers were obtained by employing two equivalents of perfluoroalkanoyl chloride and four equivalents of KF with respect to 2a (7a and 6b). The highlight of this methodology is the successive application of perfluoroalkoxylation and cross-coupling reaction for flexible chains (Scheme decoration of R_{F} 2C). Notably. iododifluoroacetyl fluoride provided compound 8 with a C-I bond at the terminus of the R_F chain, which would be a useful handle for diverse chemical transformations. For example, our zinc-mediated copper-catalyzed cross-coupling reaction with an aryl iodide led to the formation of the product 9.6a

Conclusions

In summary, we report straightforward perfluoroalkoxylation methodology applicable to a diverse range of poorly reactive alkyl halides by means of a dual concurrent catalysis strategy in which a single alkali metal salt, CsI, is employed to simultaneously activate both the poorly reactive nucleophile with Cs⁺ and the electrophile with I⁻. Further studies to explore enantioselective perfluoroalkoxylation and aromatic perfluoroalkoxylation reactions are ongoing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was partly supported by JSPS Grants-in-Aid for Scientific Research on Innovative Areas (No. 17H05430), Transformative Research Areas (No. 22H05125), JSPS KAKENHI (S) (No. 17H06173), KAKENHI (A) (No. 22H00320), JST CREST (No. JPMJCR19R2), as well as grants from NAGASE Science Technology Foundation, Naito Foundation, Chugai Foundation, and Uehara Memorial Foundation (to M. U.), a JSPS KAKENHI (B) (No. 22H02742), and grants from the Naito Foundation and Mochida Memorial Foundation (to K. H.).

Notes and references

(a) A. Facchetti, M. Mushrush, H. E. Katz, T. J. Marks, *Adv. Mater.*, 2003, **15**, 33-38; (b) L. Li, K. E. Counts, S. Kurosawa, A. S. Teja, D. M. Collard, *Adv. Mater.*, 2004, **16**, 180-183; (c) M. Karakawa, T. Nagai, K. Adachi, Y. Ie, Y. Aso, *J. Fluorine*

Chem., 2017, **193**, 52-57; (d) S. Yamada, K. Kinoshita, S. Iwama, T. Yamazaki, T. Kubota, T. Yajima, K. Yamamoto, S. Tahara, *Org. Biomol. Chem.*, 2017, **15**, 2522-2535; (e) T. Agou, S. Suzuki, Y. Kanno, T. Hosoya, H. Fukumoto, Y. Mizuhata, N. Tokitoh, Y. Suda, S. Furukawa, M. Saito, T. Kubota, *Tetrahedron*, 2019, **75**, 130678-130685; (f) C. M. Taylor, T. A. Ellingsen, M. C. Breadmore, N. L. Kilah, *Chem. Commun.*, 2021, **57**, 11649-11652.

