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Inverse design of triblock Janus spheres for self-assembly
of complex structures in the crystallization slot via digital
alchemy†

Luis Y. Rivera-Rivera,a‡ Timothy C. Moore,a‡ and Sharon C. Glotzer∗ab

The digital alchemy framework is an extended ensemble simulation technique that incorporates
particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for
desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy
spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial
solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize
the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble
the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly
of all three target structures with the designed models. The particles designed for the kagome and
snub square lattices assemble into high quality clusters of their target structures, while competition
from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically
designed potentials do not always match physical intuition, illustrating the ability of the method
to find nontrivial solutions to the optimization problem. We identify a window of second virial
coefficients that result in self-assembly of the target structures, analogous to the crystallization slot
in protein crystallization.

1 Introduction

Patchy particles—colloidal nanoparticles with short-ranged, di-
rectional interactions—have been the focus of much experimen-
tal, computational, and theoretical research over the past two
decades1–4. Attractive patches produce directional interactions
between particles, which influence local valence and, in turn,
self-assembly behavior. Therefore, judicious design of patch pat-
terns is critical to self-assembling target colloidal crystals and
other superstructures from patchy particles. For example, par-
ticles can be designed that self-assemble into open structures5–8,
and these patchy interactions are often simpler (e.g., smoother
functional form and without an excessive number of wells) to
achieve both computationally and experimentally than isotropic
but oscillatory pair potentials that also self-assemble open struc-
tures9–12. New techniques in patchy particle synthesis are mak-
ing ever more complex patch patterns possible13,14, bringing ever
closer the promise of patchy particles for colloidal matter on de-
mand. However, the high degree of tailorability of patchy parti-
cles is a double-edged sword. On the one hand, the many pos-
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sible anisotropy dimensions15 allow, at least in principle, almost
any arbitrary particles to be designed; on the other hand, this
enormous design space cannot be systematically studied, and effi-
cient means of exploring this space are needed to design particles
with useful assembly behavior16. Inverse design methods offer
a promising approach by starting with a target structure or be-
havior and seeking points or regions of the design space that give
the desired target. For the self-assembly of patchy particles into
colloidal crystal structures, inverse design methods attempt to an-
swer the question “what attributes of the patchy interactions lead
to the self-assembly of a target crystal structure?” Generally, these
attributes can include the number, size, shape, arrangement, and
interactionrange of the attractive patches, in addition to the shape
of the particle core.

To date, most inverse methods design isotropic pair poten-
tials9–11,17–34. Considerably less work has focused on the inverse
design of anisotropic energetic interactions, including patchy par-
ticles35–43. Many of those methods rely on high specificity be-
tween patchy interactions, which can result in complicated, or
even nonphysical, interaction matrices37,44.

The digital alchemy framework (DAF)45, in contrast, is gen-
eral and therefore particularly attractive for the inverse design of
arbitrary patchy particles. Digital alchemy extends standard sta-
tistical mechanical ensembles (e.g. NVT, NPT, etc. . . ) to include
designable particle attributes. The DAF treats parametrizable
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anisotropy dimensions or other particle interaction attributes as
thermodynamic variables, which therefore relax to and fluctuate
about equilibrium values. To date, digital alchemy has been used
as an inverse design method for the shape of hard polyhedra45–49

and for isotropic pair potentials33,45,50,51. Particles of arbitrary
shape or isotropic interaction potentials, respectively, are initial-
ized in the target crystal structure, and the particle shape or po-
tential parameters are relaxed towards values that minimize the
free energy of the system in the target structure.

Here, we extend the DAF to patchy particles. In contrast to the
inverse design of hard particle shapes, which lack an energy scale,
the inverse design of particles with explicit, patchy interactions
that contribute to the potential energy presents a unique chal-
lenge for the DAF. The directionality afforded by the patches al-
lows interactions that match the coordination of the crystal struc-
ture, but can also lead to a trivial ground state solution by mak-
ing those “valence” interactions of infinite strength, which will
dominate the free energy by making thermal fluctuations irrele-
vant. Potentials designed in this way do not offer useful guidance
for designing self-assembling systems. Therefore, constraints on
the possible solutions are needed. Previous work using digital
alchemy for the inverse design of isotropic pair potentials used
a constraint specific to the form of the pair potential33. Here,
we take a more general approach. Motivated by the “crystalliza-
tion slot” observed in the solidification of globular proteins52, we
constrain the system to have a constant second virial coefficient
B2 during the alchemical simulations; doing so ensures we avoid
the trivial solution of optimizing for the ground state while pro-
moting solutions that may be in the sweet spot for crystallization.
Owing to the generality of the DAF, sampling alchemical variables
that correspond to a constant B2 constraint is straightforward, al-
lowing us to explore the concept of a colloidal crystallization slot.

