

Applying the HSAB Design Principle to the 3.5-V-class All-Solid-State Li-ion Batteries with a Chloride Electrolyte

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-COM-06-2022-005152.R1
Article Type:	Communication
Date Submitted by the Author:	14-Sep-2022
Complete List of Authors:	Tanibata, Naoto; Nagoya Institute of Technology, Advanced Ceramics Takimoto, Shuta; Nagoya Institute of Technology Aizu, Shin; Nagoya Institute of Technology, Advanced Ceramics Takeda, Hayami; Nagoya Institute of Technology, Materials Science and Engineering Nakayama, Masanobu; Nagoya Institute of Technology, Department of Materials Science and Engineering

COMMUNICATION

Applying the HSAB Design Principle to the 3.5-V-class All-Solid-State Li-ion Batteries with a Chloride Electrolyte

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Naoto Tanibata*, Shuta Takimoto, Shin Aizu, Hayami Takeda, Masanobu Nakayama

All-solid-state Li-ion batteries are expected to be the next generation of batteries with a high energy density and safety. However, for Li-ion batteries to endure high-voltage operations, the decomposition of solid electrolytes must be suppressed first. A high potential at the cathode tends to promote battery degradation because of the oxidation of the cathode electrolyte. This study aims to achieve the high-potential operation of all-solid-state batteries using LiAlCl₄ as a chloride electrolyte with a high oxidation resistance. However, batteries with commonly used oxide electrodes (*e.g.*, LiFePO₄) exhibit low capacity (~0.5 mAh g⁻¹), despite having working potentials less than the oxidation potential of LiAlCl₄. First-principles calculations and ²⁷Al MAS-NMR measurements suggest that acid–base reactions based on the hard and soft acid–base (HSAB) rule occur between the electrode and the electrolyte. In contrast, a high voltage of ~3.65 V (vs. Li⁺/Li) and highcapacity utilisation (reversible capacity ~100 mAh g⁻¹) are observed at room temperature by combining the same chloride electrode (Li₂FeCl₄) without side reactions between these chlorides. These results indicate that material design based on the HSAB rule is also instructive when considering electrode/electrolyte material combinations, which realizes a 3.5-V-class allsolid-state Li-ion battery.

Introduction

Li-ion batteries (LIBs) have become indispensable in today's society mainly because they have higher operating voltages compared to other batteries.^{1,2} However, this advantage requires the use of inflammable organic electrolytes that are stable under a high voltage. As a result, LIBs are not completely safe, and more work needs to be conducted to improve their safety.³ This issue can be circumvented by using all-solid-state batteries with inorganic solid electrolytes as safer next-generation batteries.⁴ Note that similar to liquid electrolytes, solid electrolytes are also required to display a high stability under high-voltage environments of LIBs.⁵ The oxidation potential of the electrolyte is used as a design guideline for combining positive electrode/electrolyte materials.^{6,7}

Although sulfide electrolytes are of research interest because many of them exhibit higher ionic conductivities than those of the oxide electrolytes,^{8–10} their low oxidation resistances owing to the oxidation of sulfide ions, such as S²⁻ \rightarrow 1/2S₂²⁻ + e⁻, limit the available electric potential of positive electrodes (< ~2.5 V vs. Li⁺/Li) and battery performance.^{11–13} When combining sulfide electrolytes with cathode-active materials used in LIBs (such as LiFePO₄¹⁴ and LiCoO₂¹⁵), the active material must have an oxide coating to prevent electrolyte oxidation and battery degradation.^{16,17} However, coating treatments complicate the battery system and limit the choice of materials, in addition to being costly. Chloride electrolytes have recently been shown to possess higher oxidation resistances (oxidation window < ~4.6 V) than those of sulfide electrolytes because of the high electronegativity and high ionic conductivities.^{18,19} For example, an all-solid-state battery using chloride electrolytes such as Li₂In_xSc_{0.666-x}Cl₄ showed high cycle performance (>3,000 cycles) without any coating of high-voltage cathode materials.²⁰ However, very few reports on batteries using chloride materials are available. Therefore, more studies should be carried out to draft design guidelines for using chloride battery materials. In a previous study, we explored potential solid chloride electrolytes with a high ionic conductivity through the exhaustive computational screening^{21,22} of compounds in a structure database.²³ Our results showed that LiAlCl₄ had the most promising properties, such as migration energies for Li-ion conduction and phase stabilities (decomposition energies). In the present study, we aim to further the development of a solidstate electrode/electrolyte system with LiAlCl₄ to obtain guidelines for using chloride battery materials. Our experiments showed that the hard and soft acid–base (HSAB) rule,^{24–26} which is a design guideline for acid-base reactions, is also important for selecting favourable electrode/electrolyte materials. As described below, Al³⁺ ions in LiAlCl₄ chloride electrolytes are classified as hard acids, and the use of electrodes with soft bases, which suppress side reactions, enables the high-voltage operation of all-solid-state Li batteries.

