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Machine learning enables precise holographic characteri-
zation of colloidal materials in real time

Lauren E. Altmana, and David G. Grier∗,a

Holographic particle characterization uses in-line holographic video microscopy to track and char-
acterize individual colloidal particles dispersed in their native fluid media. Applications range from
fundamental research in statistical physics to product development in biopharmaceuticals and
medical diagnostic testing. The information encoded in a hologram can be extracted by fitting to
a generative model based on the Lorenz-Mie theory of light scattering. Treating hologram analy-
sis as a high-dimensional inverse problem has been exceptionally successful, with conventional
optimization algorithms yielding nanometer precision for a typical particle’s position and part-per-
thousand precision for its size and index of refraction. Machine learning previously has been used
to automate holographic particle characterization by detecting features of interest in multi-particle
holograms and estimating the particles’ positions and properties for subsequent refinement. This
study presents an updated end-to-end neural-network solution called CATCH (Characterizing and
Tracking Colloids Holographically) whose predictions are fast, precise, and accurate enough for
many real-world high-throughput applications and can reliably bootstrap conventional optimization
algorithms for the most demanding applications. The ability of CATCH to learn a representation of
Lorenz-Mie theory that fits within a diminutive 200 kB hints at the possibility of developing a greatly
simplified formulation of light scattering by small objects.

1 Introduction

Machine learning algorithms are revolutionizing measurement
science by decoupling quantitative analysis of experimental data
from the mathematical representation of the underlying the-
ory1,2. The abstract representation of a measurement principle
that is encoded in a well-designed and well-trained machine-
learning system can rival the precision and accuracy attained
by fitting to an analytic theory and typically yields results sub-
stantially faster. Gains in speed and robustness have been par-
ticularly impressive for measurement techniques based on video
streams3–6, which typically involve distilling small quantities of
valuable information from large volumes of noisy data. Pre-
vious studies have demonstrated that machine-learning algo-
rithms dovetail well with holographic video microscopy7, iden-
tifying features of interest within experimentally recorded holo-
grams4,8,9 and extracting individual particles’ positions and char-
acteristics from the information encoded in those features4,9,10.

Using holography to count, track and characterize colloidal
particles provides unprecedented insights into the composition
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and microscopic dynamics of colloidal dispersions11–13, with
applications ranging from fundamental research in statistical
physics14,15 to formulation and manufacture of biopharmaceu-
ticals16–19 and medical testing20,21. Hologram analysis is a
challenging inverse problem7,22 both because recorded inten-
sity patterns necessarily omit half of the information about the
light’s amplitude and phase profiles and also because the under-
lying Lorenz-Mie theory of light scattering is notoriously compli-
cated23–25. Extracting quantitative information from holograms
is an unusual application for machine learning in two respects:
(1) it involves regression of continuously varying properties from
experimental data and (2) the machine-learning system can be
trained with synthetic data generated from an exact theory4,10,26.
The trained system therefore embodies a simplified representa-
tion of the underlying theory over a specified parameter domain
that can be computed rapidly enough to be useful for real-world
applications.

Previous machine-learning implementations of holographic
particle characterization surpassed conventional algorithms27 for
detecting features associated with particles in complicated multi-
particle holograms4,8,9. They fared less well, however, at reliably
extracting information from those features4,9,10, typically resolv-
ing particle radius and refractive index with 5 % accuracy9, com-
pared with the part-per-thousand resolution obtained with iter-
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Fig. 1 Schematic representation of Lorenz-Mie microscopy using CATCH machine-learning analysis. (a) Collimated laser light illuminates a colloidal
sample. Light scattered by a particle interferes with the rest of the illumination in the focal plane of a microscope, which magnifies and relays the
interference pattern to a video camera. (b) A typical recorded hologram of micrometer-diameter silica and polystyrene colloidal spheres. Superimposed
boxes denote features corresponding to individual particles. (c) The CATCH machine-learning pipeline consists of two modules. The Localizer,
implemented with YOLOv5, finds in-plane coordinates, xp and yp, for detected features and generates bounding boxes such as the examples in (b).
Feeding these features into the Estimator yields predictions for rp, ap and np.

ative optimization14. Even so, the precision afforded by such
machine-learning implementations is competitive with standard
particle-resolved sizing techniques such as electron microscopy
and is good enough to bootstrap iterative optimization for es-
pecially demanding applications. Most importantly, machine-
learning analysis can be applied to novel systems without requir-
ing a priori knowledge of their composition.