The second virial coefficient B2 is the coefficient of the first or-
der correction to the ideal gas law in the virial expansion of the
equation of state53. Because of its form, B2 provides a quanti-
tative measure of pairwise interactions between particles: large,
negative (positive) values are indicative of strong net attractive
(repulsive) pairwise interactions. For particles with a single axis
of rotational symmetry like those that are the focus of the current
work, B2 is defined as53

B2 ≡− 1
2V

1
(4π)2

∫ [
e−βU −1

]
dr1 dr2 dq1 dq2, (1)

where V is the volume, β ≡ 1/kBT is the inverse temperature, U is
the potential energy, and qi and ri represent the orientational and
translational degrees of freedom, respectively, of particle i. We
work with the normalized second virial coefficient b2, defined as
b2 = B2/BHS

2 where BHS
2 = 2πσ3/3 is the second virial coefficient

of a system of hard spheres (HS) with diameter σ .
The second virial coefficient is widely used as a predictor

of thermodynamic quantities such as the vapor–liquid critical
point54, and as an extended law of corresponding states for col-
loidal and protein suspensions55,56, is indicative of viscosity in
antibody solutions57, and, most relevant for this work, is a pre-
dictor of protein crystallization propensity52. George and Wil-
son52 were the first to report on the correlation between b2 and

crystallization propensity for aqueous solutions of globular pro-
teins, showing that water soluble, globular proteins crystallize
at experimental conditions that yield b2 values within the rela-
tively narrow range of −10 ≲ b2 ≲−1, named the “crystallization
slot.” Similar crystallization slots have been uncovered for differ-
ent groups of proteins58–63, and a similar concept has also been
proposed for colloidal suspensions56,64, but has thus far received
far less attention than for protein solutions. Although a system at
conditions within the crystallization slot is not guaranteed to crys-
tallize62,65,66, nor is crystallization exclusively restricted to con-
ditions within the slot, the crystallization slot concept remains an
important guide for exploring the high-dimensional space of pa-
rameters that influence crystal yield.

In this work, we leverage the crystallization slot concept and
employ b2 as a constraint in alchemical simulations to design
patchy particles that self-assemble target crystal structures. us-
ing triblock Janus spheres as an example model. Triblock Janus
spheres are particles whose surfaces contain three distinct regions
of different chemical coatings, resulting in orientation-dependent
interparticle interactions67. Experimentally, triblock Janus par-
ticles are often synthesized to have hard-sphere-like interactions
between equatorial bands and attractive interactions between po-
lar regions of the particles, which can be either symmetrical or
asymetrical in size and location on the particle surface5,67.

The rest of the paper is organized as follows: in Section 2, we
describe the particle model that we employ and the implementa-
tion of the b2-constrained digital alchemy-based inverse design
method to optimize the interactions of the particle model for
the self-assembly of selected crystal structures. In Section 3, we
present the designed particle interactions and self-assembly re-
sults for three distinct crystal structures: the kagome and snub
square lattices in two dimensions, and the pyrochlore lattice in
three dimensions. Finally, in section 4, we conclude with sugges-
tions for future work.

2 Model and Methods

2.1 Triblock Janus sphere model

We model triblock Janus spheres using the Kern–Frenkel (KF) po-
tential68, illustrated in Figure 1. Particles have a hard sphere of
diameter σ with an attractive, circular patch on each pole. The
location of patch k on particle i is denoted by an orientational di-
rector nk

i that extends from the center of the particle to the center
of the patch, where k ∈ {1,2} for the triblock Janus particles stud-
ied in this work. Patch sizes are quantified by an aperture angle
θ k

i so the total opening angle of each patch is 2θ k. In general, the
patches need not be the same size.

We denote the position of the center of particle i by ri, and we
adhere to the convention that the vector ri j points from the cen-
ter of particle i to the center of particle j, giving ri j = r j − ri,
with magnitude ri j = |ri j|, and unit vector r̂i j = ri j/ri j. Fol-
lowing these conventions, we write the KF potential as UKF =

USW(ri j) f (r̂i j,nl
i ,n

m
j ). The first factor is the isotropic square well

(SW) potential that depends only on the distance between the
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a) b) c) d)

Fig. 1 (a) Triblock Janus spheres interacting via the Kern–Frenkel po-
tential. Particles within the range of interaction (σ < |ri j| ≤ λσ) interact
only if the patches are facing each other (i.e., if the vector joining the
center of the particles intersects both patches, as in a). (b-c) Kagome
and pyrochlore motifs formed by triblock Janus spheres with symmetric
patches in 2D and 3D, respectively. (d) The snub square motif, which
contains an asymmetric valence around each particle, suggesting a need
for patches of unequal size.

