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Self-consistent field theory is employed to compute the phase behavior of binary blends of conforma-
tionally asymmetric, micelle-forming diblock copolymers with miscible corona blocks and immiscible
core blocks (a diblock copolymer “alloy”). The calculations focus on establishing conditions that
promote the formation of Laves phases by tuning the relative softness of the cores of the two dif-
ferent Laves phase particles via independent control of their conformational asymmetries. Increasing
the conformational asymmetry of the more spherical particles of the Laves structure has a stabi-
lizing effect, consistent with the expectations of increased imprinting of the Wigner-Seitz cells on
the core/corona interface as conformational asymmetry increases. The resulting phase diagram in
the temperature-blend composition space features a more stable Laves phase field than that pre-
dicted for conformationally symmetric systems. The phase field closes at low temperatures in favor
of macrophase separation between a hexagonally-packed cylinder (hex) phase and a body-centered
cubic phase. Companion calculations, using an alloy whose components do not produce a hex phase
in the neat melt state, suggest that the Laves phase field in such a blend will persist at strong
segregation.

1 Introduction
Compositionally asymmetric diblock polymer melts produce par-
ticulate phases when cooled below their order-disorder transi-
tion (ODT). For linear AB diblock copolymers, the ordered state
selection is governed by three parameters: (i) the segregation
strength χN, where χ is the Flory-Huggins parameter and N is
the total degree of polymerization; (ii) the minority block vol-
ume fraction fA = NA/N, where NA is the degree of polymeriza-
tion of the minority block; and (iii) the conformational asym-
metry εAB = bA/bB, where bi is the statistical segment length
of block i.1–5 The classic theoretical diblock copolymer phase
diagram focuses on systems with low conformational asymme-
try (εAB ≈ 1),6–8 where the resulting micelles pack on a body-
centered cubic (bcc) lattice,9–11 with a narrow region of close-
packing near the ODT.7,12–14

It is now recognized that increasing conformational asymmetry
in compositionally asymmetric diblock copolymers gives rise to a
different class of particle packings known as Frank-Kasper phases
(Fig. 1a).15–19 In contrast to bcc, which has a single particle
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type arranged on a high symmetry lattice, Frank-Kasper phases
are low-symmetry, tetrahedrally close-packed phases possessing
multiple particle types,20,21 each with a distinct volume and, im-
portantly, a distinct sphericity.5,22,23 Conformational asymmetry
furnishes two synergistic effects that ultimately combine to stabi-
lize Frank-Kasper phases relative to bcc. First, larger εAB shifts the
order-order transitions to larger fA, delaying the onset of hexag-
onally packed cylinders (hex).1,22,24–27 Second, larger εAB pro-
duces softer micellar cores that can be partially imprinted by the
Voronoi cells of the lattice,5,19,23,28–30 which introduces a ten-
dency to prefer systems with a higher average sphericity of the
constituent particles.23 Taken together, these two effects lead to
Frank-Kasper phases possessing a better balance of chain stretch-
ing against interfacial area than bcc as conformational asymme-
try increases.5,22,23 Among the 27 known Frank-Kasper phases
in metallic alloys,31 only σ 15,16,18,32–38 and A1518,36 are be-
lieved to be equilibrium states in neat diblock copolymer melts.
Non-equilibrium C14 or C15 Laves phases can be accessed via
thermal processing,17,35,39,40 but their emergence as equilibrium
states is stymied by their large particle volume asymmetry (Fig.
1b).37,41–44