^{a.} Department of Advanced Ceramics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi 466-8555, Japan

Corresponding author's e-mail: tanibata.naoto@nitech.ac.jp

Electronic Supplementary Information (ESI) available: [Information on all solid-state battery cells used in the evaluation]. See DOI: 10.1039/x0xx00000x

ARTICLE

Results and Discussion

Figure 1 shows the results of applying the LiAlCl₄ electrolyte to the commonly used LiFePO₄ positive electrode oxide. The charge–discharge curve (a) of the battery shows poor reversible capacity (<0.5 mAh g⁻¹). Similarly, LiCoO₂, another commonly used electrode material, also exhibits low capacity (Figure S1 (a)). As mentioned earlier, a high oxidation resistance of ~4.4 V vs Li⁺/Li is suggested for LiAlCl₄ electrolytes, according to density functional theory (DFT) and convex hull-derived evaluations.¹⁸ This value covers the charge/discharge working potentials of these cells; the upper cut-off potential is <4.4 V vs Li⁺/Li. In other words, calculations that consider reactions involving only Li, Al, and Cl indicate that LiAlCl₄ is stable even at high-potential states in the cathode.

Figure 1. Evaluation of LiAlCl₄ and LiFePO₄ mixed material. (a) Charge–discharge curve of an all-solid-state Li-ion battery (LIB) with the mixed electrode composed of the LiFePO₄ electrode, LiAlCl₄ electrolyte, and conductive additive Ketjen black (KB). (b) ²⁷Al MAS-NMR spectra of LiAlCl₄ and the mixture of electrode active materials (LiFePO₄ + LiAlCl₄).

Table 1. Reaction equations and corresponding decomposition energies for LiAlCl₄ and LiFePO₄ calculated using Interface Reaction App implemented in The Materials Project.^{6,27}

In this respect, the energy diagram between the LiAlCl₄ electrolyte and the LiFePO₄ positive electrode was calculated using the Interface Reaction App implemented in The Materials Project.^{6,27} The calculation suggested the existence of a negative formation energy between LiAlCl₄ and even uncharged LiFePO₄. Thus, contacting two compounds spontaneously causes a decomposition reaction, as shown in Table 1. In these reaction equations, the Al component of LiAlCl₄ is transformed into oxides, such as Al₂O₃ and AlPO₄, indicating an acid–base

reaction that changes the anion/cation combination. Such side reactions were confirmed by the 27 Al MAS-NMR spectra of the LiFePO₄ + LiAlCl₄ system shown in Figure 1(b). The tetrahedron-

Molar Fraction	Reaction Equation (normalized to reflect molar fraction)	Decomposition Energy [eV/atom]
0.000	$LiAICI4 \rightarrow LiAICI4$	0.000
0.465	0.465 LiFePO4 + 0.535 LiAlCl4 → 0.38 LiFeCl4 + 0.056 Al2O3 + 0.423 AlPO4 + 0.042 Fe2P + 0.62 LiCl	-0.059
0.500	0.5 LiFePO4 + 0.5 LiAlCl4 → 0.333 LiFeCl4 + 0.5 AIPO4 + 0.667 LiCl + 0.167 Fe	-0.062
0.667	0.667 LiFePO4 + 0.333 LiAICl4 → 0.333 Fe2PCIO4 + 0.333 AIPO4 + LiCl	-0.071
1.000	LiFePO4 → LiFePO4	-0.000