particles and is given by

USW(r) =


∞ r ≤ σ

−βε σ < r ≤ λσ

0 otherwise

(2)

where β = 1/kBT with kB the Boltzmann constant and T the tem-
perature, ε is the well depth corresponding to the strength of the
interaction and λ is the range of the interaction, related to the
width of the well δ by λ ≡ 1+ δ/σ . The parameters ε and σ set
the energy and length scales in our simulations. The anisotropy of
the pair potential is accounted for via the orientational masking
function f , defined as

f (r̂i j,nl
i ,n

m
j ) =

{
1 patches aligned

0 otherwise
(3)

where the patch alignment condition is r̂i j ·nl
i > cos(θ l)∧ r̂ ji ·nm

j >

cos(θ m) for any patch l on particle i and any patch m on particle
j. The simplicity of the KF model makes it amenable to theoreti-
cal treatment, including an analytical solution to Equation 1 that
results in

b2(χ,λ ,ε)≡
BKF

2 (χ,λ ,ε,σ)

BHS
2 (σ)

= 1−χ
2(λ 3 −1)(e+βε −1) (4)

where χ = χ1 + χ2 is the total fraction of surface covered by all
the patches and χk = sin2(θ k/2) is the contribution of each patch
with aperture angle θ k.

We treat the interaction potential attributes α = (χ,λ ,ε) as
alchemical variables. These alchemical variables have conju-
gate alchemical potentials, µ(α), that encode the system’s re-
sponse to changes in the alchemical variables. The alchemi-
cal variables are allowed to fluctuate subject to the constraint
b2(χ,λ ,ε) = b0

2, a predefined constant. This scheme defines a
holonomic constraint on the surface of constant b2 of the form
Φ(χ,λ ,ε) = b2(χ,λ ,ε)− b0

2 = 0. In the next section we describe
our simulation protocol and how we enforce this constraint.

2.2 Implementation of digital alchemy for patchy interac-
tions and simulation protocol

We implemented the alchemical Monte Carlo (MC) method
within the hard particle MC (HPMC) module of the HOOMD-blue

simulation engine69,70 and used the runtime-compiled code to
compute the energetic interactions defined in Equations 2–3. We
performed one alchemical trial move for each conventional trans-
lational and rotational MC move. Alchemical trial moves consist
of proposing a randomly selected displacement on Φ from α1 to
α2. To do this we implemented a variation of the surface diffusion
algorithm described elsewhere71, with the surface Φ(χ,λ ,ε) = 0
defined above, and with the distinction that we impose additional
constraints on the extrema of α motivated by geometrical con-
siderations. Specifically, we set λmin = 1.01 and λmax = 2, and
χmin = 0.001 and χmax = 0.8264, which correspond to θmin ≈ 2.5◦

and θmax ≈ 80◦. The chosen range of λ spans interactions ex-
tending over very short distances to distances well beyond the
first neighbor shell of most structures and densities of interest.
Similarly, the chosen range of θ allows the formation of multi-
ple bonds per patch commensurate with the valence of the target
structures, while avoiding overlap between patches on the same
particle. We automatically rejected trial moves that resulted in
a value of α outside of these limits. Otherwise, moves were ac-
cepted or rejected based on a generalized Metropolis criterion,
P1→2 = min{1,e−β (U(α2)−U(α1))}. We tuned the sizes of the trans-
lational, rotational and alchemical steps to achieve an acceptance
probability of ∼ 40%.

We chose target b0
2 values in the range −40 ≤ b0

2 ≤ 0, which
spans the colloidal crystallization slot we identified in the liter-
ature, but also extends to more negative values to test the va-
lidity of the colloidal crystallization slot. For each b0

2, we ran
120 independent alchemical simulations with different initial α

on a roughly uniform grid. We placed the particles in an exter-
nal harmonic field that restrains their positions and orientations
to the ideal Einstein crystal for the first few steps of a run. This
initial setup allows the alchemical degrees of freedom to relax
towards values that are optimal for the target structure before
the structure has a chance to fall apart. We ran the optimization
simulations for 500×103 total MC sweeps, linearly decreasing the
strength of the harmonic field to zero over the first 200×103 steps.
We ran the final 300× 103 MC sweeps without the harmonic re-
straints, but b0

2 always remained constant.
We labeled each optimization run as successful or failed based

on the stability of the target structure as follows. We first used the
EnvironmentMotifMatch module of the freud analysis library72

to determine which particles have a local coordination that is sim-
ilar to that in the target structure73. We used a threshold of 0.2
for the environment matching calculation, chosen via visual in-
spection. We labeled a run as successful if at least 90% of the par-
ticles remained in environments that resemble the target struc-
ture, and failed otherwise.

