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Equilibrium States Corresponding to Targeted Hyperuni-
form Nonequilibrium Pair Statistics

Haina Wang,a and Salvatore Torquato,∗b

The Zhang-Torquato conjecture [Phys. Rev. E 101, 032124 (2020)] states that any realizable pair
correlation function g2(r) or structure factor S(k) of a translationally invariant nonequilibrium system
can be attained by an equilibrium ensemble involving only (up to) effective two-body interactions.
To test this conjecture, we consider two singular nonequilibrium models of recent interest that
also have the exotic hyperuniformity property: a 2D “perfect glass” and a 3D critical absorbing-state
model. We find that each nonequilibrium target can be achieved accurately by equilibrium states with
effective one- and two-body potentials, lending further support to the conjecture. To characterize
the structural degeneracy of such nonequilibrium-equilibrium correspondence, we compute higher-
order statistics for both models, as well as those for a hyperuniform 3D uniformly randomized lattice
(URL), whose higher-order statistics can be very precisely ascertained. Interestingly, we find that
the differences in the higher-order statistics between nonequilibrium and equilibrium systems with
matching pair statistics, as measured by the “hole” probability distribution, provides measures of the
degree to which a system is out of equilibrium. We show that all three systems studied possess the
bounded-hole property, and that holes near the maximum hole size in the URL are much rarer than
those in the underlying simple cubic lattice. Remarkably, upon quenching, the effective potentials for
all three systems possess local energy minima with stronger forms of hyperuniformity compared to
their target counterparts. Our work is expected to facilitate the self-assembly of tunable hyperuniform
soft-matter systems.

1 Introduction
Probing and characterizing structural properties of many-body
systems in and out of equilibrium is a crucial task in the under-
standing of a large variety of physical, chemical and biological
phenomena.1–5 An outstanding challenge is the determination of
effective interactions in many-body systems that accurately yield
equilibrium states with prescribed pair statistics. Solving such in-
verse problems is a powerful way to tackle the unsolved problem
concerning the realizability of prescribed functional forms of pair
statistics by many-body systems.6–11

Such investigations also enable one to probe systems with iden-
tical pair statistics but different higher-body statistics, which is
expected to shed light on the well-known degeneracy problem
of statistical mechanics.12–14 Moreover, such effective potentials
can be used to model macromolecules and solutions,15;16 and
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to design nanoparticles that self-assemble into desired structures,
thereby facilitating material discovery.17–20

Recently, Zhang and Torquato conjectured that any realizable pair
correlation function g2(r) or structure factor S(k) correspond-
ing to a translationally invariant nonequilibrium system can be
attained by an equilibrium ensemble involving only one- and
two-body effective interactions at positive temperatures.11 Test-
ing the conjecture requires the precise determination of the ef-
fective interactions for a spectrum of target systems, including
those with the exotic hyperuniform property.21;22 Disordered hy-
peruniform many-body systems, which can be solid and fluid
states, are unusual amorphous states of matter that lie between
a crystal and liquid. They are like perfect crystals in the way
they suppress large-scale density fluctuations, and yet are like
liquids or glasses in that they are statistically isotropic with no
Bragg peaks;21;22 see Sec. 2.2 for precise definitions. Disor-
dered hyperuniform states play vital roles in a variety of dif-
ferent contexts. For example, disordered stealthy ground states
have been discovered23–25 corresponding to under soft, long-
ranged interactions, which are highly degenerate and have the
“bounded-hole” property, which is a singular characteristic for a

1–15 | 1

Page 1 of 15 Soft Matter



disordered system.26;27 Network structures derived from disor-
dered stealthy point patterns can achieve complete photonic band
gaps and have novel optical properties that were previously not
thought to be possible.28;29 Disordered hyperuniform states also
arise in the eigenvalues of random matrices (such as the Gaus-
sian unitary ensemble),30–32 ground states of free fermions31,
as well as one-component plasmas at positive temperatures,33–35

all of which are exotic fluid states in which the particles in-
teract Coulombically.36 Other examples include including glass
formation,22;37;38 jamming,39–43 rigidity,38;44 biology,45;46 lo-
calization of waves and excitations,47–50 antenna or laser ar-
ray designs,51 self-organization,52–54 fluid dynamics,55–57 quan-
tum systems,31;58–61 and pure mathematics.62–66 Because disor-
dered hyperuniform states combine the advantages of isotropy
on the local scale and the suppression of density fluctuations on
large scales, they can be endowed with novel physical proper-
ties.22;28;29;37;38;45;46;52–54;67

While Zhang and Torquato introduced an algorithm to draw equi-
librium classical particle configurations from canonical ensembles
with one- and two-body interactions that correspond to targeted
functional forms for g2(r) or S(k), the algorithm does not gener-
ate explicit forms of the potentials.11 Very recently, Torquato and
Wang developed an inverse methodology that determines effec-
tive interactions with unprecedented accuracy.68 Using this pro-
cedure, they demonstrated the realizability of g2(r) for all r and
S(k) for all k for two different nonequilibrium models, including a
two-dimensional (2D) nonhyperuniform random sequential addi-
tion process and a 3D hyperuniform “cloaked” uniformly random-
ized lattice (URL).68 However, the Zhang-Torquato conjecture re-
mains largely untested.

In this paper, we utilize this precise inverse methodology68 to
further test and study the Zhang-Torquato conjecture for unusual
nonequilibrium hyperuniform systems. Hyperuniform targets are
particularly challenging because at positive temperature T they
require a long-ranged pair interaction v(r) that must be balanced
by one-body potentials to stabilize the equilibrium system.22

Prior to the development of our inverse methodology,68

predictor-corrector methods,69–72 such as Iterative Boltzmann in-
version (IBI)71 and iterative hypernetted chain inversion (IH-
NCI),72;73 were regarded to be the most accurate inverse pro-
cedures. Both IBI and IHNCI begin with an initial discretized
(binned) approximation of a trial pair potential. The trial pair po-
tential at each binned distance is iteratively updated to attempt
to reduce the difference between the target and trial pair statis-
tics. However, IBI and IHNCI cannot treat long-ranged pair in-
teractions required for hyperuniform targets, nor do they con-
sider one-body interactions that stabilize hyperuniform equilib-
rium states68; see Sec. 2.2 for details. These algorithms also
accumulate random errors in the binned potentials due to simu-
lation errors in the trial pair statistics, and thus do not achieve
the precision required to probe realizability problems. Moreover,
because all previous methods do not optimize a pair-statistic “dis-
tance” functional, they are unable to detect poor agreement be-
tween the target and trial pair statistics that may arise as the sim-

ulation evolves, leading to increasingly inaccurate corresponding
trial potentials, as demonstrated in Ref. 68.

The inverse methodology presented in Ref. 68 improves on pre-
vious procedures in several significant ways. It utilizes a pa-
rameterized family of pointwise basis functions for the potential
function at T > 0, whose initial form is informed by small- and
large-distance behaviors dictated by statistical-mechanical the-
ory. Pointwise potential functions do not suffer from the accu-
mulation of random errors during a simulation, resulting in more
accurate interactions.68 Since it has recently been established74

that inverse methods that target only g2(r) or only S(k) for a lim-
ited range of r or k may generate effective potentials that are
distinctly different from the unique potential dictated by Hen-
derson’s theorem,75 our methodology68 minimizes an objective
function that incorporates both the target pair correlation func-
tion g2(r) and structure factor S(k) so that both the small- and
large-distance correlations are very accurately captured. For hy-
peruniform targets, our methodology is able to optimize the re-
quired long-ranged pair potential76 as well as the neutralizing
background one-body potential;68 see Sec. 4 for details.