Since each particle type in a Frank-Kasper phase possesses a
unique sphericity (Fig. 1c),5,22,23 fully elucidating the role of con-
formational asymmetry on the formation of Frank-Kasper phases
is challenging in a neat diblock copolymer melt because there is
but a single conformational asymmetry parameter, εAB. To under-
stand more deeply how conformational asymmetry impacts or-
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Fig. 1 (a) Illustration of the Frank-Kasper σ , A15, C14, and C15 phases, highlighting the symmetry-inequivalent particle positions and associated
Wigner-Seitz cells. (b) Volume of each particle type relative to the number-averaged particle volume for the structure, V0,phase. (c) Isoperimetric
quotient IQ = 36πV2/S3 of each particle type as reported by Kim et al.,17 relative to that of bcc, where V is the particle volume and S is the particle
surface area. Bar colors in (b) and (c) match the colors of the corresponding particles in (a). Particles are labeled in (b) and (c) according to phase
and Wyckoff position. Structures in (a) are generated using a Matlab program developed by Lindsay et al. 45

dered state selection, it is desirable to control each particle type’s
conformational asymmetry independently. One approach to ac-
cess such control is going beyond a neat AB diblock copolymer
melt to a diblock copolymer alloy consisting of two (or more) di-
block copolymers with miscible majority blocks and immiscible
minority blocks.46 The simplest such system is a binary alloy con-
sisting of a blend of AB and B′C diblock copolymers,46 where the
prime notation indicates a different degree of polymerization. To
achieve this objective, the χ-parameter between blocks A and C
must be large enough to prevent mixing of the particle cores.46

Such a binary blend possesses two conformational asymmetry pa-
rameters, εAB and εBC, which quantify the softness of the AB and
B′C micelle cores, respectively.

In the present contribution, we use self-consistent field theory
(SCFT)47,48 to investigate the ability of conformationally asym-
metric block copolymer alloys to stabilize Laves phases. Laves
phases are attractive for our purposes because they consist of two
particles with disparate volumes and sphericities.17,23,49 As a re-
sult, this system is ideally suited for studying the tunability of the
different types of particle cores enabled by binary block copoly-
mer alloys. Prior work has already demonstrated from SCFT the
potential for diblock copolymer alloys to address the challenge
imposed by the volume asymmetry of a Laves phase (Fig. 1b).46

Here, we show that Laves phases can be further stabilized via
differing conformational asymmetries in a polymer alloy, thereby

providing a design strategy to address both volume asymmetry
and sphericity asymmetry of the constituent particles, and clearly
illustrating the power of controlling conformational asymmetry of
each particle independently to enable the formation of complex
particle packings in diblock copolymers.

2 Methods

Following prior work,46 we select highly compositionally asym-
metric diblocks with equal core block fraction fA = fC = 0.20
to promote formation of quasi-spherical micelles at sufficiently
high segregation strength. To simplify the ensuing analysis, we
choose symmetric segregation strengths for the individual diblock
copolymers, such that χABNAB = χBCNB′C = χN where χi j is the
Flory-Huggins interaction parameter between monomers i and j
and NAB and NB′C are the degrees of polymerization of the AB
and B′C chains, respectively. To enhance the immiscibility of
A and C relative to A/B or B/C interactions, we select a larger
Flory-Huggins parameter between monomers A and C such that
χACNAB = 2(χN). In reporting our results, it is convenient to ex-
press the results in terms of temperature as well. To do so, we
will assume that χ is purely enthalpic and set the reference tem-
perature T0 to correspond to χN = 30.

It is worthwhile to make a preliminary estimate here of where
we might anticipate Laves phases to emerge in a conformationally
asymmetric binary alloy, building on the prior analysis for confor-
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mationally symmetric systems.46 Stabilization of a Laves phase in
this alloy system requires that (i) the AB and B′C form micelles
with appropriate volume asymmetry α = VB′C/VAB and (ii) the
chains are blended at a ratio which yields a particle stoichiometry
of approximately 2:1.46 If we choose the B′C diblock to form the
larger micelles (the red particles in Fig. 1), the expected blend
fraction for Laves phase formation is

φAB = 1−φB′C =
2

2+α
(1)

as in prior work.46 The preferred micelle radius for the AB di-
block scales as its radius of gyration Rg,AB, and similarly for
the B′C diblock, so the volume asymmetry can be written as
α = (R3

g,B′C/R3
g,AB). Using the unperturbed radius of gyration as

a starting point for the particle size and Gaussian statistics, then
Rg,AB is given by R2

g,AB = R2
g,A +R2

g,B, and similarly for Rg,B′C. The
corresponding Laves phase volume asymmetry for a given set of
AB and B′C chains is then