Guided by an analysis of the information content encoded in
colloidal particles’ holograms, we designed and implemented a
deep neural network called CATCH that rapidly performs fully-
automated analyses of in-line holographic microscopy images to
detect, localize and characterize individual colloidal particles4.
Here, we introduce enhancements to the CATCH architecture that
improve the precision and accuracy of parameter estimation sub-
stantially enough to rival iterative optimization algorithms across
best-case parameter ranges. The availability of a fast end-to-end
solution for colloidal characterization creates opportunities for
high-throughput applications in areas such as medical diagnos-
tics20,28,29 and industrial process control18. The ability of CATCH
to encapsulate the complexities of Lorenz-Mie theory in a small
memory footprint furthermore hints at the existence of a simpli-
fied representation of light-scattering theory that would benefit
areas as diverse as astrophysics and industrial materials charac-
terization.

1.1 Lorenz-Mie Microscopy

Figure 1(a) schematically represents an in-line holographic mi-
croscope that is suitable for characterizing and tracking colloidal
particles11,30. A sample containing colloidal particles is illumi-
nated by a collimated laser beam whose electric field may be mod-
eled as a plane wave of frequency ω and vacuum wavelength λ

propagating along the ẑ axis,

E0(r, t) = E0 eikze−iωt x̂. (1)

Here, E0 is the field’s amplitude and k = 2πnm/λ is the wavenum-
ber of light in a medium of refractive index nm. The beam is

assumed to be linearly polarized along x̂. Our implementation
uses a fiber-coupled diode laser (Coherent, Cube) operating at
λ = 447nm. The 10 mW beam is collimated at a diameter of
3 mm, which more than fills the input pupil of the microscope’s
objective lens (Nikon Plan Apo, 100×, numerical aperture 1.4, oil
immersion). The objective lens relays images through a 200 mm
tube lens to a gray-scale camera (FLIR, Flea3 USB 3.0) with a
1280 pixel× 1024 pixel sensor, yielding a system magnification of
48 nm/pixel and a dynamic range of 8 bits/pixel.

A colloidal particle located at rp scatters a small proportion of
the illumination to position r in the focal plane of the microscope,

Es(r, t) = E0 e−ikzp fs(k(r− rp))e−iωt . (2)

The scattered wave’s relative amplitude, phase and polarization
are described by the Lorenz-Mie scattering function, fs(kr), which
generally depends on the particle’s size, shape, orientation and
composition23–25. For simplicity, we model the particle as an
isotropic homogeneous sphere, so that fs(kr) depends only on the
particle’s radius, ap, and refractive index, np.

The incident and scattered waves interfere in the microscope’s
focal plane. The resulting interference pattern is magnified by
the microscope and is relayed to the camera31, which records its
intensity. Each snapshot in the camera’s video stream constitutes
a hologram of the particles in the observation volume. The im-
age in Fig. 1(b) is a typical experimentally recorded hologram of
colloidal silica and polystyrene spheres.

The distinguishing feature of Lorenz-Mie microscopy is the
method used to extract information from recorded holograms.
Rather than attempting to reconstruct the three-dimensional light
field that created the hologram, Lorenz-Mie microscopy instead
treats the analysis as an inverse problem, modeling the intensity
pattern recorded in the plane z = 0 as11

I(r) = E2
0

∣∣∣x̂+ e−ikzp fs(k(r− rp))
∣∣∣2 + I0, (3)

where I0 is the calibrated dark count of the camera. Fitting
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Eq. (3) to a measured hologram yields estimates for the three-
dimensional position, rp, radius, ap, and refractive index, np, for
each particle in the field of view.

2 Algorithms for hologram analysis

2.1 Feature Detection and Localization

Analyzing a hologram such as the example in Fig. 1(b) begins
with detecting features of interest in the recorded image. This
is a challenging image analysis problem because the number of
features typically is not known a priori, each feature can cover a
large area with alternating bright and dark fringes, and neigh-
boring particles’ fringes can interfere with each other. Circu-
lar Hough transforms27,32,33, voting algorithms32 and symmetry-
based transforms27,34 leverage a feature’s radial symmetry to co-
alesce its concentric rings into a simple peak that can be detected
with standard particle-tracking algorithms35. Image noise and in-
terference artifacts can violate the assumptions underlying these
algorithms, leading to poor localization and an undesirable rate
of false-positive and false-negative detections4.