To assess the accuracy of inverse methodologies to target pair
statistics, we introduced68 the following dimensionless L2-norm
error:

E =
√

Dg2 +DS, (1)

where Dg2 and DS are L2 functions, given by

Dg2 = ρ

∫
Rd
[g2,T (r)−g2,F (r;a)]2dr, (2)

DS =
1

ρ(2π)d

∫
Rd
[ST (k)−SF (k;a)]2dk, (3)

where g2,F (r;a) and SF (k;a) represent the final pair statistics at
the end of the optimization, which depend on the vector of po-
tential parameters a. We have previously shown that our method
is able to treat challenging near-critical and hyperuniform tar-
gets,68 which previous methods cannot do. Thus, it is the only
available method to determine effective interactions for nonequi-
librium hyperuniform pair statistics. Moreover, in cases where IBI
and IHNCI are able to achieve optimized potentials, e.g., for equi-
librium target pair statistics without long-range interactions, our
inverse methodology generally yields L2-norm errors (1) that are
an order of magnitude smaller than those via previous methods,
and reaches the precision required to recover the unique potential
dictated by Henderson’s theorem.75

We study two models of recent interest from hitherto unexplored
hyperuniformity classes, including a 2D perfect glass38 and a 3D
critical absorbing-state model;2;52 see Sec. 3 for detailed descrip-
tions of the models and Sec. 2.2 for the definition of hyperunifor-
mity classes. We show that the pair statistics of both systems can
be achieved by effective potentials, which lend further support to
the Zhang-Torquato conjecture. Such nonequilibrium-equilibrium
correspondences in light of the conjecture have important conse-
quences, including a capacity to explore the thermodynamic and
dynamic properties of the effectively equivalent equilibrium sys-
tems, such as phase behaviors, ground states and inherent struc-
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tures, i.e. local energy minima.77 Inherent structures are prop-
erties of the energy landscape that are used to estimate vari-
ous thermodynamic and dynamic properties, including heat ca-
pacity, melting point and glass transition temperature.78;79 Fur-
thermore, structural properties of the equilibrium states, such as
nearest-neighbor probability distribution functions and percola-
tion threshold, enable one to infer these nontrivial attributes of
the nonequilibrium states, which are crucial in determining me-
chanical and electronic properties of materials.80

The aforementioned nonequilibrium-equilibrium correspondence
also enables one to probe the degeneracy of structures with the
same pair statistics.12–14 It is known that for a homogeneous
many-body system, one- and two-body correlations are insuffi-
cient to uniquely determine the higher-body correlation functions
g3,g4, ....9 Equilibrium and nonequilibrium systems that possess
matching pair statistics must have different higher-body statistics,
and such differences reflect the specific dynamics of the nonequi-
librium state.74

To study the structural degeneracy of the nonequilibrium-
equilibrium correspondence, we compute higher-order statistics
for the perfect glass and critical absorbing-state models, as well
as those for a hyperuniform 3D cloaked URL,81 whose higher-
order statistics can be determined with much higher precision
than those of typical fluids. The effective potential for the URL has
been previously determined, but the physical properties of this
nonequilibrium-equilibrium pair have not yet been thoroughly
studied.68 We consider the readily computable “hole” probability
density functions EV (r) and GV (r), which are related to the proba-
bility of finding holes of radius r void of particles and reflect infor-
mation about all n-particle correlation functions g2,g3,g4, . . . ;82

see Sec. 2.3 for precise definitions. We show that each model has
the “bounded-hole” property,27;44 i.e., the maximum hole size is
bounded, and differences of hole probability functions between
the nonequilibrium and equilibrium systems provides a useful
nonequilibrium index. To study the behavior of the hole proba-
bility functions on approach to the maximum hole size, we intro-
duce a precise algorithm to compute these functions for the target
URL. We apply this algorithm to show that holes near the maxi-
mum hole size in the target URL are much rarer than those in the
underlying simple cubic (SC) lattice.

To study the effect of quenching on the effectively equivalent
equilibrium systems, we compute the inherent structures77 of the
effective potentials for all three models. We find that all effective
potentials yield inherent structures that are of stronger forms of
hyperuniformity compared to those of their corresponding target
systems. Our findings are expected to facilitate the self-assembly
of tunable hyperuniform soft-matter systems.

We begin by providing basic definitions and background in Sec.
2. In Sec. 3, we describe the model nonequilibrium hyperuni-
form systems. Section 4 provides a sketch our inverse method-
ology.68 Section 5 presents results for the equilibrium systems
corresponding to the nonequilibrium pair statistics, including the
optimized potential and configurations (Sec. 5.1), higher-order
statistics (Sec. 5.2) and inherent structures (Sec. 5.3). We pro-

vide concluding remarks in Sec. 6.

2 Preliminaries and definitions

2.1 Pair statistics
We consider many-particle systems in d-dimensional Euclidean
space Rd that are completely statistically characterized by the n-
particle probability density functions ρn(r1, ...,rn) for all n ≥ 1.83

In the case of statistically homogeneous systems, ρ1(r1) = ρ and
ρ2(r1,r2) = ρ2g2(r), ρ is the number density in the thermody-
namic limit, g2(r) is the pair correlation function, and r = r2 −r1.
If the system is also statistically isotropic, then g2(r) is the radial
function g2(r), where r = |r|. The ensemble-averaged structure
factor S(k) is defined as

S(k) = 1+ρ h̃(k), (4)

where h(r) = g2(r)− 1 is the total correlation function, and h̃(k)
is the Fourier transform of h(r).

For a single periodic configuration containing number N point
particles at positions r1,r2, . . . ,rN within a fundamental cell F of
a lattice Λ, the scattering intensity I (k) is defined as

I (k) =
∣∣∑N

i=1 e−ik·ri
∣∣2

N
. (5)

For an ensemble of periodic configurations of N particles within
the fundamental cell F , the ensemble average of the scattering
intensity in the infinite-volume limit is directly related to structure
factor S(k) by

lim
N,VF→∞

⟨I (k)⟩= (2π)d
ρδ (k)+S(k), (6)

where VF is the volume of the fundamental cell and δ is the Dirac
delta function.22 In simulations of many-body systems with finite
N under periodic boundary conditions, Eq. (5) is used to compute
S(k) directly by averaging over configurations.

2.2 Hyperuniformity
A hyperuniform point configuration in d-dimensional Euclidean
space Rd possesses a structure factor S(k) that goes to zero as
the wave number k vanishes, i.e., lim|k|→0 S(k) = 0, which corre-
sponds to a local number variance σ2

N(R) in a spherical window
of radius R that grows slower than Rd .21;22 For hyperuniform sys-
tems whose structure factor is given by a power-law in the vicinity
of the origin, i.e.,

S(k)∼ |k|α , |k| → 0. (7)

The value of the exponent α > 0 determines three different
“classes” of hyperuniformity,21;22;84 i.e.,

σ
2(R)∼


Rd−1, α > 1 (class I)

Rd−1 lnR, α = 1 (class II)

Rd−α , 0 < α < 1 (class III).