α =

(
NB′C

NAB

)3/2
[

1+ fC
(
ε2

BC−1
)

1+ fA
(
ε2

AB−1
)]3/2

(2)

where we have grouped the terms to highlight the separate con-
tributions of the chain lengths in the first term, and the sta-
tistical segment lengths in the second term. Note that when
all monomers have the same statistical segment lengths (i.e.,
εAB = εBC = 1.0), Equation 2 reduces to the result obtained pre-
viously for conformationally symmetric alloys.46

Our numerical analysis uses SCFT47,48 with a Gaussian chain
model47,50,51 to predict the behavior of the alloy system. All
calculations are performed using the C++ version of the open-
source PSCF code using either the canonical or grand canonical
ensembles.52–54 More details about the particular methodologies
employed to analyze phase equilibria or compute phase bound-
aries are available in the Supporting Information.

3 Results

Our first objective is to understand how chain length and con-
formational asymmetry affect the stability of Laves phases, us-
ing the independent control over conformational asymmetry to
adjust the softness of the AB and B′C micelle cores for different
chain lengths. We thus consider systems with chain length asym-
metries 0.5 ≤ NB′C/NAB ≤ 2.0 for conformational asymmetries of
1.00, 1.25, and 1.50 applied to (i) the AB diblock, (ii) the B′C di-
block, and (iii) both the AB and B′C diblocks simultaneously. For
each of these conditions, we performed canonical SCFT simula-
tions of the C14 and C15 Laves phases and compared their free
energies per chain of size NAB (denoted by F/nkBT ) against po-
tential macrophase separation via the common tangent construc-
tion.55 Among the three most common Laves phases (C14, C15,
and C36),49 we consider only C14 and C15 because they are gen-
erally expected to be stable compared to C36,56 and are the only
Laves phases observed in block polymer systems.17,35,37,39–41,57

Candidate phases for construction of the common tangent tie
lines were face-centered cubic spheres (fcc), body-centered cubic
spheres (bcc), and hexagonally-packed cylinders (hex), each with

both AB-rich and B′C-rich varieties. At each condition, the com-
mon tangent representing macrophase separation for comparison
to the Laves phases was taken to be the lowest-energy tangent
among tangents formed by each (AB-rich, B′C-rich) phase pair-
ing. In general, bcc-bcc macrophase separation is the relevant
candidate to compare with the Laves phase, with the exception of
a few cases of fcc-bcc macrophase separation. The analysis was
performed at two segregation strengths, χN = 25 and χN = 28,
chosen based on the neat diblock phase diagrams25 such that a
neat diblock melt with block fraction fi = 0.2 and conformational
asymmetry of εi j = 1.0 or εi j = 1.5, respectively, would be near the
center of the bcc window. Details of this analysis are available in
the Supporting Information.

Figure 2 depicts the lowest energy of the C14 Laves phase rela-
tive to macrophase separation at each of the conditions described
above at χN = 28. Note that the Laves phases are nearly de-
generate in free energy (see Fig. S3) consistent with prior litera-
ture;17,39,46,56,58 thus selection of C14 over C15 for the analysis
is inconsequential. At this segregation strength, the macrophase
separation reference is dominated by coexistence of AB-rich and
B′C-rich bcc morphologies; the only exceptions occur when B′C-
rich fcc overtakes B′C-rich bcc at the highest conformational
asymmetry condition (εi j = 1.5) for very low NB′C/NAB, high-
lighted by the shaded regions in the figure.