We also used EnvironmentMotifMatch to analyze the self-
assembled structures by quantifying the fraction of particles ϒ

that have local environments that resemble the target structure:
ϒ=Nmatch/Ntotal, where Nmatch is the number of particles with a lo-
cal coordination similar to that of the target structure and Ntotal is
the total number of particles in the system. We note that because
the particles self-assemble into finite crystallites, particles at the
boundary are undercoordinated relative to the reference motifs
used in the EnvironmentMotifMatch analysis, and therefore do
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not register as crystal-like, lowering ϒ.

In the next section we present DA-designed particles obtained
from the b2-constrained alchemical MC optimization scheme ap-
plied to triblock Janus spheres to assemble kagome, pyrochlore
and snub square structures. We validate the resulting designs
by performing self-assembly simulations and observing assembly
from the fluid into the target structures. The self-assembly sim-
ulations were performed using MC but without any alchemical
moves.

3 Results and Discussion

3.1 Kagome design: triblock Janus spheres in 2D

We designed kagome structures at crystal phase densities (i.e.,
area or volume fraction in 2D and 3D, respectively) of φtarget ∈
{0.5,0.6}. At these densities, the minimum interaction range re-
quired to form a bond between particles in the first coordination
shell is λ ≈ 1.0647 and λ = 1.166, respectively. These λ values
also correspond to the locations of the first peak in the radial dis-
tribution function (RDF) in the ideal crystal at those densities. We
began by placing 507 particles in the ideal kagome lattice at the
target density and followed the protocol described in the previous
section.

Figure 2a shows the alchemical optimization paths of a sub-
set of the 120 initial points (black crosses) in alchemical space
distributed on a roughly uniform grid of the b0

2 = −4 surface, at
φtarget = 0.6. Out of the 120 initial points, 87 (72.5%) meet the
success criterion at the end of the simulations. Successful op-
timization paths are indicated by solid lines while dashed lines
indicate simulations where the optimization algorithm failed to
obtain a solution within the desired design space (e.g., the ini-
tial target structure melted partially or completely or transitioned
into a hexagonal lattice). Most of the failed optimization paths
end on, or close to, the extrema boundaries imposed on the al-
chemical variables.

All successful paths converge to the single point α =

(37◦,1.12,5.8), which we deem the optimal parameters α∗ and
denote with a star in Figure 2a. In contrast, previous inverse
design work using digital alchemy to optimize isotropic pair po-
tentials found multiple solutions for a given target crystal struc-
ture33. We obtained α∗ by computing the “time” average of each
patch parameter over the final 100×103 MC steps and then aver-
aging all individual time averages across all successful runs. No-
tably, this combination of (θ∗,λ ∗) corresponding to α∗ is well
within the range of the two-bond-per-patch condition given by
(2λ )−1 ≤ sinθ <

√
3(2λ )−1 arising from purely geometrical con-

siderations (see Figure S3). This result showcases the ability of
our approach to produce results that are consistent with intuition
in simple cases. In addition, the width of the optimal interaction
range δ ∗/σ = λ ∗−1 = 0.12 is approximately twice as large as the
minimum interaction width required to form a bond between par-
ticles in the first coordination shell, δ/σ ≈ 0.0647. This result is
consistent with the fact that the KF potential is a square-well po-
tential, and therefore the vibrational entropy is maximized when
all particles are in the middle of the interaction range of their
neighbors74.

Figure 2c shows a summary of the optimal alchemical param-
eters for triblock Janus spheres in a kagome lattice as a function
of b0

2 and φtarget. From this figure we see that the optimal patch
aperture angle θ and interaction range λ remain constant with b0

2
for a given φtarget, while ε increases as b0

2 becomes more negative.
The target density has a negligible effect on θ since θ is mostly
controlled by the valence of the target structure. The largest ef-
fect of φtarget is on the interaction range λ , which is expected for
the KF potential since it is this interaction range that ultimately
determines the lattice constant of the resulting crystal and there-
fore its crystal phase density. At φtarget = 0.5, the width of the op-
timized potential with λ ∗ = 1.28 (δ = 0.28) is approximately 1.7
times that of the minimum potential required to form bonds in
the ideal crystal at the same density, which is consistent with the
aforementioned design rule and entropy maximization principle.

To validate our alchemy results, we performed three indepen-
dent self-assembly simulation replicas for all the combinations of
(b0

2,φtarget) for which we successfully obtained optimal values of
(θ∗,λ ∗,ε∗). We started each simulation with a random configu-
ration of N = 1,200 particles at an area fraction of φ = 0.3. We
chose more dilute systems for assembly compared to the opti-
mization simulations (i.e., the density of the optimization sim-
ulations was the target crystal density φtarget) to minimize the
effect of the periodic boundary conditions used in the assembly
simulations. Because systems of the inversely designed particles
have negative b2 values, they will spontaneously aggregate with-
out an external pressure and can therefore form finite aggregates
that do not span the simulation box. As indicated in Figure 2e–
g, we find an increased assembly propensity (defined as systems
where ≥ 50% of particles form kagome-like local environments)
for −20 ≤ b0

2 ≤ −5, qualitatively analogous to the crystallization
slot identified in the protein crystallization community.