(8)

Stealthy hyperuniform systems, which include all perfect crystals
and unusual disordered states,26;85 are defined to be those that
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possess zero intensity of the structure factor for a set of wavevec-
tors around the origin,85 i.e.,

S(k) = 0, for 0 ≤ |k| ≤ K, (9)

where K > 0. They are class I hyperuniform states in which α →
∞.

To achieve equilibrium hyperuniform systems at positive T , which
is thermodynamically incompressible, one requires a long-ranged
pair interaction,22 i.e.,

v(r)∼

{
r−(d−α), d ̸= α

ln(r), d = α.
(10)

A notable example of which is the one-component plasma (OCP),
in which identical point charges interacting via the Coulomb po-
tential in Rd are immersed in a rigid, uniform background of op-
posite charge to ensure overall charge neutrality.35 Such long-
ranged potentials can be precisely determined via our inverse
methodology; see Sec. 4.

2.3 Higher-order statistics
Due to the complexity of computing and storing full pointwise
information of all n-particle correlation functions g3,g4,g5, . . . ,
this work considers higher-order statistics that are readily com-
putable, including the conditional “hole” probability density func-
tion GV (r) and g3 for special triangles.

Given that a spherical region ΩV (r) of radius r is empty of parti-
cles, the quantity ρs1(r)GV (r)dr is the probability of finding par-
ticles in a spherical shell of volume s1(r)dr, where s1(r) is the
surface area of a d-dimensional sphere of radius r. The function
GV (r) can be expressed in terms of integrals over all the n-particle
correlation functions g2,g3,g4, . . . .82 Importantly, GV (r) is directly
related to the void-exclusion probability function or “hole” proba-
bility function EV (r), which gives the probability of finding a ran-
domly located spherical region of radius r empty of particles,80

via the relation

GV (r) =−
E ′

V (r)
ρs1(r)EV (r)

. (11)

A many-body system possesses the bounded-hole property if EV (r)
has compact support, i.e., if the maximum hole radius rc is
bounded. By contrast, typical liquids possess holes of arbitrarily
large size.86 The bounded-hole property characterizes disordered
“stealthy” hyperuniform states27;44;87 and random sequential ad-
dition at saturation,88;89 but has been hitherto unexplored for
perfect glasses and absorbing-state models.

We also study the three-body statistics for small triangles, and
especially the distribution of bond angles θ . Thus, we express g3

in terms of θ , i.e.,

g3(r1,r2,θ) =
ρ3

(
r1,r2,

√
r2

1 + r2
2 −2abcos(θ)

)
ρ3 , (12)

where ρ3(r1,r2,r3) is probability density of finding three particles
that form a triangle with side lengths r1,r2 and r3.

3 Nonequilibrium hyperuniform models
Here, we describe the three nonequilibrium target models we
consider, i.e., perfect glasses, critical absorbing-state models and
URL, as well as the method of generating their corresponding con-
figurations. They are hyperuniform systems of recent interest and
have important applications in photonics engineering,90 packing
problems,91 active matter92 and geoscience.93

3.1 Perfect glasses
Perfect glasses are exotic amorphous states of matter with pos-
itive bulk and shear moduli that banish any crystalline or qua-
sicrystalline phases and form unique (nondegenerate) disordered
states up to trivial symmetries.38;94 These states can be regarded
as prototypical glasses since they are out of equilibrium, maxi-
mally disordered, hyperuniform, mechanically rigid with infinite
bulk and shear moduli, and remarkably prohibit the formation of
crystals and quasicrystals from the ground-state manifold due to
configuration-space trapping. The pair statistics of certain perfect
glasses can by realized by equilibrium canonical ensembles,11 but
the explicit forms of the underlying potentials have heretofore re-
mained unknown.

A perfect glass is created by cooling a many-body system from
high to zero T with a total potential energy ΦN(rN):38

Φ(rN) = ∑
0<|k|<K

w̃(k) [S(k)−S0(k)]2 , (13)

where rN denotes the positions of the N particles in Rd that
are subject to optimization, K is the magnitude of the largest
constrained wavevector, w̃(k) is a weight function, and S0(k) is
the desired small-k behavior of the perfect-glass structure factor.
The number of independently constrained wavevectors divided
by the total number of degrees of freedom, d(N − 1), is a pa-
rameter χ that measures how constrained is the system. Here,
we study a class II hyperuniform perfect glass with the exponent
α = 1. Following Ref. 38, we choose the parameters N = 2500,
w̃(k) = (K/|k|−1)3, S0(k) = |k|/K, χ = 5.1 and K = 10/a, where a
is a length scale taken to be unity. These parameters are chosen
so that the position of the first peak in the perfect-glass g2(r) is
close to r = 1. We generate perfect-glass configurations by finding
local minima of Φ(rN) using the low-storage BFGS algorithm,95

starting from Poisson initial configurations; see Ref. 38 for further
details.

3.2 Critical absorbing states
Random organization models reveal how chaotically-driven
nonequilibrium many-body systems can self-organize.2;52;96 Such
models have been applied to study the dynamic phase transition
of periodically sheared particles at the onset of irreversibility.97

Hexner and Levine showed that such critical absorbing states are
class III disordered hyperuniform with α = 0.25 in three dimen-
sions.52

Following Ref. 52, we generate critical-absorbing states as fol-
lows: Starting from a Poisson initial configuration of N spherical
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particles with unit diameter D, a particle is deemed “active” if it
overlaps with another particle. In each iteration, all active parti-
cles are given a randomly oriented displacement, whose magni-
tude is uniformly distributed on [0,σD/2]. The process is repeated
until an absorbing state is reached where no particles overlap, re-
sulting in a packing of packing fraction φ = ρπD3/6, or until 106

iterations are performed, implying that the system is an active
state. The critical state with packing fraction φc is determined
such that half of the initial configurations with ρ = 6φc/(πD3)

reach absorbing states, while the rest are active states. In this
work, we choose N = 105 and σ = 0.1, and estimate φc to be
0.205±0.0005.

3.3 Uniformly randomized lattices
Perturbed lattices serve as important models in cosmology, crys-
tallography and probability theory.98;99 Uniformly randomized
lattices are simple perturbed lattices that are class I hyperuniform
with α = 2.81 For 3D URL models, each lattice point in a lattice,
here taken to be the SC lattice Z3, is displaced by a random vec-
tor that is uniformly distributed on [−b/2,b/2)3, where the scalar
factor b > 0 is the perturbation strength. By definition, the lattice
constant is set to be unity. It has been shown that the structure
factor for the URL point process contains Bragg peaks that coin-
cide with the unperturbed lattice as well as a diffuse part such
that limk→0 S(k) ∼ k2.81;100;101 Remarkably, Klatt et al. showed
that the Bragg peaks in the structure factors vanish completely, or
become “cloaked”, when b takes integer values.81

In this work, we study the 3D cloaked URL with b = 1. whose ef-
fective potential has a Coulombic asymptotic form, i.e., v(r;a) ∼
1/r, as we have previously determined.68 Due to the indepen-
dence of the particles, URLs are ideal models to study statistical
structural descriptors, as they are more readily computable com-
pared to models with correlated particles. As we will show in
Sec. 6, EV (r) [and thus GV (r)] for this model can be numerically
evaluated to very high precision via our Monte-Carlo integration
technique.