derived peak observed for LiAlCl₄ at 103 ppm shifted to approximately 78 ppm and broadened in the mixture of LiAlCl₄ and LiFePO₄. The peak at a higher magnetic field was derived from the Al–O unit of aluminium oxides,^{28,29} suggesting that LiAlCl₄ undergoes an acid–base reaction. Such side reactions have been suggested to occur at the chloride and oxide interface, resulting in rather low charge–discharge capacities. Therefore, the HSAB rule,^{24–26} which is an empirical rule for acid–base reactions, was applied to find a reasonable combination of electrode–LiAlCl₄ electrolyte materials. LiAlCl₄ combines Al³⁺, a hard acid with a small ionic radius, and Cl⁻ ions, a borderline base. The O²⁻ ions in the oxides are hard bases with a higher charge density than those of Cl⁻ ions.

Figure 2. Evaluation of LiAlCl₄–Li₂FeCl₄ mixed material. (a) Charge–discharge curve of allsolid-state LIB with the mixed electrode of Li₂FeCl₄ electrode, LiAlCl₄ electrolyte, and conductive additive KB (Ketjen black). (b) ²⁷Al MAS-NMR spectra of LiAlCl₄ and the mixture of electrode active materials (Li₂FeCl₄ + LiAlCl₄).

Journal Name

Table 2. Reaction equations and corresponding decomposition energies for LiAlCl₄ and Li2FeCl4 calculated using Interface Reaction App implemented in The Materials Project.6,27

Molar Fraction	Reaction Equation (normalized to reflect molar fraction)	Decomposition Energy [eV/atom]
0.000	Li2FeCl4 \rightarrow 0.667 LiFeCl4 + 1.333 LiCl + 0.333 Fe	-0.032
1.000	$LiAICI4 \rightarrow LiAICI4$	-0.000

Therefore, an acid-base reaction can be predicted to occur in LiAlCl₄ electrolytes upon contact with transition-metal-oxide electrodes. In addition, the calculated energies of decomposition of the other chloride materials exhibiting high ionic conductivities (Li_2ZrCl_6 ,³⁰ Li_3ScCl_6 ,²⁰ and $Li_3InCl_6^{31}$) with LiFePO₄ are listed in Tables S1–S3. To analyse these data, the charge density index (Z/r^2) of the cations (Al³⁺, Zr⁴⁺, Sc³⁺, In³⁺) was plotted against the highest decomposition energy of each system (Fig. S3); here, Z is the formal charge of the cation, r is the ionic radius of the Shannon (6-coordination),³² and Z/r^2 is a measure of the high charge density, or hardness of the cation. The energy of decomposition with LiFePO₄, which has the hard anion O²⁻, increased with increasing hardness of the cation (Fig. S3). This suggests that the design guideline based on the acidbase reaction of the HSAB rule is also applicable to other material combinations. Using this design guideline, Li₂FeCl₄, which is also a chloride, was selected in this study as a highvoltage working material for combining with LiAlCl₄. As another idea, the use of oxide electrodes with cations harder than Fe²⁺ (such as Co³⁺ and Ni³⁺ in LiCoO₂ and LiNiO₂, respectively) could mitigate the effects of the side reactions derived from acidbase reactions with chloride electrolytes.

Li₂FeCl₄ has a high working potential (3.65 V vs Li⁺/Li) because of the high electronegativity of chlorine, similar to the induced effect of the PO_4 unit in LiFePO₄ with the same Fe^{2+} ion.33,34 The above acid-base reactions are expected to be suppressed if the electrode/electrolyte materials are both chlorides. In fact, the ²⁷Al MAS-NMR spectrum (Figure 2 (b)) shows a peak at the same position as the Al-Cl unit of LiAlCl₄ even after mixing, indicating that the degradation of LiAlCl₄ is suppressed. Table 2 shows the energy diagram between LiAlCl₄ and Li₂FeCl₄ calculated using the Interface Reaction App implemented in The Materials Project, 6,27 which indicates that no reaction between them exists in the database (only the thermodynamic decomposition of Li₂FeCl₄ at 0 K is shown).