Figure 3 shows the self-assembly results corresponding to
the design parameters obtained from the alchemical simulations
shown in Figure 2a–d (e.g., b0

2 = −4 and φtarget = 0.6). Figure 3a
shows the final snapshot of one of the replicas; visual inspec-
tion clearly reveals that the local environment of most particles
matches the typical X-like motif of the kagome lattice (Figure 1b).
Figure 3b shows the evolution of the intensive potential energy
βU/N and crystal yield ϒ (see Model and Methods). We observed
a crystal yield of ϒ ≈ 85% in all three replicas.

We further characterized the final structures by computing the
RDFs, shown in Figure 3c. The vertical dashed black lines cor-
respond to the peak locations of the ideal kagome lattice at
φ = 0.6. The radial axis is normalized by the location of the
first peak in the RDF for the potential optimized at φtarget = 0.6,
which is r0 ≈ 1.056 in this particular case. Note that this value
roughly corresponds to the midpoint of the width of the potential
(1+λ )/2 = 1.06 and is in good agreement with the location of the
first peak of the RDF of the ideal lattice, at the same density as
discussed above. Moreover, we highlight the fact that the RDFs
of the systems simulated with the model optimized at φtarget = 0.5
have peaks whose locations are scaled in the r-direction by a fac-
tor of appproximately

√
0.6/0.5 ≈ 1.1. Hence, the self-assembled

crystals seem to locally adopt φtarget, even at much more dilute
statepoints, and φtarget therefore serves as a handle to control the
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Fig. 2 Patch alchemy results for the kagome lattice. (a): The surface of constant b0
2 =−4, showing the initial (black crosses) and final (black dots)

alchemical simulation points and the paths between them on the design space. For clarity, only 25% of the initial points are displayed. Paths that yield
stable kagome lattices are labeled “success” and those that don’t are labeled “failed.” (b–d): The evolution of the alchemical parameters during the
optimizations for systems with b0

2 =−4 at φ = 0.6, colored the same as (a). (e–g): The optimized values of the alchemical parameters as a function
of b0

2 and φ after identifying stable clusters on the b2 surface. Filled markers indicate optimized solutions with ϒ ≥ 50% (see Model and Methods) in
self-assembly simulations.

lattice spacing of the self-assembled crystals.

3.2 Pyrochlore design: triblock Janus particles in 3D
We next apply the b2-constrained digital alchemy methodology
to design a colloidal system to self-assemble a pyrochlore lat-
tice at crystal densities of φtarget = 0.25 and φtarget = 0.35. In this
case we initialized 432 particles in the ideal pyrochlore structure
and followed the same protocol as for kagome. The colloidal py-
rochlore (or cubic tetrastack) crystal is one of the few 3D struc-
tures known to have a complete photonic band gap and is also a
stable phase of triblock Janus particles interacting via the KF po-
tential74. Figure 4a shows a subset of the alchemical optimization
paths for b0

2 =−9 and φtarget = 0.34. Unlike for the kagome struc-
ture where we observed a single optimal point on the b2 surface,
here we observe two candidate optimal points on the b2 surface:
α1 = (44◦,1.06,6.6) and α2 = (68◦,1.85,1.7) with 60 and 14 con-
verging paths, respectively. The former candidate optimal design
point is well within the range of values of previously studied KF
phase diagrams8,74. Although the available phase diagrams of
triblock Janus spheres do not extend enough to include the latter
point8,74, it can be unambiguously located in the fluid region of
these by a simple visual interpolation. Furthermore, self-assembly
simulations confirm this conclusion (i.e., no stable clusters form
in assembly simulations using patchy interactions corresponding
to α2). Therefore, pyrochlore is a metastable phase for the sys-
tem at α2, and we discard α2 as a solution to the optimization
problem.

Contrary to the kagome case study, where the (θ∗,λ ∗) combi-

nation allowed a maximum number of bonds that is commensu-
rate with the valence of the structure, the combination of (θ∗,λ ∗)
obtained in the pyrochlore optimization is slightly above the four-
bonds-per-patch lower limit, despite the coordination of the lat-
tice containing three bonds per patch. In the next section we
explore the implications of this counterintuitive result. The width
of the optimal interaction range δ ∗/σ = λ ∗−1 = 0.06 is approxi-
mately twice as large as the minimum interaction width required
to form a bond between particles in the first coordination shell at
the target φtarget, δ/σ ≈ 0.0288, which is in agreement with the
kagome results and with the vibrational entropy maximization
design rule discussed in the previous section.