- (a) N. Audic, P. W. Dyer, E. G. Hope, A. M. Stuart, S. Suhard, *Adv. Synth. Catal.*, 2010, **352**, 2241-2250; (b) T. Korenaga, K. Nitatori, H. Muraoka, S. Ogawa, K. Shimada, *Org. Lett.*, 2015, **17**, 5500-5503; Y. Kobayashi, R. Obayashi, Y. Watanabe, H. Miyazaki, I. Miyata, Y. Suzuki, Y. Yoshida, T. Shioiri, M. Matsugi, *Eur. J. Org. Chem.*, 2019, 2401-2408.
- 3 (a) T. Hasegawa, T. Shimoaka, N. Shioya, K. Morita, M. Sonoyama, T. Takagi, T. Kanamori, *ChemPlusChem*, 2014, 79, 1421-1425; (b) T. Hasegawa, *Chem. Rec.*, 2017, 17, 903-917.
- 4 (a) M. Schlosser, Angew. Chem. Int. Ed., 2006, 45, 5432-5446; (b) J.-A. Ma, D. Cahard, Chem. Rev., 2008, 108, PR1-PR43; (c) A. Studer, Angew. Chem. Int. Ed., 2012, 51, 8950-8958; (d) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed., 2013, 52, 8214-8264; (e) H. Egami, M. Sodeoka, Angew. Chem. Int. Ed., 2014, 53, 8294-8308; (f) J. Charpentier, N. Früh, A. Togni, Chem. Rev., 2015, 115, 650-682; (g) R. P. Bhaskaran, B. P. Babu, Adv. Synth. Catal., 2020, 362, 5219-5237; (h) H. Xiao, Z. Zhang, Y. Fang, L. Zhu, C. Li, Chem. Soc. Rev., 2021, 50, 6308-6319.
- 5 (a) S. Barata-Vallejo, A. Postigo, *Coord. Chem. Rev.*, 2013,
 257, 3051-3069; (b) Y. H. Budnikova, D. A. Vicic, A. Klein, *Inorganics*, 2018, 6, 18, and references cited therein; (c) D. J. Castillo-Pazos, J. D. Lasso, C.-J. Li, *Org. Biomol. Chem.*, 2021,
 19, 7116-7128; (d) H. Baguia, G. Evano, *Chem. Eur. J.*, 2022,
 28, e202200975.
- 6 (a) H. Kato, K. Hirano, D. Kurauchi, N. Toriumi, M. Uchiyama, *Chem. Eur. J.*, 2015, **21**, 3895-3900; (b) X. Wang, K. Hirano, D. Kurauchi, H. Kato, N. Toriumi, R. Takita, M. Uchiyama, *Chem. Eur. J.*, 2015, **21**, 10993-10996.
- 7 M. A. McClinton, D. A. McClinton, *Tetrahedron*, 1992, **48**, 6555-6666.
- 8 C. Hansch, A. Leo, Wiley-Interscience, New York, 1979.
- 9 T. M. Sokolenko, Y. A. Davydova, Y. L. Yagupolskii, *J. Fluorine Chem.*, 2012, **136**, 20-25.
- 10 M. E. Redwood, C. J. Willis, *Can. J. Chem.*, 1965, **43**, 1893-1898.
- 11 B. J. Jelier, J. L. Howell, C. D. Montgomery, D. B.Leznoff, C. M. Friesen, *Angew. Chem. Int. Ed.*, 2015, **54**, 2945-2949.
- 12 J. J. Newton, B. J. Jelier, M. Meanwell, R. E. Martin, R. Britton, C. M. Friesen, Org. Lett., 2020, 22, 1785-1790.
- 13 Abundance in the continental crust: K (2.09%), Ag (0.07 ppm), and Cs (3 ppm). For more details, see: S. R. Taylor, *Geochim. Cosmochim. Acta*, 1964, **28**, 1273-1285.
- 14 (a) O. Marrec, T. Billard, J.-P. Vors, S.Pazenok, B. R. Langlois, J. Fluorine Chem., 2009, 131, 200-207; (b) S. Chen, Y. Huang, X. Fang, H. Li, Z. Zhang, T. S. Andy Hor, Z. Weng, Dalton Trans., 2015, 44, 19682-19686.
- 15 (a) D. E. A. Raup, B. Cardinal-David, D. Holte, K. A. Scheidt, *Nat. Chem.*, 2010, 2, 766-771; (b) B. M. Trost, X. Luan, *J. Am. Chem. Soc.*, 2011, 133, 1706-1709; (c) S. Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira, *Science*, 2013, 340, 1065-1068; (d) J.-A. Ma, D. Cahard, *Angew. Chem. Int. Ed.*, 2004, 43, 4566-4583; (e) M. Shibasaki, M. Kanai, S. Matsunaga, N. Kumagai, *Acc. Chem. Res.*, 2009, 42, 1117-1127; (f) H. Gröger, M. Shibasaki, *Eur. J. Org. Chem.*, 2016, 4116-4123.
- 16 P. J. Dunn, Org. Process Res. Dev., 2005, 9, 88-97.
- 17 G. K. Surya Prakash, J. Hu, G. A. Olah, *Arkivoc*, 2003, **3**, 104-119.