4 Inverse methodology
Here we sketch the methodology that we have recently intro-
duced68 to determine (up to) pair interactions that yield canoni-
cal ensembles that very accurately match both target g2(r) for all
r and target S(k) for all k. Importantly, for a statistically homo-
geneous system equilibrated under up to two-body interactions,
this technique is able to extract the unique target-generating pair
potential dictated by Henderson’s theorem75. The reader is re-
ferred to Ref. 68 for a comprehensive description of the inverse
methodology.

The methodology optimizes a parameterized isotropic potential
function v(r;a) that can be written as a sum of n smooth pointwise
basis functions, i.e.,

v(r;a) = ε

n

∑
j=1

f j(r/D;a j), (14)

where f j(r/σ ;a j) is the jth basis function, a j is a vector of

parameters (generally consisting of multiple parameters), a =

(a1,a2, . . . ,an) is the “supervector” parameter whose components
are a collection of all components of all a j ’s, ε sets the energy
scale and D is a characteristic length scale, which is taken to
be unity. Examples of the basis functions include the hard core
as well as superexponential-, exponential-, Yukawa- and power-
law-damped oscillatory functions. The components of a j are of
four types: dimensionless energy scales ε j, dimensionless dis-
tance scales σ j, dimensionless phases θ j, as well as dimensionless
exponents p j.

The initial form of v(r;a) is informed by the small- and large-
distance behaviors of the target pair statistics g2,T (r) and ST (k),
as dictated by statistical-mechanical theory.22 For hyperuniform
targets, the large-r behavior of the potential is determined by Eq.
(10). To obtain an initial form of the small- and intermediate-r be-
havior of v(r;a), we numerically fit the hypernetted chain (HNC)
approximation83 for the target pair statistics using the aforemen-
tioned forms of basis functions. The HNC approximation is given
by

βvHNC(r) = hT (r)− cT (r)− ln[g2,T (r)], (15)

where hT (r) = g2,T (r)− 1 and cT (r) is the target direct correla-
tion function, whose Fourier transform is given by the Ornstein-
Zernike integral equation102

c̃T (k) =
h̃T (k)
ST (k)

. (16)

Next, a nonlinear optimization procedure95 is used to minimize
an objective function Ψ(a) based on the distance between target
and trial pair statistics in both direct and Fourier spaces:

Ψ(a) = ρ

∫
Rd

wg2(r)
(
g2,T (r)−g2(r;a)

)2 dr

+
1

ρ(2π)d

∫
Rd

wS(k)(ST (k)−S(k;a))2 dk,
(17)

where g2,T (r) and ST (k) are target pair statistics, wg2(r) and wS(k)
are weight functions, and g2(r;a) and S(k;a) correspond to an
equilibrated N-particle system under v(r;a) at a dimensionless
temperature kBT/ε = 1, which can be obtained from Monte-Carlo
(MC) (used here with N = 500) or molecular dynamics simula-
tions under periodic boundary conditions. The optimization pro-
cedure ends when Ψ(a) is smaller than some small tolerance ε.
If convergence is not achieved, then a different set of basis func-
tions is chosen and the optimization process is repeated. If con-
vergence is achieved, we check whether the effective potential ro-
bustly generates the target pair statistics for systems larger than
those used during the optimization process. We performed MC
simulations under the optimized potentials with N = 2500 for 2D
systems and N = 9261 for 3D systems, and utilized the dimen-
sionless L2 functions [(2) and (3)] and the dimensionless total
L2-norm error (1) between target and trial pair statistics to assess
how close these quantities match.

For hyperuniform targets, v(r;a) has the long-ranged asymptotic
form given by Eq. (10), which can be regarded as a generalized
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Coulombic interaction of “like-charged” particles.22 Thus, one re-
quires a neutralizing background one-body potential to maintain
stability.22;33–35* Importantly, to perform the MC simulations, the
total potential energy involving the long-ranged one- and two-
body potentials is efficiently evaluated using the Ewald summa-
tion technique.103 It is noteworthy that the optimized potentials
via our methodology generally yields pair statistics that accurately
match their corresponding targets with total L2-norm errors that
are an order of magnitude smaller than that of previous methods,
in cases where previous methods are applicable.68

5 Results for the nonequilibrium-equilibrium corre-
spondence

5.1 Optimized equilibrium states
Here, we presents the effective potentials and the pair statistics
for the equilibrium states corresponding to the target nonequilib-
rium states. Appendix B gives the explicit functional forms of the
optimized potentials.

Figure 1 shows the configurations of the target and optimized
systems for the perfect glass as well as the corresponding effec-
tive pair potential and pair statistics. As shown in Fig. 1(a)
and (b), the nonequilibrium and equilibrium configurations are
visually very similar. The optimized effective pair potential has
the expected asymptotic behavior v(r) ∼ 1/r, as dictated by Eq.
(10). The short-ranged part of the potential [Fig. 1(c)], i.e.,
v(r)− 4.572/r, contains two local minima at pair distances 1.20
and 2.10, respectively. Figures 1(d) and (e) show g2(r) and S(k),
respectively, for the target and optimized systems with N = 2500.
Figure 1(f) depicts the structure factors on a log-log scale, show-
ing that they are linear in k at small k. We find that the L2

functions [Eqs. (2)–(3)] are Dg2 = 0.0030, DS = 0.0030 and the
L2-norm error (1) is E = 0.077, showing that the pair statistics
of the perfect glass are in excellent agreement with those of the
optimized equilibrium system in both direct and Fourier spaces.
Note that these errors are an order of magnitude smaller than the
errors obtained via IHNCI for typical equilibrium dense liquids.68

Remarkably, these results imply that one can reproduce structures
that arise from two-, three and four-body interactions via effective
pair interactions.

Figure 2 presents the configurations, effective pair potential
and pair statistics of the target and optimized systems for the
absorbing-state model. The target and optimized configurations
closely resemble each other [Fig. 2(a) and (b)]. The effective
pair potential [Fig. 2(c)] contains a hard core and a sharp min-
imum at the sphere diameter r = 1. It decays asymptotically as
v(r) ∼ r−2.75, which yields the correct the k0.25 behavior of S(k)
at small k. We see that both g2(r;a) and S(k;a) with N = 9261
are in excellent agreement with those of the target system (Fig.
2(d)–(f)), as manifested by the small values of the L2 functions
[Eqs. (2)–(3)] and the L2-norm error (1), given by Dg2 = 0.0020,
DS = 0.0022 and E = 0.066.