Figure 4e–g shows a summary of the optimal alchemical pa-
rameters as a function of b0

2 and φtarget. Here, we confirm the
design rule trends established in the previous case study. First,
we see that the optimal patch aperture angle θ and interaction
range λ remain approximately constant with b0

2 for a given φtarget,
while ε increases as b0

2 becomes more negative. As before, the
target crystal phase density has a negligible effect on θ but has a
large effect on the interaction range λ .

As for the kagome lattice, we performed self-assembly simula-
tions for all the combinations of (b0

2,φtarget) for which we obtained
optimal α. We initialized the simulations with random configu-
rations at φ = 0.1 to minimize the effect of pressure on the as-
sembly. Figure 5 shows the self-assembly results corresponding
to the design parameters obtained from the alchemical simula-
tions shown in Figure 4a,b (e.g., b0

2 =−9 and φtarget = 0.34). Fig-
ure 5a shows a snapshot of a subset of all the particles in the

Journal Name, [year], [vol.],1–11 | 5

Page 5 of 11 Soft Matter



Fig. 3 Self-assembly results for the kagome lattice with α∗ = (37◦,1.12,5.8) obtained from alchemical simulations at b0
2 = −4 and φtarget = 0.60

(Figure 2a). (a) Snapshot of the last simulation frame showing the self-assembled kagome lattice. (b) Progression of the intensive potential energy
βU/N and crystal yield ϒ (see Model and Methods). (c) RDFs of the assembled kagome structures for (b0

2,φtarget) = (−4,0.6) and (−9,0.5); the vertical
dashed lines represent the RDF of the ideal kagome lattice. In all cases, the radial axis is normalized by the location of the first peak of the assembled
structure at φtarget = 0.6, given by r0 ≈ 1.056. The relative locations of the peaks in the assembled structure is in very good agreement with those of
the ideal crystal. The RDFs were computed over the final 2×106 MC sweeps of the assembly simulations.

system forming a crystalline grain. In this case, ϒ ≈ 43% (Fig-
ure 5b, red line). We attribute the relatively lower value of ϒ

(compared to the kagome results) to polymorphism, i.e., the pres-
ence of a competing structure with a similar free energy to the tar-
get pyrochlore lattice. Pyrochlore has a closely related hexagonal
polymorph, the hexagonal tetrastack (HT), with identical valence
(six neighbors, three above and three below like pyrochlore), but
with an “eclipsed” configuration instead of the “staggered” one
shown in Figure 1c. The bimodal distribution of the Steinhardt
bond orientational order parameter q6

75,76 indicates that motifs
of both polymorphs are present in the self-assembled crystallite
(Figure 5a, inset). Both the ideal pyrochlore and HT structures
exhibit a peak at q6 = 0.74177,78. However, the latter exhibits
an extra smaller peak at q6 = 0.41177,78. The presence of peaks
around these values indicates a mixture of the two polymorphs.
While the problem of polymorph selection is beyond the scope of
the current work, we hypothesize it could be addressed by adding
additional alchemical degrees of freedom to allow fluctuations in
the patch geometries and arrangement, or by adding repulsive
patches that disfavor the unwanted polymorph through negative
design79. For example, Romano and Sciortino41 showed how
the shape of patches can be made to favor one polymorph over
another, so one may imagine making the shape of the patches
an alchemical degree of freedom to aid in polymorph selection.
Similar considerations arise in designing patchy particles to as-
semble cubic diamond, where cubic and hexagonal polymorphs
often compete with each other37,39,40,80.

3.3 Snub square design: triblock Janus spheres with asym-
metric patches

The kagome and pyrochlore examples illustrate the design of tri-
block Janus particles with symmetric patches (equal-size aperture
angles) in 2D and 3D, respectively. To demonstrate the applica-
bility of our method to more complex crystal structures, we now
relax the equal-size patch constraint to allow both patch sizes
to fluctuate individually while still subject to the b2 constraint.
For this purpose, equation (1) is easily generalized to account
for asymmetric patch sizes, resulting in b2 = 1− (χ1 + χ2)

2(λ 3 −
1)(eβε − 1) where χi = sin2(θi/2) is the surface fraction covered
by each of the patches.