As depicted in Figure 2(a), the all-solid-state LIB using this composite operates at room temperature and shows a reversible capacity (82.5 mAh g⁻¹) that is more than 10 times higher than that of an oxide electrode. As shown above, an advanced battery was fabricated using a design guideline based on the acid-base reactivity in the electrolyte used as the cathode material, in addition to the generally accepted viewpoint of the oxidation potential (redox reaction). The second-voltage stage (~4.1 V vs Li⁺/Li) of the charging curve (Fig. 3) appears to be irreversible; this probably originates from the Cl₂ desorption from the Li₂FeCl₄ chloride-type electrode during charging. Therefore, a cut-off was set at the first-stage termination voltage (3.82 V vs Li⁺/Li), and a constant current-

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2

Figure 3. Charge-discharge performance of an all-solid-state LIB with LiAlCl₄ electrolyte applied to Li2FeCl4 electrode. (a) Constant current-constant voltage (CC-CV) chargedischarge curve at the first cycle. (b) Following cycle-rate characteristics at various constant current on the cut-off voltage of 3.82 V vs Li+/Li.

Cycle number

constant voltage (CC-CV) was applied up to a capacity equivalent to one Li per Li₂FeCl₄ (126 mAh g⁻¹) during the first charge process. As a result, the reversibility and capacity improved to approximately 100 mAh g⁻¹ (Figure 3(a)). Figure 3(b) shows the following cycle-rate characteristics at several constant current densities. Almost no capacity is observed at a current density of 0.064 mA cm⁻² because the ionic conductivity of LiAlCl₄ is low at room temperature (~10⁻⁵ S cm⁻¹). However, the capacity at the 18th cycle, where the current density is the same as that at the 1st cycle, is almost the same as that of the initial cycle. This result is obtained owing to the suppression of side reactions, such as acid-base reactions, between the electrode and electrolyte. This result is the first step toward the realisation of all-solid-state batteries with a chloride electrode and chloride electrolyte; further improvements in the battery characteristics can be achieved by, for instance, optimising the composite ratio and shape of the conductive additive.

Conclusions

A chloride-type solid electrolyte with high oxidation resistance, LiAlCl₄, was applied to the 3.5-V-class all-solid-state LIB. Conventional oxide electrodes, such as LiFePO₄, showed a low charge/discharge capacity of ~0.5 mA h g⁻¹, whereas the use of Li₂FeCl₄ as the chloride electrode yielded a higher capacity of ~100 mA h g⁻¹ at an operating voltage of ~3.6 V vs Li⁺/Li and good capacity retention with cycling. The ²⁷Al NMR study and

Journal Name

thermodynamic calculations using the DFT-derived database confirmed the occurrence of decomposition due to the acidbase reaction at the interface of the oxide electrolyte and LiAlCl₄. The HSAB rule was established as a suitable guideline for finding a reasonable combination of electrode and electrolyte materials based on acid-base reactions. Although thermodynamic considerations using the DFT database can exhaustively consider the decomposition reaction scenario, they cannot consider unregistered compounds. However, only a limited number of chloride materials have been registered to date. In contrast, the application of the HSAB rule is more straightforward and useful for the intuitive screening of all battery materials, not just chlorides. Consequently, the combination of a chloride electrode and electrolyte is advantageous because of the oxidation potential limit and acidbase reactivity between the electrode and electrolyte, which, permit the realisation of a 3.5-V-class all-solid-state Li⁺ batteries only by compressing the powders.

Experimental Section

ARTICLE

Fabrication of all-solid-state LIBs with LiAlCl₄ electrolyte

A schematic diagram of the all-solid-state battery used in the evaluation is shown in Figure S2. Cathode composites were obtained by mixing LiAlCl₄ with certain active materials (AMs; commonly used positive electrode oxides such as LiFePO₄ [Wako Pure Chemicals, 99.9%], LiCoO₂ [Sigma-Aldrich, 99.8%], and Li₂FeCl₄), and a conductive additive (Ketjenblack [KB], Lion Co.) at an AM:LiAlCl₄:KB weight ratio of 7:2:1. Next, the LiAlCl₄ electrolyte was pressed at 96 MPa and ~5 mg of the prepared cathode composite was placed on top of the electrolyte pellet and pressed at 382 MPa. Finally, an all-solid-state LIB was fabricated by stacking a Li-In alloy as the anode (counter electrode).35 Au-coated stainless steel with a diameter of 10 mm was used as the current collector. All the above operations, including the charging and discharging of the battery (by the VSP electrochemical analyser, BioLogic Co.), were carried out in a glove box under an argon gas atmosphere at 30 °C. The evaluation began with charging at a constant current density of 0.013 mA cm⁻².