2.2 Pixel Selection

Having detected and localized a feature, the analytical pipeline
selects pixels for further analysis. Limiting the selection to too
small a range discards information from the diffraction pattern’s
outer fringes. Selecting too large a range reduces the sample’s
signal-to-noise ratio and, worse, can introduce interference from
neighboring spheres. A suitable range can be estimated by count-
ing diffraction fringes27. Additional efficiency can be gained by
sampling a subset of the pixels within that range36.

2.3 Parameter Estimation

Information is extracted from the selected pixels by fitting their
intensity values with the generative model in Eq. (3). Such fits
typically involve iterative nonlinear refinement of the adjustable
parameters whose convergence to an optimal solution is never
certain37. Successful optimization relies on good starting esti-
mates for the adjustable parameters and typically yields values
with part-per-thousand precision14.

Pioneering implementations of holographic particle characteri-
zation relied on manual annotation of features in holograms and
a priori knowledge of particle properties to initialize fits to gen-
erative models11. Automated initialization might use wavefront
curvature to estimate axial position11,38,39 and fringe spacings
to estimate particle size11,38,40,41. These methods typically work
well over a limited range of parameters. Monte Carlo methods
can cover a wider range by initializing fits from multiple starting
points and selecting the best solution overall42. This approach
achieves robust convergence, but at a considerably higher com-
putational cost.

2.4 Effective parameter ranges

The Lorenz-Mie theory for light scattering by homogeneous
spheres is the simplest and most effective model for analyzing
holograms of colloidal particles. Real-time implementations re-

turn tracking and characterization data as fast as the camera
records holograms. Applying this analysis to holograms of as-
pherical and inhomogeneous particles yields values for particle
position, size and refractive index that reflect the properties of an
effective sphere enclosing the particle43. Effective-sphere proper-
ties can be related to an inhomogeneous particles’ true properties
through effective-medium theory16,43–47. When applied to col-
loidal dimers, for example, effective-sphere analysis can yield the
asymmetric particle’s three-dimensional orientation in addition to
its three dimensional position29. Practical implementations of
Lorenz-Mie analysis, however, are limited by instrumental and
computational constraints.

2.4.1 Axial Position

The scale and nature of a recorded holographic feature depends
on how far the scattered light propagates before it reaches the
imaging plane and the phase of the reference beam at that plane.
As the particle approaches the imaging plane, the separation
between diffraction fringes becomes smaller than the camera’s
pixel size, and information about the particle’s properties are lost.
The spatial resolution of our reference instrument sets the lower
bound for axial tracking at roughly zp ≥ 5µm. Conversely, as the
particle moves away from the focal plane, its scattering pattern
spreads over increasingly many pixels to the detriment of the
signal-to-noise ratio. This sets an upper limit on axial tracking
in our microscope to zp ≤ 50µm31.

2.4.2 Particle Size

Both commercial and academic implementations of holographic
particle characterization work with particles ranging in diame-
ter from 500 nm to 10 µm11. The lower limit is set by the low
signal-to-noise ratio for in-line holograms created by weak scat-
terers. Switching to off-axis or dark-field holography improves
the signal-to-noise ratio for weak scatterers and extends the lower
size limit down to 50 nm48. The upper limit is set by the tendency
of large particles to scatter light strongly enough to saturate the
camera. Mitigating this effect by moving to lower magnification,
including lensless implementations, provides tracking and sizing
information for particles as large as 50 µm using simplified gener-
ative models49.

2.4.3 Refractive Index

Hologram fitting has been demonstrated for dielectric spheres
with refractive indexes ranging from bubbles with np = 1.018 up
to titanium dioxide with np = 2.811. The particles can have refrac-
tive indexes either higher or lower than that of the surrounding
medium47. Successful tracking and characterization require only
that the refractive index of the particle differ from that of the
medium by ∆n = np −nm =±0.00218.