The data in Fig. 2 demonstrate the distinct effects of each con-
formational asymmetry on both the stability of the Laves phases
and the chain length asymmetry most favorable to their forma-
tion. Increasing the conformational asymmetry of the AB diblock
(Fig. 2a) generally destabilizes Laves phases while shifting the
minima of the F vs NB′C/NAB toward higher chain length asym-
metry. If instead εBC is increased (Fig. 2b), the opposite effect
is observed with the Laves phases becoming more stable with
increasing conformational asymmetry and the minima of F vs
NB′C/NAB shifting to lower NB′C/NAB. Simultaneously increasing
both εAB and εBC (Fig. 2c) leads to competition between these
two opposing trends, resulting in only minimal changes to F vs
NB′C/NAB.

The stabilizing effect of εBC and the destabilizing effect of
εAB both can be attributed to the softening of micelle cores
and the resultant imprinting on the polyhedral Wigner-Seitz
cell.5,19,23,28–30 As conformational asymmetry increases, faceting
of the micelle core creates more interfacial area, but the ther-
modynamic cost, relative to micelle volume, is lower for more
spherical polyhedra.5,22,23 In neat diblock systems, Frank-Kasper
phases are proposed to form at higher conformational asymme-
try because their particles are, on average, more spherical than in
bcc.17,23 Critically, however, this does not mean that all Wigner-
Seitz polyhedra in a Frank-Kasper phase are more spherical than
those in bcc,17 as shown in Fig. 1c. Rather, the thermodynamic
benefits of the polyhedra that are more spherical (the red Laves
phase particles in Fig. 1) tend to outweigh the costs of those that
are less spherical. In the Laves phases, the smaller micelles (AB)
reside in domains that are less spherical than bcc, while the larger
micelles (B′C) are in more spherical domains.17 Therefore, when
increasing εAB, there is a thermodynamic cost (relative to bcc for-
mation) incurred by deforming the small micelle cores without
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Fig. 2 Minimum free energy of the C14 Laves phase relative to the macrophase separation tangent line at various conformational asymmetries for (a)
the AB diblock, (b) the B′C diblock, or (c) both the AB and B′C diblocks for χABNAB = χBCNB′C = 28.0, χACNAB = 56.0, and fA = fC = 0.20. Shaded
regions indicate those in which B′C-rich fcc is used in the macrophase separation tangent, rather than B′C-rich bcc, which only correspond to εBC = 1.5
in (b) or εAB = εBC = 1.5 in (c). The same analysis performed at χN = 25 exhibits similar results (see Fig. S2).

the larger domains as a counter-balance; likewise, increasing εBC

creates a relative thermodynamic benefit without the opposing
cost of the smaller micelles.

The observed shifts in the locations of the F vs NB′C/NAB min-
ima result from the effects of conformational asymmetry on the
radius of gyration of a diblock copolymer. Increasing εi j at fixed N
increases the micelle volume. When increasing εAB, this swelling
applies to the smaller particles in the Laves structure. Such
changes reduce the volume asymmetry, making the Laves struc-
ture less stable. Increasing the chain length asymmetry compen-
sates somewhat for the unfavorable swelling of AB micelles, re-
sulting in the rightward shift of the curves. The reverse holds
true for B′C: increasing εBC swells the larger particles for a given
value of N, thus promoting excess volume asymmetry and de-
manding reduced length asymmetry in response to stabilize the
Laves phase. In fact, the swelling induced by εBC = 1.50 is suffi-
cient on its own to produce the requisite Laves volume asymmetry,
with the observed minimum occurring at NB′C/NAB = 1.0.

Neither of these trends are evident in Fig. 2c, in which εBC

and εAB are increased together. Instead, simultaneous changes to
both conformational asymmetries obscure the competing effects
described above, resulting in minimal changes to the free-energy
curve. This condition is analogous to the single conformational
asymmetry available in neat diblock melts obscuring the individ-
ual particle effects, and highlights the value of leveraging multiple
conformational asymmetries. The same analysis as that in Fig. 2
was performed at χN = 25 and produced similar results (see Fig.
S2). For both values of χN, the Laves phases had their lowest
relative free energy when εBC = 1.5 and NB′C/NAB = 1.0, so this
condition was selected for further analysis.