NMR measurements of cathode composites

To investigate the chemical reactions in the cathode composites, ²⁷Al MAS-NMR measurements were performed on a mixture of LiAlCl₄ and cathode-active materials after heat treatment for 24 h at a temperature (130 °C) below the melting point of LiAlCl₄. The MAS spinning speed was 20 kHz in a Φ 3.2-mm ZrO₂ rotor using a spectrometer (JNM-ECA600 II, JEOL RESONANCE Co., Ltd.). The 90° pulse width and relaxation delay were 2 μ s and 5 s, respectively. The entire procedure was conducted under a dry Ar-filled atmosphere.

Quantum chemical reactivity investigation of electrode materials with \mbox{LiAlCl}_4 chloride electrolyte

The energy diagrams between the LiAlCl_4 electrolyte and LiFePO_4 or Li_2FeCl_4 positive electrode were calculated using the

Interface Reaction App implemented in The Materials Project^{6,27} to investigate the chemical reactions in the cathode composites.

Author Contributions

N. T. and M. N. conceived and designed the experiments: S. T. and S. A. performed the experiments and analysed the data: H. T. contributed materials/analysis tools: N. T. and M. N. co-wrote the paper.

Conflicts of Interest

There are no conflicts of interest to declare.

Acknowledgements

This work was partly supported by the 'Advanced Low Carbon Technology Research and Development Program (ALCA)' of the Japan Science and Technology Agency (JST), Japan (since 2013), Grant-in-Aid for Scientific Research (No. 19H05815, No. 19K15657, No. 20H02436) from the Ministry of Education Culture, Sports, Science and Technology, Japan (MEXT), and 'Elements Strategy Initiative to Form Core Research Centre' (JPMXP0112101003) from MEXT. M. N. is thankful for the support by the 'Materials research by Information Integration' Initiative (MI²I) project of the 'Support Program for Starting Up Innovation Hub' from the Japan Science and Technology Agency (JST). We also thank the Information Technology Centre of Nagoya University for providing computing resources (CX400). Crystal structure diagrams were drawn with Visualization for Electronic and Structural Analysis (VESTA).³⁶

Notes and References

2

3

4

5

6

7

8

9

- Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J.
 P. Lemmon and J. Liu, *Chem. Rev.*, 2011, **111**, 3577–3613.
 - S. Zhao, B. Wang, Z. Zhang, X. Zhang, S. He and H. Yu, Electrochem. Energy Rev., 2022, **5**, 1–31.
 - J.-M. Tarascon and M. Armand, *Nature*, 2001, **414**, 359– 367.
 - A. Manthiram, X. Yu and S. Wang, *Nat. Rev. Mater.*, 2017, **2**, 1–16.
 - J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi, B. S. Dunn, J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi and B. S. Dunn, *Adv. Energy Mater.*, 2018, **8**, 1800933.
 - W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, *Chem. Mater.*, 2016, **28**, 266–273.
 - Y. Zhu, X. He and Y. Mo, ACS Appl. Mater. Interfaces, 2015, **7**, 23685–23693.
 - F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, Adv. Mater., 2005, **17**, 918–921.
 - N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, *Nat. Mater.*, 2011, **10**, 682–686.