2.4.4 Morphology

The choice of scattering function, fs(k(r− rp), in Eq. (3) estab-
lishes what kinds of particles can be analyzed. The present study
focuses on the Lorenz-Mie scattering function for homogeneous
spheres. Other choices include scattering functions for core-shell
particles and layered spheres, for ellipsoids, and for spherocylin-
ders50–52. Elementary scattering functions can be combined to
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Fig. 2 Schematic overview of the Estimator network. A cropped hologram with dimensions w×w is scaled to a standard size of 201 pixels×201 pixels
before being fed in to a cascade of convolutional layers that distill it into a 400-wide vector. These values together with the scale factor are analyzed
by a fully-connected layer to produce a 20-wide vector that serves as an optimal representation of the information in the original hologram. This
representation is then parsed by separate fully-connected layers into estimates for the particle’s axial position, zp, radius, ap, and refractive index, np.

treat more highly structured particles such as dimers and clusters
of spheres53,54. Increasing the complexity of the model increases
the demands on the analytical pipeline to find optimal solutions
for each of the model’s adjustable parameters.

3 CATCH
Figure 1(c) presents the CATCH machine-learning system that
performs all of the analytical operations identified in Sec. 2 with
an integrated pipeline4. Machine-learning algorithms have been
adopted for holographic particle characterization to expand the
effective range, improve robustness against false positive and
false negative detections, and reduce processing time compared
with conventional image-analysis techniques4,8,10,55. The origi-
nal implementations used distinct types of trainable algorithms
for feature detection4,8, pixel selection, and parameter regres-
sion4,10. CATCH, by contrast, uses the widely-adopted YOLO fam-
ily of object-detection networks56–59 to detect and localize fea-
tures4,55 and then feeds the selected pixels directly into a custom
Estimator network that extracts optimal values for the adjustable
parameters.

The original implementation of CATCH4 uses YOLOv3, which
is based on the open-source darknet library58. The complemen-
tary Estimator network is written in TensorFlow60. Having both
darknet and TensorFlow as separate requirements complicates in-
stallation, maintenance and customization. The two systems, fur-
thermore, require distinct training protocols.

The version of CATCH developed for this study (CATCHv2)
uses YOLOv5, which is built with the PyTorch61 machine-learning
framework. The updated Estimator also is defined in PyTorch,
thereby fully integrating the two stages, simplifying installation
and maintenance, and facilitating training.

3.1 Continuous Scaling

CATCHv2 features a set of critical innovations that dramatically
improve its performance. The most important of these involves
how features identified by the Localizer are transferred into the
Estimator. Features vary in size depending on the nature and

position of the particle. As shown in Fig. 2, each feature must
be scaled from its true dimensions, w×w, to a standard size of
201 pixels×201 pixels before it can be processed by the Estimator.
The original implementation of CATCH either cropped a given
feature to this size or else scaled it by an integer factor before
cropping, depending on the ideal size determined by the Local-
izer. CATCHv2 instead continuously scales the block of pixels to
the required size with bilinear interpolation.

Continuous scaling allows features to be precisely cropped for
analysis, which improves the signal-to-noise ratio. It also in-
creases the system’s reliance on the Localizer to estimate feature
extents accurately. CATCHv2 achieves this by adopting the “small"
variant of YOLOv5, which estimates feature extent with single-
pixel precision. The original CATCH implementation, by contrast,
achieved ten-pixel precision using the “tiny" variant of YOLOv34.
Improving the estimate for feature extent also encodes more in-
formation about the particle’s size and axial position in the scale
factor. CATCHv2 leverages this to improve the precision of its
overall parameter estimation.

3.2 Architecture of the Estimator

CATCH’s Estimator uses four convolutional layers to distill the
40401 8-bit values that constitute a scaled feature into a set of 400
single-precision floating-point values. This set together with the
scale factor is then processed by a fully-connected neural-network
layer into a 20-element vector that optimally represents the parti-
cle’s properties in an abstract vector space that is parameterized
by zp, ap and np. The vector of values computed from the feature
is parsed by three specialized fully-connected layers into each of
these parameters.