Having established the impacts of simultaneously varying con-
formational asymmetry and chain length, we now investigate the
applicability of the simple estimate for the optimal conditions for
Laves phase stability in Equation 2. Figure 3 compares the opti-
mum NB′C/NAB at χN = 25 and χN = 28 from our SCFT results
against values predicted by Equation 2 with varying conforma-
tional asymmetry. Predicting NB′C/NAB from Equation 2 requires
a volume asymmetry α to use as a basis. For this basis, α = 1.48 is

a good choice because the same value has appeared in prior work
as (i) the best volume asymmetry observed from SCFT in con-
formationally symmetric diblock alloys,46 and (ii) the optimum
volume asymmetry for Laves phases obtained from the uncon-
strained diblock foam model.23 Figure 3 reveals two shortcom-
ings in this estimate. First, the model fails to capture the effects of
χN, consistently underestimating the chain length asymmetry for
χN = 28. Such a failure makes sense when considering that the
chains’ radii of gyration will deviate more strongly from the ideal
Gaussian estimate used in our derivation as segregation strength
increases. Second, the model significantly underestimates the im-
pact of εAB. However, when varying εBC, the model shows rea-
sonable agreement with the observed value. Overall, the simple
model of Equation 2 captures the χN = 25 behavior in Figs. 3b
and 3c, but fails to capture the effects of segregation strength or
accurately reflect the behavior in Fig. 3a.

We now continue our investigation with a thorough analysis of
the phase behavior of the diblock alloy system with NB′C/NAB =

1.0, εAB = 1.0, and εBC = 1.5, identified prior to our discussion
of Equation 2 as most effectively stabilizing the Laves phases
amongst all of the systems we studied. To generate the phase
diagram in Fig. 4, most phase boundaries were established first
using the common-tangent construction55 and canonical ensem-
ble SCFT calculations. In addition to the C14, C15, fcc, bcc, and
hex phases already described, 15 additional competitors were
included in these calculations. The competing phases are in-
spired by a 2014 study of B1AB2CB3 multiblock terpolymers by
Xie et al. 59 and are identical to those chosen by Magruder et al. 46

for their block polymer alloys study. A list of all phases con-
sidered in the calculations is included in Table S1. Subsequent
grand canonical calculations were used to resolve the region near
each invariant point, where grand canonical ensemble’s higher ac-
curacy for problems involving macrophase separation53 substan-
tially benefits the identification of the three-phase coexistence at
these points. Grand canonical calculations were also used to map
the phase boundaries near the ODT, where both canonical SCFT
calculations and common tangent calculations started to suffer
from failed convergence. C14 was used to represent the Laves
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Fig. 3 The chain length asymmetry NB′C/NAB at the F vs. NB′C/NAB minima at χN = 25 (Fig. S2) and χN = 28 (Fig. 2), compared to the chain length
asymmetry predicted by Equation 2 for α = 1.48 when (a) εAB is varied, (b) εBC is varied, and (c) εAB and εBC are varied together. In (a), no minimum
could be clearly observed for εAB = 1.5, as the lowest observed free energy occurred at NB′C/NAB = 2.0, which was the highest value considered.

Fig. 4 (a) Phase diagram for an AB/B′C alloy with NB′C/NAB = 1.0, fA = fC = 0.20, εAB = 1.0, εBC = 1.5, and assuming purely enthalpic χ values
such that χACNAB = 2(χN) at all T and (b) a detailed view of the Laves phase field within that phase diagram. The reference temperature, T0, was
chosen to correspond to χN = 30. Non-linear segments of the phase diagram are drawn using cubic splines fit to the sampled data. A companion
phase diagram showing all of the points where SCFT calculations were performed is provided in Fig. S4.
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phases while mapping the phase diagram. A detailed description
of the canonical and grand canonical methodologies are included
in the Supporting Information.