* Such background terms have been employed to study numerically the one-
component plasma 33;34 and the Dyson log gas. 35
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Fig. 1 (a) A 2,500-particle configuration of the 2D perfect glass. (b)
A 2,500-particle configuration of the optimized equilibrium state corre-
sponding to the perfect glass. (c) Short-ranged part of the optimized
pair potential. (d) Targeted and optimized pair correlation functions
with N = 2500. Here we find that the L2 norm function is Dg2 = 0.0030.
(e) Targeted and optimized structure factors with N = 2500. Here we find
that the L2 norm function is DS = 0.0030. The L2-norm error is E = 0.077.
(f) Log-log plot of the targeted and optimized structure factors, showing
their k1 scaling behavior at small k.
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Fig. 2 (a) A 1,000-particle configuration of the 3D critical absorbing-state
model. (b) A 1,000-particle configuration of the optimized equilibrium
state corresponding to the critical-absorbing state. (c) Short-ranged part
of the optimized pair potential. (d) Targeted and optimized pair cor-
relation functions with N = 9261. Here we find that the L2 function is
Dg2 = 0.0020. (e) Targeted and optimized structure factors with N = 9261.
Here we find that the L2 function is DS = 0.0022. The L2 norm error is
E = 0.066. (f) Log-log plot of the targeted and optimized structure fac-
tors, showing their k0.25 scaling behavior at small k.
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Fig. 3 (a) A portion of a representative 3D 2,744-particle configuration
of a cloaked URL system. Only 512 particles are displayed. (b) A por-
tion of a 3D configuration of a 2,744-particle system that is equilibrated
under the optimized effective one- and two-body potential for the target
3D cloaked URL. Only 512 particles are displayed. (c) Optimized pair
potential minus its long-ranged repulsive part 0.940/r. (d) Targeted and
optimized pair correlation functions with N = 9261. Here we find that
the L2 function is Dg2 = 4.8×10−4. (e) Targeted and optimized structure
factors with N = 9261. Here we find the L2 function is Dg2 = 7.5×10−4.
The L2-norm error is E = 0.035. (f) Log-log plot of the targeted and
optimized structure factors, showing their k2 scaling behavior at small k.
Subfigures (a)–(e) are reproduced from the ones first presented in Ref.
68.
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Figure 3 shows the configurations, effective pair potential and
pair statistics of the target and optimized systems for the 3D URL
model, which have been previously determined and presented
in Ref. 68. Figures 3(a) and 3(b) that the target and the opti-
mized systems configurations are visually indistinguishable. Fig-
ure 3(c) shows the short-ranged part of the effective potential,
i.e. vs(r;as) = v(r;a)− 0.940/r against r. Figure 3(d)–(f) show
g2(r) and S(k) for the target and optimized systems with N = 9261.
The pair statistics of the target cloaked URL is in excellent agree-
ment with those of the optimized equilibrium system in both di-
rect and Fourier space. The L2 functions are Dg2 = 4.8×10−4 and
DS = 7.5× 10−4 and the L2-norm error is E = 0.035, all of which
are remarkably small. For all models, the effective potentials ac-
curately yield the desired target pair statistics for system sizes
much larger than N = 500 used in the optimization procedure.
Thus, the nonequilibrium-equilibrium correspondences found in
this study are robust to further increases in the system size.

5.2 Higher-order statistics
Since the targeted and optimized systems have essentially the
same pair statistics, we expect that due to the aforementioned
structural degeneracy, the dynamics leading to the nonequilib-
rium states is reflected in the differences in their higher-order
statistics compared to the corresponding equilibrium states. Here,
we present the higher-order statistics of the nonequilibrium-
equilibrium pairs, including GV (r) for all models and g3 for the
perfect glass and the critical absorbing state at specific small tri-
angles. Note that g3 and g4 for the URL have been discussed in
Ref. 81.
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Fig. 4 Conditional “hole” probability density functions for three target
and optimized systems. Note the different scales in the axes. (a) 2D
perfect glass. The inset shows a magnified portion of the plots. (b) 3D
critical absorbing-state model. (c) 3D cloaked URL.

In Appendix A, we describe a new and precise numerical algo-
rithm to compute the hole probabilities for the nonequilibrium
cloaked URLs in any space dimension d, which exploits the inde-
pendence of particles in the URLs to achieve much higher accu-
racy than the standard method.81 Figure 4(a) and (b) show GV (r)
of the nonequilibrium-equilibrium pairs for the 2D perfect glass,
the 3D critical absorbing state and the 3D cloaked URL, respec-
tively. For all three models, while the target and optimized GV (r)
agree closely in the range where r is below half of the characteris-
tic length scale, they become increasingly different at larger r, re-
vealing the distinctly different higher-order statistics between the
nonequilibrium and equilibrium systems. Importantly, both target

and optimized GV (r) for all systems studied exhibit steep rises at
sufficiently large r, indicating that they possess the bounded-hole
property.27;44

The forms of the effective potentials for the perfect glass and
critical-absorbing state allow us to conclude that these models
have the bounded-hole property, since the potentials contain hard
cores (an effective hard core in the perfect-glass case), small but
positive repulsions at intermediate r, and long-ranged repulsions
at large r that ensure hyperuniformity. Thus, particles of the re-
sulting packings are well-separated from one another at all length
scales. It is noteworthy that the bounded hole property applies
for perfect glasses with any α > 0, because of the nature of the
long-ranged two-, three- and four-body interactions.38 Indeed,
we have also computed the hole probabilities for a different per-
fect glass with α = 2 and confirmed its bounded-hole property.

Using the technique described in Appendix A, we accurately de-
termine that EV (r) for the target URL in the limit r → r−c exhibits
a form first derived in Ref. 87, namely, EV (r) ∼ (rc − r)γ , where
γ = 32. Thus, Eq. (11) gives

GV (r)∼
γ

ρs1(r)(rc − r)
r → r−c (18)

i.e., GV (r) has a pole of order one, as derived in Ref. 87. Com-
pared to the SC lattice, for which γ = d = 3,87 the very large γ

value for the URL indicates that holes close to the critical-hole
size are rarer in disordered systems, as noted in Ref. 87. Also
note that unlike the other two models, GV (r) for the target URL
is higher than the optimized equilibrium GV (r), suggesting that
the target URL is locally more homogeneous than its equilibrium
counterpart due to the underlying lattice.

We propose the following scalar nonequilibrium index, Γ, that
reflects differences in the higher-order correlation functions
g3,g4, . . . for a nonequilibrium-equilibrium pair with matching
pair statistics:

Γ = ρ

∫
|r|<rmax

[
GV (|r|)−GV,T (|r|)

]2 dr, (19)

where GV and GV,T are conditional “hole” probability density dis-
tributions for the optimized and target systems, respectively, and
rmax is a cutoff radius corresponding to the largest hole radius
detected in an ensemble of finite-size configurations.† By defi-
nition, GV (r) in (19) must be computed at kT/ε = 1, because it
is only at this dimensionless temperature that the nonequilibrium
and equilibrium pair statistics match. Note that Γ is a purely static
nonequilibrium index, i.e., its computation does not require dy-
namic information. Importantly, for a statistically homogeneous
equilibrium target system under up to two-body interactions, one
has Γ = 0, because the optimized pair potential obtained via the
inverse methodology (Sec. 4) must agree with the unique target-
generating potential, yielding GV (r) = GV,T (r) for all r.

† If the target and optimized systems have different largest detected hole radii, rmax is
chosen to be the smaller of the two. The aforementioned difference is within 0.1ρ1/d

for all three models.
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Except for the target URL, whose GV (r) can be evaluated up to
arbitrary precision, we determine rmax and compute GV (r) using
500 configurations with N = 2500 for 2D systems and N = 9261
for 3D systems. Table 1 shows the value of Γ for the three mod-
els shown in Fig. 4. The URL has a much larger Γ value com-
pared to those of the the other two systems. This high degree of
“nonequilibriumness” is expected for the cloaked URL, since g4

for the target system exhibits long-range order characteristic of
the underlying lattice.81 An equilibrium fluid cannot possess any
long-range order.