The Estimator’s convolutional layers distill information from a
feature using sets of 3 pixel× 3 pixel masks. Intermediate results
are combined with three stages of two-fold max-pooling and one
stage of four-fold max-pooling. The fully-connected layers use
rectified linear unit (ReLU) activation, which has been shown to
facilitate rapid training in regression networks62. Final results
are scaled into physical units by a linear fully-connected layer.
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The vector space of optimal representations may be viewed as
an idealized model of the Lorenz-Mie scattering theory in the rel-
evant range of parameter values. If the network can be appro-
priately trained, the 20 values that span the space could encode
1096 distinct values of zp, ap and np, which would be more than
enough to estimate parameters with the part-per-thousand preci-
sion provided by conventional optimization algorithms. The en-
tire Estimator has 34983 trainable parameters that can be stored
in 200 kB. Whether such a small network can achieve the poten-
tial suggested by the naive interpretation of the optimal represen-
tation depends on the success of the training protocol.

3.3 Training

Like its predecessors4,8,10, CATCHv2 streamlines training by us-
ing a generative model such as Eq. (3) to produce synthetic data
with established ground-truth parameters, rather than relying on
manually annotated experimental data. Synthetic training data
not only eliminates annotation errors but also can cover the pa-
rameter space more comprehensively than would be feasible with
experimentally-derived data.

3.3.1 Training Data

The training set consists of 105 synthetic holograms for training
and an additional 104 for validation. Within the same field of
view as the reference microscope, each hologram is computed as
the superposition of up to 6 particles’ fields. This number cor-
responds to experimental concentrations up to 106 particles/mL.
The simulated particles’ properties are drawn at random from
the range ap ∈ [200nm,5µm] and np ∈ [1.38,2.500]. Particles are
placed at random in the field of view and are located in the range
zp ∈ [2.5µm,29µm] with the caveat that collisions between parti-
cles are not allowed. To further mimic experimental data, each
calculated hologram is scaled to a mean intensity value of 100
and cast to 8 bits/pixel. These images are degraded with 5 % addi-
tive Gaussian noise, which is consistent with the median-absolute-
deviation noise estimate for holograms recorded by the reference
holographic microscope, including the example in Fig. 1 (b). In-
corporating noise into the training holograms and allowing for
overlapping features helps to prevent overtraining and improves
the network’s performance with experimental holograms.

3.3.2 Training Protocol

Both the Localizer and the Estimator are trained by backprop-
agation. The Localizer uses stochastic gradient descent (SGD)
for its optimizer, and the Estimator is trained using root-mean-
square propagation (RMSprop)63. The original implementation
of CATCH minimized the L2 loss for both the Localizer and the
Estimator, which is equivalent to minimizing squared errors in
the estimates for the the features’ centroids and extents, and also
for the particles’ properties and axial positions. While effective
for training YOLO, L2 loss overemphasizes outliers due to partic-
ularly problematic holograms. Such bad outcomes are inherent
in the optimization problem because the Lorenz-Mie theory ad-
mits near-degeneracies in which distinct sets of parameters pro-
duce nearly identical holograms37. CATCHv2 deemphasizes de-
generacies by minimizing the smooth-L1 loss, which interpolates

Fig. 3 False negative detections from the CATCHv1 and CATCHv2 Lo-
calizers as a function of ap and np. Green points represent the 25000 sets
of properties tested. The 6 features not detected by CATCHv1 (orange)
are all small and weakly scattering. The 86 particles missed by CATCHv2
(teal) are either weakly scattering because they are nearly index matched
to the medium, or else scatter light especially strongly because they are
large and have high refractive indexes.

between the mean-square error for small errors and the mean-
absolute error for large errors64.

The training protocol for CATCHv2 achieves convergence for
all of its outputs without overtraining any of them by incorporat-
ing early-stopping callbacks that monitor the loss metric of each
output for validation data. Once the network converges on a so-
lution for one of its outputs, the callback freezes the values of all
of the network parameters that contribute to that output, thereby
preventing overfitting. Training continues for the remaining net-
work parameters until the second output converges, and then the
third. This training protocol requires no user input and accounts
naturally for differences in learning speed for each of the three
output parameters of our Estimator model.

Using this protocol, the Estimator was trained for 7882 epochs
with a batch size of 64. The Localizer was trained using a batch
size of 32 for 3163 epochs. Training was performed on a desktop
workstation outfitted with an NVIDIA Titan RTX graphical pro-
cessing unit (GPU) for hardware acceleration. The two modules
were trained sequentially using an average of 80 % of the GPU’s
processors for a total of seven days.