We use this approach to design triblock Janus spheres that
minimize the free energy of a snub square lattice at a crystal
area fraction of φtarget = 0.59. The snub square lattice has been
demonstrated to be a stable phase of soft patchy particle mod-
els81, binary mixtures of hard patchy polygons82, non-additive
square-well particles83, isotropic interaction potentials in a single
component system9,28 and in several experimental systems84–87.
This lattice therefore makes an ideal candidate for a stress test
of our algorithm, since the neighbors in the coordination shells
surrounding each particle have an asymmetric spatial distribu-
tion (3 on one pole and 2 on the opposite pole, see Figure 1d).
This asymmetric valence distribution strongly suggests the need
for unequal patch sizes on each pole to stabilize the structure.
However, the snub square crystal structure is fairly complex, with
an 8-particle unit cell and 4 unique particle orientations, so it is
unclear a priori whether or not it is an equilibrium phase of any
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Fig. 4 Patch alchemy results for the pyrochlore lattice. (a) The surface of constant b0
2 = −9, showing initial points as black crosses, final points as

black dots, and the path each optimization takes on the surface as lines. Failed optimizations are drawn as dashed lines, while successful optimizations
are drawn as solid lines. (b–d) The evolution of the alchemical parameters during optimization, coloring the same as in (a). (e–g) The optimized
values of the alchemical parameters as a function of b0

2. Notice the patch width and range remain nearly constant as a function of b0
2.

triblock Janus sphere model or whether or not such particles can
self-assemble into the structure.

With the exception of having an additional alchemical degree
of freedom, the optimization procedure is equivalent to the one
used in the kagome and pyrochlore case studies. We performed
the optimizations for systems of 512 particles at b0

2 =−19, within
the colloidal crystallization slot. The extended set of optimal pa-
rameters α∗ obtained from alchemical simulations in this case
are θ∗

L ≈ 67◦, θ∗
S ≈ 38◦, λ ∗ ≈ 1.10 and ε∗ ≈ 6.0, where subcripts

L and S refer to the large and small patches, respectively (see
Figure S1). The smaller of the patches, θ∗

S , has a size compara-
ble to that obtained for the kagome lattice, as expected based on
the coordination of the kagome and snub square lattices. This
(θ∗

S ,λ
∗) combination is well within the region where a maximum

of two-bonds-per-patch are allowed in 2D. The size of the larger
patch, however, is larger than the four-bond-per-patch lower limit
(≈ 65◦) at λ ∗ = 1.10 (see Figure S3).

Figure 6 summarizes the results from a self-assembly simula-
tion with the optimized parameters for snub square assembly.
Figure 6 shows a configuration from the simulation, where we
observe a high yield of ϒ ≈ 94% (red line in Figure 6)b. The RDF
of the self-assembled crystal, shown in blue in Figure 6c, is in ex-
cellent agreement with the RDF of the ideal crystal (dashed black
lines). As in Figures 3 and 5, the radial axis is normalized by the
location of the first peak, which is r0 ≈ 1.0438 for the assembled
crystal. Following the analysis of the kagome and pyrochlore case
studies, it is clear that this r0 is commensurate with the target
crystal density of φtarget = 0.59.

It is counterintuitive that the size of the larger patch is above

the four-bond-per-patch lower limit, especially when considering
the fact that the small patches from this particular optimization,
as well as the small patches in the optimized model for kagome,
are well within the range where a maximum of two bonds per
patch are allowed. Despite this fact, we do not observe any
large patches accommodating more than three bonded neighbors
in any of the assembly simulations of this model, which would
yield the coordination of the close-packed crystal structure that
is clearly incompatible with the snub square crystal structure. To
test the effect of the coverage of the larger patch on assembly, we
performed additional self-assembly simulations with θL values in
the range 60◦ ≤ θL ≤ 66◦, i.e., which spans values where a max-
imum of three or four bonds-per-patch are allowed. We observe
that a pure snub square lattice is only obtained when θL is close
to or slightly larger than the minimum aperture required to ac-
commodate a maximum of four bonds per patch (see SI), with
the highest quality crystal obtained from simulations with the op-
timized parameters mentioned above. This result is analogous to
a previous result using digital alchemy to optimize an isotropic
Lennard-Jones-Gauss potential to stabilize a square lattice, where
the thermodynamically optimal value did not correspond to the
naïve ansatz obtained from pattern registration between the RDF
and the potential45. This counterintuitive result illustrates that,
in some instances, successful self-assembly can be promoted with
parameters that do not correspond to a naïve geometrical ansatz,
and that the digital alchemy inverse design framework is capable
of finding such nontrivial solutions.
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Fig. 5 Self-assembly results for the pyrochlore lattice with α∗ = (44◦,1.06,6.6) obtained from alchemical simulations at b0
2 = −9 and φtarget = 0.34

(Figure 4a). (a) Snapshot of a crystalline grain showing the assembled pyrochlore lattice. For clarity, patches are not drawn and particle sizes are
rendered with a radius of σ/2. Bonds are drawn between the particles in the first neighbor shell. Inset: distribution of per-particle Steinhardt bond
orientational order parameter q6 in the final self-assembled configuration. (b) Progression of the intensive potential energy βU/N and crystal yield ϒ

(see Model and Methods). The lower value of ϒ, as compared to the kagome assembly, is attributed to polymorphism. (c) The radial distribution
function of the assembled pyrochlore (blue) compared with the ideal pyrochlore (dashed black lines). The radial axis is normalized by the location of
the first peak of the assembled structure, r0 ≈ 1.013. The relative location of the peaks in the assembled structure is in relatively good agreement with
those of the ideal crystal.