Table 1 Values of the metric Γ [Eq. (19)] for the systems shown in Fig.
4

System Γ

2D perfect glass 4.9
3D critical-absorbing state 9.2
3D cloaked URL 54

We also study the three-body statistics for the perfect glass and
the critical absorbing state at small triangles. In the case of the
perfect glass, we compute the integral

f (θ) =
∫ 1.15

|r1|=0

∫ 1.15

|r2|=0
g3(r1,r2,θ)dr1dr2, (20)

where g3(r1,r2,θ) is given by (12). We evaluate f (θ) instead
of g3 at individual triangles, because much higher accuracy can
be achieved for the former. Figure 5(a) depicts f (θ) for the tar-
get and optimized perfect glass systems. We find that compared
to the equilibrium system, the target perfect glass contains 50%
more nearly linear small triangles with θ > 170◦. This difference
is likely due to the actual three and four-body potential in the
target perfect-glass system.38
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Fig. 5 (a) Plot of f (θ) =
∫ 1.15
|r1 |=0

∫ 1.15
|r|2=0 g3(r1,r2,θ)dr1dr2 against θ for the

target and optimized perfect glass systems. (b) Plot of g3(1.05,1.05,θ)
against θ for the target and optimized critical absorbing state systems.

In the case of the critical-absorbing-state model, we compute g3

at individual triangles, as it can be evaluated with high accuracy.
Figure 5(b) shows g3(r1,r2,θ) for small isosceles triangles with
r1 = r2 = 1.05 for the target and optimized critical absorbing state,
from which it is clear that the target system significantly sup-
presses the formation of small triangles that are nearly equilat-
eral. Indeed, their difference of g3 for small equilateral triangles
is 90%. This is due to the specific dynamics during the random

organization process, where particles are displaced to avoid colli-
sions.2 Dense clusters that contain many small equilateral trian-
gles are less likely to be found in the nonequilibrium state, since
collisions are more frequent within such clusters. On the other
hand, the equilibrium state forms more dense clusters due to the
sharp well of v(r) at the hard-sphere diameter.

5.3 Inherent structures
To study the effect of quenching on the hyperuniform equilibrium
systems, we ascertain the inherent structures of the perfect-glass
and critical-absorbing-state potentials by finding deep local en-
ergy minima via the low-storage BFGS algorithm,95 starting from
equilibrium initial configurations with N = 1000 for d = 2 and
N = 1728 for d = 3, and averaging over 200 configurations. We
find that the energy per particle EIS of these structures are nar-
rowly distributed above the ground-state energies; see Appendix
C for details. We compute the inherent-structure pair statistics by
averaging over configurations whose energies are in within two
standard deviations around the mean value of EIS.
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Fig. 6 (a) A 1,000-particle configuration of an inherent structure for the
effective potential for the perfect glass. (b) Pair correlation function of
the inherent structure. (c) Structure factor of the inherent structure. (d)
Log-log plot of the structure factor for the inherent structure, showing
the k2 scaling at small k.

Figure 6(a) shows a disordered inherent structure for the perfect-
glass effective potential, which contains chains of particles sep-
arated by “channels” with a well-defined width. The first three
peaks of the associated g2(r) [Fig. 6(b)] correspond to the
nearest-neighbor distance, the channel width, and the second-
nearest neighbor distance along the chains, respectively. The first
and second peaks occur at r = 1.27 and r = 2.20, respectively,
which are close to the locations of the first and second minima
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of the short-ranged part of v(r). Figure 6(c) depicts S(k) for the
inherent structures.

To extract the small-k behaviors of the structure factors, we use
the concept of diffusion spreadability introduced in Ref. 64, de-
fined as follows. Consider the time-dependent problem of mass
transfer of a solute between two phases and assume that the so-
lute is initially distributed in one phase (phase 2) and absent
from the other (phase 1). The spreadability S (t) is the frac-
tion of total solute present in phase 1 as a function of time. For
sphere packings, which include the perfect glass and the critical
absorbing state, S (t) can be computed from simulated S(k) via
the Fourier-space expression derived in Ref. 64. Recently, Wang
and Torquato93 introduced an algorithm that efficiently and accu-
rately extracts the exponent α from numerical data of S (t). The
algorithm extracts α as well as a “set-in” time tS of the asymp-
totic behavior of S (t) by solving the following relations via a
predictor-corrector procedure

|S (t)−Sl(t;α)|= ε, t = tS,

|S (t)−Sl(t;α)|< ε, t > tS
(21)

where ε > 0 is a convergence criterion and Sl(t;α) is the large-
t spreadability approximant. For nonstealthy media, one has
t−(d+α)/2.64 It has been shown that the aforementioned algorithm
is more robust to simulation noise than a direct numerical fit of
S(k) at small k, and accurately extracts α with errors less than
1% for a wide range of models.93 We find that the inherent struc-
tures are hyperuniform with α = 2.0. Figure 6(d) depicts S(k)
for the inherent structures on a log-log scale, showing clearly the
k2 behavior at small k. Thus, the inherent structures of a stronger
form of hyperuniformity (class I) than that of the target structure.
Figure 7 shows a disordered inherent structure for the critical-
absorbing-state potential, as well as the inherent-structure pair
statistics, indicating that it is again hyperuniform with α = 2. By
contrast, α for the URL potential68 dramatically increases from
2 at unit temperature to infinity upon quenching, as the inherent
structure is the SC lattice. Thus, in all three cases, the inherent
structures are of higher forms of hyperuniformity than the target
models.

To verify that the increase of α upon quenching is robust to the
system size, we also computed the inherent structures for the
critical-absorbing state with N = 512,729 and 1000, in addition to
N = 1728. We observed that while the structure factors for these
system sizes are slightly different due to finite-size effect, they all
exhibit k2 scaling behaviors at small k, indicating that the inher-
ent structures possess a large hyperuniformity scaling regime43

that grows with N.

6 Conclusions and discussion
We have determined equilibrium systems with effective one- and
two-body interactions that realize the pair statistics of three hy-
peruniform nonequilibrium models of recent interest: a 2D per-
fect glass, a 3D critical-absorbing state and a 3D cloaked URL,
which lends further support to the Zhang-Torquato conjecture. In
the case of the perfect glass, it is noteworthy that we are able to
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Fig. 7 (a) A 1,000-particle configuration of an inherent structure for the
effective potential for the 3D critical-absorbing state. (b) Pair correlation
function of the inherent structure with N = 1728. (c) Structure factor of
the inherent structure with N = 1728. (d) Log-log plot of the structure
factor for the inherent structure, showing the k2 scaling at small k.

mimic systems with up to four-body interactions through effective
one-body and isotropic two-body interactions. This finding offers
promise to determining effective one- and two-body interactions
that mimic systems with directional interactions, such as amor-
phous graphene104 and amorphous silicon105, governed by up to
three- and higher-body interactions.106;107

We have shown that all three models considered in this study
have the bounded-hole property. The volume integral of the
squared differences of GV (r) between such nonequilibrium and
equilibrium systems enable us to define a nonequilibrium index
Γ [Eq. (19)], which can be applied to measure the “nonequi-
libriumness” in many systems of practical interest, including su-
percooled liquids,37 defects,108 self-propelling particles5;109 and
biological tissues.110 We remark that a different static nonequi-
librium index X has been proposed previously, which is based on
the deviation of S(0) from ρκT kBT , where κT is the isothermal
compressibility.37 In comparison, Γ extracts the nonequilibrium-
ness from structural information alone, and can be applied in sit-
uations where κT (or the pressure) is not readily available. We
also introduced a precise numerical algorithm to compute EV (r)
for the cloaked URL, and applied it to show that holes near the
maximum hole size in the URL are much rarer than those in the
underlying SC lattice.