The trained networks can be adapted through transfer learn-
ing65 to work with microscopes with different wavelength and
magnification and media with different refractive indexes. Typ-
ically, this only requires retraining the fully-connected layers in
the final stage of the Estimator, which can be completed in two
hours once a suitable set of training data has been computed.

4 Performance
4.1 Validation with Synthetic Data
We first evaluate the performance of CATCH on a set of syn-
thetic images similar to those used in training. The Local-
izer is evaluated on a set of 25000 full-frame images of size
1280 pixels×1024 pixels, each containing exactly one holographic
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feature with randomized properties. The images are degraded
with 5 % Gaussian noise. This test establishes the system’s perfor-
mance under ideal conditions without the added complication of
overlapping features.

4.1.1 Detection Accuracy

Detection accuracy is assessed with two metrics: the rates of false
positive detections and false negative detections. Of these two
kinds of errors, false negatives pose a greater challenge because
they correspond to a loss of information. False positives gen-
erally can be identified and eliminated at later stages of anal-
ysis. The false positive detections from both Localizer versions
are plotted in Fig. 3. CATCHv1 (orange) boasted an impressive
false-negative rate of 0.02 %, missing only 6 out of 25000 holo-
graphic features. By comparison, CATCHv2 (teal) performs with
a false negative rate of 0.3 % on the same data set, missing a to-
tal of 86 holographic features. Neither CATCHv1 nor CATCHv2
has false-positive detections for these test images. In both cases,
losses are limited to either the most weakly scattering particles
or the largest and most strongly scattering particles. The overall
detection efficiency of 99.7 % achieved by CATCHv2 greatly im-
proves upon the 60 % rate previously reported for conventional
algorithms over the same range of parameters4 and matches that
of CATCHv1 over most of the parameter range. The slight loss
of detection efficiency is compensated by a very substantial gain
in localization accuracy, which is critical for accurate parameter
estimation.

4.1.2 Localization Accuracy

We evaluate localization accuracy using the true positive detec-
tions from the previous analysis. Of those 24914 detections,
14997 were situated such that their bounding box was not cut
off by the edge of the field of view. We compute the radial dis-
tance, ∆r, of those features’ predicted centroids from the ground
truth. The original implementation of CATCH has a mean in-
plane localization error of ∆r = 2.7pixels = 130nm for this data
set. The updated Localizer achieves a mean localization error of
⟨∆r⟩= 0.63pixel = 30nm. Its performance across the range of pa-
rameters is summarized in Fig. 4 and Table 1.

Localization errors contribute to errors in parameter estimation
if the Estimator is trained to expect perfectly centered features.
This source of error can be mitigated by training the Estimator
with synthetic holograms that are randomly offset to reflect the
Localizer’s performance. Improving the Localizer reduces these
offsets and therefore reduces the complexity of the data-analysis
problem that the Estimator is required to solve. This, in turn,
improves the Estimator’s performance.

Alternative deep-learning particle trackers such as Deep-
Track66 and LodeSTAR67 offer substantially better in-plane lo-
calization accuracy than YOLOv5. YOLO, however, provides the
reproducibly accurate bounding boxes that the CATCHv2 Estima-
tor requires for successful particle characterization59.

4.1.3 Parameter Estimation

We evaluate the Estimator using a separate data set consisting of
104 cropped holograms of spheres with randomly selected prop-
erties in the range zp ∈ [2.5µm,29µm], ap ∈ [0.2µm,5.0µm], and

Fig. 4 In-plane localization error, ∆r, for CATCHv2 averaged over axial
position, zp. The maximum error is smaller than 2 pixel over the entire
parameter space, with the largest errors occurring for the largest, most
weakly-refracting particles.

Table 1 Median and maximum errors in r = (xp,yp), zp, ap and np pre-
dicted by CATCHv1 and CATCHv2.