- Journal Name
- J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang, D. Zhou, H. Wan, X. Xu and X. Yao, *Electrochem. Energy Rev.*, 2021, 4, 101– 135.
- 11 T. Hakari, M. Deguchi, K. Mitsuhara, T. Ohta, K. Saito, Y. Orikasa, Y. Uchimoto, Y. Kowada, A. Hayashi and M. Tatsumisago, *Chem. Mater.*, 2017, **29**, 4768–4774.
- 12 F. Han, Y. Zhu, X. He, Y. Mo and C. Wang, *Adv. Energy Mater.*, 2016, **6**, 1501590.
- J. Wu, S. Liu, F. Han, X. Yao, C. Wang, J. Wu, X. Yao, S. Liu, F.
 Han and C. Wang, *Adv. Mater.*, 2021, **33**, 2000751.
- 14 A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 1997, **144**, 1188–1194.
- K. Mizushima, P. C. Jones, P. J. Wiseman and J. B.
 Goodenough, *Mater. Res. Bull.*, 1980, **15**, 783–789.
- 16 N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada and T. Sasaki, *Adv. Mater.*, 2006, **18**, 2226–2229.
- N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada and T. Sasaki, *Electrochem. commun.*, 2007, 9, 1486–1490.
- 18 X. Li, J. Liang, X. Yang, K. R. Adair, C. Wang, F. Zhao and X. Sun, *Energy Environ. Sci.*, 2020, **13**, 1429–1461.
- S. Deng, M. Jiang, A. Rao, X. Lin, K. Doyle-Davis, J. Liang, C. Yu, R. Li, S. Zhao, L. Zhang, H. Huang, J. Wang, C. V. V. C. V. V. Singh, X. Sun, S. Deng, X. Lin, K. Doyle-Davis, J. Liang, C. Yu, R. Li, X. Sun, M. Jiang, A. Rao, C. V. V. C. V. V. Singh, S. Zhao, L. Zhang, J. Wang and H. Huang, *Adv. Funct. Mater.*, 2022, **32**, 2200767.
- L. Zhou, T. T. T. Zuo, C. Y. Y. Kwok, S. Y. Y. Kim, A. Assoud,
 Q. Zhang, J. Janek and L. F. F. Nazar, *Nat. Energy*, 2022, 7, 83–93.
- 21 M. Nakayama, K. Kanamori, K. Nakano, R. Jalem, I. Takeuchi and H. Yamasaki, *Chem. Rec.*, 2019, **19**, 771–778.
- N. Tanibata, Y. Kondo, S. Yamada, M. Maeda, H. Takeda, M. Nakayama, T. Asaka, A. Kitajou and S. Okada, *Sci. Rep.*, 2018, 8, 17199.
- N. Tanibata, S. Takimoto, K. Nakano, H. Takeda, M.
 Nakayama and H. Sumi, ACS Mater. Lett., 2020, 2, 880– 886.
- 24 T. L. Ho, Chem. Rev., 2002, **75**, 1–20.
- 25 R. G. Pearson, J. Chem. Educ., 1968, 45, 581–587.
- 26 G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney and C. Liang, *Energy Environ. Sci.*, 2014, **7**, 1053–1058.
- A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S.
 Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A.
 Persson, *APL Mater.*, 2013, 1, 011002.
- 28 E. Witt, S. Nakhal, C. V. Chandran, M. Lerch and P. Heitjans, Zeitschrift fur Phys. Chemie, 2015, **229**, 1327–1339.
- 29 M. Licheron, V. Montouillout, F. Millot and D. R. Neuville, J. Non. Cryst. Solids, 2011, **357**, 2796–2801.
- H. Kwak, D. Han, J. Lyoo, J. Park, S. Hoo Jung, Y. Han, G.
 Kwon, H. Kim, S. S.-T. Hong, K. K.-W. Nam, Y. Seok Jung, H.
 Kwak, J. Park, S. H. H. Jung, Y. Han, Y. S. S. Jung, H. Kim, D.
 Han, K. K.-W. Nam, J. Lyoo, S. S.-T. Hong and G. Kwon, *Adv.*Energy Mater., 2021, **11**, 2003190.
- 31 X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T. K. Sham, L. Zhang, S. Zhao, S.

Lu, H. Huang, R. Li, K. R. Adair and X. Sun, 2019, **12**, 2665–2671.

- 32 R. D. Shannon, Acta Crystallogr. Sect. A, 1976, **32**, 751–767.
- A. Kajiyama, K. Takada, T. Inada, M. Kouguchi, S. Kondo, M. Watanabe and M. Tabuchi, *Solid State Ionics*, 2002, 152–153, 295–302.
- N. Tanibata, M. Kato, S. Takimoto, H. Takeda, M.
 Nakayama and H. Sumi, Adv. Energy Sustain. Res., 2020, 1, 2000025.
- 35 K. Takada, N. Aotani, K. Iwamoto and S. Kondo, *Solid State Ionics*, 1996, 86–88, 877–882.
- 36 K. Momma, F. Izumi and IUCr, J. Appl. Crystallogr., 2008,
 41, 653–658.