The phase diagram in Fig. 4a bears substantial qualitative re-
semblance to that presented by Magruder et al. for the conforma-
tionally symmetric case,46 with many characteristics reminiscent
of metal alloy phase diagrams. In each case, the diblock alloys dis-
play a eutectic transition from a disordered liquid to coexistence
between AB-rich and B′C-rich fcc phases, as well as a peritectoid
transition to a Laves phase field upon cooling from coexistence
of simple sphere phases (fcc or bcc). In the conformationally
asymmetric case, however, the temperature difference between
the eutectic and peritectoid points is greatly reduced when com-
pared to prior results for a conformationally symmetric system.46

The peritectoid transitions of the two systems also differ on which
simple sphere phase overtakes the Laves phase: bcc in the confor-
mationally symmetric case,46 and fcc here. As also noted by Ma-
gruder et al.,46 experimental realization of this narrow eutectic to
peritectoid transition is unlikely, given that fluctuation effects are
expected to destroy the high-temperature regions of the diagram.

Below the peritectoid point, the Laves phase field widens as
temperature decreases, and Laves coexistence with AB-rich and
B′C-rich fcc phases is overtaken by coexistence with the corre-
sponding bcc phases. At χN = 28, the highest segregation strength
tested by Magruder et al.,46 we find a Laves phase field with a
width of 0.006 in φAB. This exceeds the 0.002 width in φAB re-
ported previously,46 consistent with the expectation that confor-
mational asymmetry stabilizes Laves phases in the blend, while
still possessing the narrow width characteristic of a phase field.
The phase field reaches a maximum width at χN = 29.62 where
the AB-rich bcc window closes, and the Laves phase starts to co-
exist with the AB-rich hex phase. At this segregation strength, the
AB diblock would naturally form a hex phase in the neat melt. As
the system is cooled further, conversion of the cylinder-forming
AB diblock into spheres becomes increasingly unfavorable. The
Laves phase field thus closes in a eutectoid transition to coexis-
tence of B′C-rich bcc and AB-rich hex, which dominates the phase
diagram at lower temperatures. The shape of the Laves phase
field is difficult to resolve in Fig. 4a, so we include Fig. 4b to
focus on the Laves window and help illuminate these details.

Compared to the neat melt conditions, both the AB-rich and
B′C-rich fcc phase become stable over a much broader range of
χN with the introduction of minority component. Aggregation of
the minority component at the octahedral void of the structure
has been shown to stabilize the fcc phases,60,61 thus producing
this effect. The difference in conformational asymmetry of the
two diblocks results in substantial asymmetries in the phase dia-
gram, particularly with regard to AB-rich and B′C-rich phase tran-
sitions. Conformational asymmetry shifts the phase boundaries of
the neat B′C diblock relative to that of the AB diblock.1,22,24–27

These morphological differences between the neat diblock melts
carry over into the blended behavior, resulting in the asymme-
tries observed in Fig. 4. Of particular interest is the absence of
any B′C-rich hex formation. The presence of hex on the AB-rich
side of the diagram results in a rapid transition from a gradually
broadening Laves phase field to a rapidly narrowing one.

Fig. 5 The Laves phase window for NB′C/NAB = 1.4, fA = fC = 0.20, εAB =

εBC = 1.5, and assuming purely enthalpic χ values such that χACNAB =

2(χN). The reference temperature T0 was chosen to correspond to χN =

30. A peritectoid point and its associated tie line are included as a guide
for the eye, but the position is interpolated from common-tangent data
at χN = 25.5 and χN = 26, and are therefore marked with a dashed line
and open data marker to reflect the imprecision of this estimate.

The narrowing of the Laves phase field at the AB-rich bcc-hex
transition suggests that, without competition from hex phases,
conformationally asymmetric binary diblock alloys may exhibit a
Laves phase field out to strong segregation. In order to test this
speculation, we need to select a system in which neither diblock
undergoes a transition to hex in the neat melt. From Fig. 2c, we
see that when both diblocks have a conformational asymmetry of
1.5, the Laves phase remains stable when the ratio of the degrees
of polymerization is used to induce volume asymmetry. We also
know that a neat diblock with ε = 1.5 and f = 0.2 will not assem-
ble into hex below χN = 40,25 which is an approximate upper
bound for the ability to converge Frank-Kasper phase SCFT calcu-
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lations with our software. Thus, we choose to further analyze an
alloy system where εAB = εBC = 1.5 and NB′C/NAB = 1.4, which
corresponds with the lowest relative free energy for Laves phases
at the desired conformational asymmetry from our testing.