CATCHv1 CATCHv2

∆r [pixel] Median 2.7 0.63
Max 59 7

∆zp [pixel] Median 15.0 7.2
Max 659 167

∆ap [µm] Median 0.09 0.04
Max 2.62 1.01

∆np [ppt] Median 45.5 26.6
Max 781 886

np ∈ [1.38,2.5]. Consistent with training conditions, a feature’s
ideal extent is set to twice the radius of the twentieth interfer-
ence node. We introduce 5 % Gaussian random offsets into the
feature’s extent to simulate errors by the Localizer, and then add
5 % Gaussian noise to the feature’s calculated intensity.

Figure 5 and Table 1 illustrate the extent to which the modified
architecture improves the network’s performance. Errors in pa-
rameter estimation are presented in Fig. 5 as the mean absolute
differences between CATCH estimates and the ground truth av-
eraged over axial positions, zp. These deviations are dominated
by systematic errors that vary across the parameter domain and
thus reflect the accuracy of the Estimator. Accuracy in axial local-
ization improves by better than a factor of two across the entire
range of parameters, with a median error of ∆zp = 0.35µm. Ac-
curacy in particle sizing also improves by a factor of two, with a
median error of just ∆ap = 40nm. Errors in refractive index are
reduced to a median value of ∆np = 0.027, which is more than
sufficient to differentiate particles by their composition11,68. The
updated network also resolves property-dependent variations in
the error that are most evident when comparing Fig. 5(b) with
Fig. 5(e). Relative errors, plotted in Fig. 5(g), (h) and (i), are
smaller than 10 % over the entire parameter domain and are
smaller than 3 % for all but the smallest and most weakly scat-
tering particles.

Most of the improvements in CATCHv2’s accuracy relative to

6 | 1–13Journal Name, [year], [vol.],

Page 6 of 13Soft Matter



Fig. 5 Performance of the Estimator module on synthetic data for (a-c) CATCHv1 and (d-i) CATCHv2. Results are presented as a function of particle
radius, ap, and refractive index, np and are averaged over axial position, zp. (a) and (d) Absolute error in axial position, ∆zp. (b) and (e) Absolute error
in particle radius, ap. (c) and (f) Absolute error in refractive index, np. (g), (h) and (i) recast the CATCHv2 errors from (d), (e) and (f), respectively, as
percentages of the ground-truth values. Color bars have consistent scales to aid with comparison.
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CATCHv1 can be ascribed to incorporating continuous scaling into
the network’s optimal representation for a particle’s properties.
This innovation’s effectiveness hinges on coordinated improve-
ments in localization and feature-extent estimation afforded by
adopting a larger and more capable Localizer network. Training
with the robust smooth-L1 loss metric speeds convergence and
also contributes secondarily to improvements in accuracy.

4.2 Experimental Validation

Training and validation with synthetic data does not guarantee
a network’s performance with experimental data. Confounding
factors such as correlated noise, artifacts from normalization, and
instrumental imperfections may cause experimental data to differ
enough from ideal synthetic data that the trained model cannot
make accurate predictions.

We illustrate the performance of CATCH on experimental data
by measuring the sedimentation of a colloidal sphere between
parallel walls4,69. A 3 µm diameter silica bead (Bangs Labora-
tories, catalog number SS05N) is dispersed in a 30 µL aliquot of
water that is confined between a glass #1.5 cover slip and a glass
microscope slide. Silica being twice as dense as water, the bead
tends to settle to the bottom of the chamber. Using a holographic
optical trap70, we lift the bead to the top of the chamber, release
it and record its subsequent trajectory71. Examples of experimen-
tally recorded holograms of this particle are presented in Fig. 6(a)
when the particle is at the top of the chamber, and Fig. 6(b) when
the particle is at the bottom of the chamber. We analyze the result-
ing holographic video with CATCHv1, CATCHv2, and by fitting to
the generative model in Eq. (3) using a conventional least-squares
fitter. These analyses also yield estimates for the particle’s radius
and refractive index.

Figure 6(c) and (e) compare results obtained with the original
implementation of CATCH with results obtained by conventional
fitting. Figure 6(d) and (f) present complementary results for
CATCHv2. In both cases, we treat the nonlinear least-squares fit
as the ground truth for the comparison. The sedimenting parti-
cle’s axial position, plotted as (red) points in Fig. 6(c) and (d),
follows the sigmoidal trajectory expected for confined sedimenta-
tion in a horizontal slit pore72. Predictions for zp(t) by CATCHv1
generally follow this trend, but with substantial random and sys-
tematic errors. CATCHv2, by contrast, tracks the particle’s mo-
tion in excellent quantitative agreement with the ground truth.
The updated machine-learning system improves mean errors in
axial tracking by nearly a factor of ten, from ∆zp = 4.2µm to
∆zp = 0.46µm, which is consistent with expectations based on the
numerical validation data in Fig. 5.