4 Conclusions
In this work, we extended the digital alchemy framework for the
inverse design of particles with anisotropic energetic interactions.
To avoid trivial solutions (such as infinitely strong interactions
that match the valency of the target structure), we constrained
the alchemical variables (i.e., the parameters of the interaction
model) to the surface defined by a constant second virial coeffi-
cient (b2) of the potential. This choice of constraint is motivated
by the crystallization slot concept in proteins, whereby a rela-
tively narrow range of b2 promotes crystallization. Although b2

values within this slot may be insufficient to promote successful
crystallization in some cases due to kinetic limitations, the con-
cept remains a useful guide for screening the high-dimensional
space of parameters that influence crystal yield. Here, the use of
the b2 constraint led to successful design of patchy particles that
self-assemble colloidal crystals in all three example cases studied.

We showed how this approach can be used to design symmetric
triblock Janus spheres modeled with the Kern–Frenkel potential
to self-assemble technologically relevant structures; specifically,
we designed symmetric triblock Janus spheres to self-assemble a
kagome lattice in 2D and the pyrochlore lattice in 3D. In both
cases, we obtained optimal potential parameters α∗ that are in
good agreement with previous studies of the equilibrium phase
diagram of the Kern–Frenkel potential. In general, we observe
that both the aperture angle θ∗ as well as the interaction range
λ ∗ are relatively unaffected by the value of the b2 constraint. The

former is most strongly correlated with the valency of the target
structure, where the surface coverage of the patch is dictated by
how many bonds the patch must accommodate in the target struc-
ture. The latter is most strongly correlated with the density of the
target crystal phase, which is unsurprising since the range of in-
teraction ultimately determines the density of the crystal phase;
this fact allows tuning of the lattice spacing of the self-assembled
crystal structures.

To demonstrate the broad applicability of our method, we re-
laxed the symmetric patch condition and designed the first Kern–
Frenkel model with asymmetric patches that successfully self-
assembles the snub square lattice. The aperture angle of the
smaller patch lies within the two bonds-per-patch limits, as ex-
pected by geometrical considerations alone. However, the larger
patch is slightly above the four-bond-per-patch lower limit, de-
spite the fact that the coordination of the crystal structure only
requires three bonds per patch for the larger patch. This result
highlights how our method yields results that are not easily pre-
dicted based on intuition and geometric considerations.

Future work will be aimed at extending our methodology to
more general patchy particle potentials, including those that do
not have a closed-form expression for b2. We do not anticipate
the lack of a closed-form expression for b2 being a limitation as
there are many available numerical methods to efficiently and
accurately compute b2 given its relevance in predicting thermo-
dynamic properties. One particularly exciting future direction is
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Fig. 6 Self-assembly results for the snub square lattice with α∗ = (67◦,38◦,1.1,6.0) obtained from alchemical simulations at b0
2 =−19 and φtarget = 0.59.

(a) Snapshot of the from the simulation showing the assembled snub square lattice. (b) Progression of the intensive potential energy βU/N and crystal
yield ϒ (see Model and Methods), showing a final yield of ϒ ≈ 94%. (c) The radial distribution function of the assembled snub square (blue) compared
with the ideal lattice (dashed black lines). The radial axis is normalized by the location of the first peak of the assembled structure, r0 ≈ 1.0438. The
relative locations of the peaks in the assembled structure are in very good agreement with those of the ideal crystal.

the design of patchy particles with anisotropic shapes, as opposed
to the spherical shapes used in the present work. Such work will
enable the exploration of a design space with more anisotropy di-
mensions15 than current methods allow and therefore represents
an important step in particle design whereby energetic patchiness
and entropic (shape) patchiness88 can be tuned simultaneously
to offer more precise control over self-assembling systems.

Finally, we again note that the digital alchemy framework, in its
current form, finds values of the alchemical variables that mini-
mize the free energy of the target structure at the target state
point. Subsequent self-assembly from a fluid phase is not guaran-
teed because the free energy of the fluid phase at the target state
point relative to the free energy of the crystal is not considered.
Additionally, the free energies of polymorphs are not considered,
and competing polymorphs may lower the assembly yield of the
target lattice as we observed for the case of pyrochlore in the
current work. We expect that additional alchemical degrees of
freedom (e.g., the shape of the patches) or further modifications
to the alchemical inverse design framework (e.g., incorporation
of negative design strategies37,44,79) will help resolve these is-
sues; such considerations are the subject of future work. Regard-
less, digital alchemy has proven a useful and reliable approach to
patchy particle design.
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