Remarkably, our effective potentials yield hyperuniform deep lo-
cal energy minima that are of stronger forms of hyperuniformity
(measured by the class or larger α exponents) relative to the
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equilibrium states at unit temperature. This behavior is expected
for pair potentials characterized by steep short-range repulsions,
since the local minima can be regarded to be states with effec-
tively low temperatures relative to the initial higher-temperature
fluid111 and hence the structure factor S(k) of the quench at low
wavenumbers reflects stronger hyperuniformity. By contrast, the
same reasoning leads to the extended proposition that a quench
of an initially nonhyperuniform fluid state with such interactions
to deep local energy minima have a S(0) that drops but generally
not to zero, i.e., it strictly remains nonhyperuniform, as shown
for three well-known models in Appendix C.

A promising avenue for future research is the determination of
thermodynamic and dynamic properties associated with the effec-
tive potentials, including ground states, entropies, free energies,
phase diagrams,112;113 and their glass formations. For instance,
it has been shown that perfect glasses at T = 0 are remarkably
zero-entropy states,94 in contradistinction to normal glasses that
are metastable with respect to crystals, and to disordered stealthy
ground states that possess large extensive entropies.25 On the
other hand, the equivalent equilibrium system for a perfect glass
has positive entropy, and an effective pair potential [Fig. 1(c)]
yields a crystalline ground state, as shown in Appendix C. Fur-
thermore, we note that the equivalent nonequilibrium and equi-
librium systems possess the same two-body contribution to the
excess entropy per particle due to their identical g2(r).83 How-
ever, this excess two-body entropy can be significantly different
from the real entropy even for simple equilibrium liquids.114;115

Thus, it is a fascinating problem to study their higher-order cor-
relation contributions to the entropy, which is expected to reveal
crucial dynamical information.

Finally, we stress that the effective potentials yielding hyperuni-
form states at positive T could enable one to produce tunable
hyperuniform materials. Due to the long-ranged nature of these
potentials (10), one can use ρ and T as tuning parameters to gen-
erate equilibrium hyperuniform structures whose exponents α are
dictated by (10), or to generate stronger hyperuniform forms via
their inherent structures. While it is challenging to achieve long-
ranged interactions in the laboratory, one could experimentally
reproduce the effective potentials over some finite but large range
of r to fabricate effectively hyperuniform states, i.e., states with
very small but nonvanishing S(0). Subsequently, the deviation of
such systems from perfect hyperuniformity can be characterized
via the various quantitative measures described in Ref. 43.
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Appendix

A Precise numerical algorithm to compute hole prob-
abilities for URLs
Here, we describe the standard method of computing the void-
exclusion probability or “hole” probability function EV (r) for a
many-body system. For systems with the bounded hole property,
sampling holes with radii close to rc is computationally challeng-
ing. To precisely determine the behaviors of EV (r) and GV (r) as
r → r−c , we introduce an improved algorithm to compute EV (r)
for URLs in all dimensions with any perturbation strength b that
is much more accurate than the standard method. Although this
improved method only applies to URLs, we will see in Sec. 5.2
that the results for the hole probabilities of this model confirms
the general trend that holes close to the critical-hole size are rarer
in disordered systems than in ordered systems.87 We first describe
the algorithm specific to the 3D cloaked URL (i.e., for d = 3 and
b = 1), and then generalize it to other d and b.

In the standard method, Nt test particles are randomly placed in a
N-particle configuration rN = {r1, . . .rN} under periodic boundary
conditions. For each test particle x, one computes the distance
dx from x to its nearest real particle ri. The function EV (r) is
estimated to be

EV (r) =
|{x : dx > r}|

Nt
. (22)

The result is then averaged over n configurations. Using nN =

5× 107, Nt/N = 105, this method yields EV (r) for the target URL
in the range rρ1/3 < 1.3 with errors < 5%. However, computing
EV (r) at larger r requires sampling rare events with probabili-
ties smaller than 10−15, which is computationally challenging.87

Thus, we exploit the independence of the perturbed lattice points
to devise a more accurate method to compute EV (r).

As described in Sec. 3.3, the cloaked URL is obtained by per-
turbing each lattice point in the SC lattice Z3 by a random
vector uniformly distributed on [−1/2,1/2)3. For i, j,k ∈ Z, let
Ci jk = [i− 1/2, i+ 1/2)× [ j− 1/2, j+ 1/2)× [k− 1/2,k+ 1/2), i.e.,
the cubic region accessible to the perturbed lattice point originally
at (i, j,k). Let x be the position of a test particle and B(x;r) be
the spherical region of radius r centered at x.

Since the lattice points are perturbed independently, the proba-
bility p(x,r) that no perturbed lattice point is found in B(x;r) is
given by the product of the probabilities that each perturbed point
is not in B(x;r), i.e.,

p(x,r) = ∏
i jk

|Ci jk \B(x;r)|, (23)

where |Ci jk \B(x;r)| is the volume of the set difference between
Ci jk and B(x;r). Because the probability distribution of the posi-
tion of the test particle is uniform, we have

EV (r) = ⟨p(x,r)⟩x∈R3 =
∫

C000

p(x,r)dx, (24)

where the second equality follows from the fact that all Ci jk are
equivalent in a URL. In what follows, we let x ∈C000.
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If r ≥
√

3, the region B(x;r) covers C000, i.e., |C000 \B(x;r)| = 0
for any x ∈C000; It follows from Eqs. (23) and (24) that EV (r) = 0
for r ≥

√
3. On the other hand, if 0 ≤ r <

√
3, then p(x,r) ̸= 0 for

x = (−1/2,−1/2,−1/2)T , and thus EV (r) is nonzero. Therefore,
the maximum hole radius in the 3D cloaked URL is given by rc =√

3.

For r < rc, Eq. (23) reduces to

p(x,r) = ∏
|i|≤2,| j|≤2,|k|≤2

|Ci jk \B(x;r)|. (25)

The factors in Eq. (23) that are not included Eq. (25) are equal to
unity because B(x;r) are disjoint from their corresponding Ci jk.
The 125 factors in Eq. (25) can be evaluated via Monte Carlo inte-
gration technique.116 We randomly place Ns = 106 sample points
in each Ci jk region and estimate |Ci jk \B(x;r)| to be fraction of the
number of sample points not found in B(x;r). We compute p(x,r)
at all x vectors on a M×M×M regular mesh on C000, where M is
a positive integer. The mesh is chosen to be finer (i.e., M larger)
with increasing r to ensure that there are at least 1,600 x vectors
on the support of p(x,r). Subsequently, we numerically evaluate
EV (r) [Eq. (24)] using a Gaussian quadrature of order 3.116 This
method yields errors of EV (r) on the order of 2% for 1.6 ≤ r < rc,
whereas the errors using the standard method is on the order of
100% in this range. Note that the errors can be further reduced
by increasing Ns.

To generalize the algorithm to other d and b, one simply replaces
Ci jk by Ci1,...,id = [i1−b/2, i1+b/2)×·· ·× [id −b/2, id +b/2), which
is the hypercubic region accessible to each perturbed lattice point
originally at (i1, . . . , id) ∈ Zd in the d-dimensional hypercubic lat-
tice. Equations (24) and (23) will then be replaced by

EV (r) = ⟨p(x,r)⟩x∈Rd =
∫

C0,...,0

p(x,r)dx (26)

and
p(x,r) = ∏

|im|≤
√

d+1;m=1,...,d

|Ci1,...,id \B(x;r)| (27)

respectively.