Using the same set of competing phases as for Fig. 4, the Laves
phase field was mapped for this alloy. Canonical ensemble calcu-
lations were used in a common tangent analysis to identify the
stable region for the Laves phase. As can be seen in Fig. 5,
the Laves window remains open and continues to broaden up
to χN = 40. The Laves window also shifts to lower φAB upon
cooling, consistent with the trend seen in the work of Magruder
et al. for conformationally symmetric alloys where NB′C/NAB was
also used to create distinct particle sizes.46 It is also interesting
to note that at the low-temperature end of Fig. 5, the AB-rich
(right) side of the Laves window is much more nearly vertical
than on the B′C-rich (left) side. Diblocks with the same block
fraction and conformational asymmetry should exhibit the same
phase behavior in the neat-melt limit; one might expect this sym-
metry to carry into the blending behavior and, likewise, into the
Laves coexistence boundaries. However, both the deflection of the
Laves window to lower φAB and the differing verticality of the co-
existence boundaries demonstrate that this is not the case. This
difference results from the asymmetry in chain length between
the AB and B′C diblocks and resultant differences in their ability
to pack in the interstitial sites of the bcc phases.

4 Conclusions
Using the Frank-Kasper Laves phases as a case study, we have
demonstrated the ability of block polymer alloys to decouple the
potentially competing effects of conformational asymmetry in dif-
ferent particle types, thereby probing the subtleties of its role in
phase selection. In Laves phases, this decoupling revealed that in-
creasing conformational asymmetry in the smaller, less spherical
Laves particles has a detrimental effect on Laves phase stability,
while increasing it in the larger, more spherical micelles is benefi-
cial. The absence of significant changes to Laves stability when
conformational asymmetry is simultaneously increased in both
particles highlights how information can be obscured by compe-
tition when only a single conformational asymmetry is available
– such as in a neat diblock melt.

Our results also demonstrate the value of independent con-
formational asymmetry control as a tool for designing self-
assembling block polymer systems. Not only do we find that in-
creasing conformational asymmetry in the large particles stabi-
lizes the Laves phases, we also find that this effect is sufficient to
produce the volume asymmetry required for Laves phase forma-
tion, without the need for asymmetry in the degrees of polymer-
ization of the constituent chains, and results in a lower relative
free energy for the Laves phases than was seen in the conforma-
tionally symmetric case. The phase diagram of this system bears
a striking resemblance to that reported for the conformationally
symmetric case,46 with a slightly broader Laves window and a
greater variety of phases coexisting with the Laves phase. With
increasing segregation strength, increasing preference for cylin-
der formation by one of the diblocks causes cylinders to rapidly
out-compete the Laves phases, thus closing the Laves phase field.

We are further able to leverage conformational asymmetry to
avoid this cylinder formation and stabilize the Laves phases out
to high segregation strength, suggesting the potential to extend
the Laves phase field out to the strong segregation limit by bal-
ancing chain composition, degrees of polymerization, and confor-
mational asymmetries.

Based on the results presented here, and in prior work,46 a
substantial barrier to practical application of this methodology is
likely to be the large windows of predicted macrophase separa-
tion. Introduction of some compatibilizing mechanism, such as
hydrogen bonding between the corona blocks,62 to favor greater
contact between the distinct micelle types may further stabilize
the Laves phase in an alloy-type blend. Although the literature on
diblock copolymer alloys has so far focused on Laves phases, the
methodology will likely find utility tuning individual domains in
other Frank-Kasper phases or other morphologies, particularly if
mechanisms can be found to reduce the size of macrophase sepa-
ration windows.
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