B Optimized effective potentials for the target mod-
els
For the 2D perfect glass, the α = 1 behavior of S(k) at small k
implies that v(r;a) ∼ 1/r as r → ∞. The fact that g2(r) = 0 for
r ≤ 0.88 implies that there is an effective hard core in this range.
The intermediate-r behavior of v(r;a) was determined by fitting
vHNC(r) in the range 0.88< r ≤ 4. No re-selection of basis function
was needed. The optimized v(r) is given by

v(r;a) =


∞ 0 ≤ r ≤ 0.88

ε1
r + ε2 exp

(
− r

σ
(1)
2

)
cos

(
r

σ
(2)
2

+θ2

)
+ε3 exp

(
−( r

σ3
)8
)

r > 0.88.

(28)

The optimized parameters are listed in Table 2. The L2-norm error
is E = 0.077.

For the 3D critical-absorbing-state model, the fact that α = 0.25
implies that v(r;a) ∼ 1/r2.75 at large r. Since the target system is
a packing of spheres with unit diameter, v(r;a) has a hard core
for r ≤ 1. The intermediate-r behavior of v(r;a) was obtained by
fitting vHNC(r) in the range 1 < r ≤ 4. No re-selection of basis
function was needed. The optimized v(r) is given by

v(r;a) =


∞ 0 ≤ r ≤ 1

ε1
r2.75 + ε2 exp

(
−( r

σ2
)5
)
+ ε3 exp

(
−( r

σ3
)8
)

+ε4 exp
(
−( r

σ4
)10

)
r > 1.

(29)

The optimized parameters are listed in Table 3. The L2-norm error
is E = 0.066.

The optimized potential for the 3D cloaked URL is given in Ref.
68.

Table 2 Optimized parameters of the effective pair potential for the 2D
perfect-glass model.

ε1 4.572 θ2 1.032
ε2 12.26 ε3 5.803

σ
(1)
2 0.3921 σ3 0.9766

σ
(2)
2 0.1505

Table 3 Optimized parameters of the effective pair potential for the 3D
critical-absorbing-state model.

ε1 0.3400 σ3 1.582
ε2 -0.8120 ε4 -49.13
σ2 0.9949 σ4 0.8827
ε3 0.1068

C Inherent structures and ground states
Here, we present details on the energy levels of the inherent struc-
tures for the hyperuniform models considered in this study, in-
cluding the 2D perfect glass, the 3D critical-absorbing state and
the 3D cloaked URL. We also consider inherent structures for sev-
eral well-studied 3D models that yield nonhyperuniform states at
positive T in three dimensions, including Lennard-Jones (LJ), in-
verse power-law (PL) and Gaussian-core (GC)119 models. For all
models, we ascertain the the inherent structures using the low-
storage BFGS algorithm,95 staring from equilibrium initial states
away from phase transitions. The inherent-structure energies per
particle EIS are compared with the corresponding ground-state
energies E0.

To find the ground states for the hyperuniform models, we first
applied the simulated annealing algorithm120 on configurations
with N ≥ 100 particles, starting from the equilibrium liquid states
that match the target pair statistics. The ground state for the
URL effective potential is found to be the SC lattice. However, for

† Energy value includes the “neutralizing” one-body potential.
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Table 4 Inherent-structure and ground-state energies levels for hyperuniform and nonhyperuniform models with N = 1000 and the small-wavevector
behaviors of the inherent structures.

System Ground-state structure E0/ε EIS/ε EIS/E0 SIS(0) αIS

2D perfect glass Fig. 8(a) -5.973 † −5.594±0.0033 † 94% 0 2
3D cloaked URL sc -1.081 † -1.081 † 100.0% 0 ∞

3D critical-absorbing state Fig. 8(b) -7.104 † −5.29±0.035 † 74% 0 2
3D GC bcc117 2.284297 2.284521±4.1×10−6 100.010% 8.9×10−8 . . .
3D PL fcc118 6.066 6.971±0.026 115% 0.0018 . . .
3D LJ hcp118 -8.593 −7.836±0.018 91% 0.0047 . . .

the perfect glass and the critical-absorbing state, we found that
even with very slow cooling rates, the annealing procedures re-
sulted in disordered metastable states and were unable to find the
global minima.‡ Therefore, we searched for ground-state candi-
dates by optimizing crystalline structures via simulated annealing
over n-particle bases, where n = 1,2, . . . ,10. The parameters sub-
ject to optimization are unit cell vectors and coordinates of the
n− 1 particles in the interior of a unit cell. We observe that v(r)
for the perfect glass gives the same optimized crystal structure
for all even n, whose energy is below the optimized energies for
odd n, and that v(r) for the critical-absorbing state yields identi-
cal optimized structures for all n. Thus, it is highly likely that the
ground state for the perfect-glass potential is a two-particle basis,
whereas that for the critical-absorbing-state potential is a Bravais
lattice. Figure 8 shows the ground-state candidates for both mod-
els. The ground-state candidate for the perfect glass contains zig-
zag chains of particles, whereas the one for the critical-absorbing
state contains planar sheets of triangle lattice.

(a) (b)

Fig. 8 Structures of the ground-state candidates associated with v(r) for
(a) the perfect glass and (b) the critical-absorbing state.

The potentials for the nonhyperuniform models are given by

vLJ(r) = 4ε

[
(r/σ)−12 − (r/σ)−6

]
, (30)

vPL(r) = 4ε

[
(r/σ)−12

]
, (31)

vGC(r) = ε exp
[
−(r/σ)2

]
, (32)

where ε and σ are energy and distance scales, respectively. The
LJ and PL models are strongly repulsive at small r. While vGC(r)
is a soft interaction, the model possesses an effective hard core

‡ With cooling rate Ti+1 = 0.999Ti, where i is the iteration index, the annealing proce-
dures still result in metastable states for the hyperuniform models.

at low temperatures.121;122 We compute the inherent structures
for Eqs. (30)–(32) starting from equilibrium configurations at
ρσ3 = 1,kT/ε = 1. These ρ,T values are chosen so that the initial
states are dense liquids away from phase transitions for all three
potentials.117;118;122

Table 4 lists values of E0 and EIS for the hyperuniform and
nonhyperuniform models with N = 1000, as well as the small-
wavevector behaviors extracted using the diffusion spreadabil-
ity.93 For all models except the URL, EIS values are narrowly dis-
tributed above E0. The distributions are Gaussian and are insen-
sitive to the system size. For the perfect glass, EIS/E0 = 94%, and
the standard deviation σIS of EIS is 5× 10−4E0. For the critical-
absorbing state, EIS/E0 = 74% and σIS = 0.005E0. The inherent
structure for the URL is the SC lattice, identical to the ground
state. The fact that the structure is crystalline (periodic) means
that it is stealthy hyperuniform and hence α → ∞.22

Importantly, the three systems that are hyperuniform at positive
T yield hyperuniform inherent structures with increased values
of α compare to those of the equilibrium states at positive T ,
which is consistent with the proposition that the quench reflects
stronger forms of hyperuniformity, as reported in Sec. 5.3 of the
main article. In particular, α for the URL potential dramatically
increases from 2 at unit temperature to infinity upon quenching.
On the other hand, the pair potentials for nonhyperuniform sys-
tems yield nonhyperuniform inherent structures. Note that while
the inherent structure for the GC model is nearly hyperuniform,22

it is not perfectly hyperuniform, which again is consistent with the
proposition stated in the main article.
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