The particle’s radius and refractive index, plotted in Fig 6(e)
and (f), form a tight cluster when reported by the conventional
fitter (red). All of these values represent properties of a single
particle that should not change as the particle moves through the
sample cell. Results from CATCHv1 in Fig. 6(e) generally clus-
ter in the correct region of parameter space, albeit with a sys-
tematic error of ∆ap = 1µm and a standard deviation of 500 nm.
CATCHv2, by contrast, accurately estimates the radius and re-
fractive index of the particle. The ∆ap = 12nm precision and

accuracy for particle size is consistent with expectations from
the numerical study in Fig. 5, and would suffice for the differ-
ential measurements required for holographic molecular binding
assays20,21,28,73,74. CATCHv2 therefore could provide a computa-
tionally cost-effective basis for label-free bead-based medical di-
agnostic testing.

Whereas the single-particle study in Fig. 6 is useful for illus-
trating the performance of CATCHv2 for an individual colloidal
sphere moving in three dimensions, Fig 7 illustrates its perfor-
mance for heterogeneous dispersions of colloidal particles. The
sample for this demonstration is composed of equal concentra-
tions of silica spheres (Thermo Fisher, catalog no. 8150) and
polystyrene spheres (Bangs Laboratories, catalog no. NT16N),
each with a nominal radius of ap = 0.75µm, dispersed in wa-
ter. The hologram in Fig. 7(a) captures four of those particles as
they move through the 61 µm×49 µm field of view in a pressure-
driven flow. Superimposed bounding boxes are identified auto-
matically by the Localizer stage of CATCHv2. The scatter plot
in Fig. 7(b) presents characterization results from the Estimator
stage for 1133 particles that flowed through the observation vol-
ume in 5 min, together with refined estimates for those particles’
characteristics that were obtained by fitting to Lorenz-Mie theory.
Each data point represents the radius and refractive index of one
particle. Machine-learning estimates are colored by the relative
density of observations, ρ(ap,np). The two populations of par-
ticles are clearly differentiated by refractive index, even though
their size distributions overlap.

CATCHv2 Lorenz-Mie Error Expected
ap [µm] ap [µm] ∆ap [nm] ∆ap [nm]

PS 0.770±0.053 0.729±0.008 42±54 57±74
SiO2 0.953±0.070 0.779±0.035 173±79 65±78

np np ∆np [ppt] ∆np [ppt]
PS 1.631±0.040 1.598±0.006 33±40 42±44
SiO2 1.455±0.008 1.449±0.006 6±11 26±40

Table 2 Particle-characterization performance of CATCHv2 for the two-
component dispersion presented in Fig. 7. Population-averaged values
for the radius and refractive index for the two types of particles are com-
pared with refined estimates obtained by fitting the same set of holo-
grams to Eq. (3). Differences between estimates and refined values are
compared with the expected performance from Fig. 5.

Table 2 reports the average radii and refractive indexes esti-
mated by CATCHv2 for the two types of particles in the sample.
These population-average values are compared with the averages
obtained by fitting the same holographic features to the Lorenz-
Mie model. The ranges of values are computed as standard devi-
ations of the single-particle results and therefore combine estima-
tion errors with intrinsic particle-to-particle variations in the two
populations. We interpret differences between machine-learning
estimates and refined values as errors in the machine-learning es-
timates, ∆ap and ∆np. Table 2 compares these discrepancies with
expectations for the performance of CATCHv2 based on the nu-
merical validation results presented in Fig. 5. In this case, the
range of expected errors is computed as the mean absolute devia-
tion of the validation results averaged over axial position, zp. This
is a reasonable treatment for a flow experiment in which particles
pass through the imaging volume at different heights.
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Fig. 6 (a) Experimentally recorded hologram of a colloidal silica sphere at the upper wall of a rectangular channel that is filled with water. (b) Hologram
of the same sphere after it sediments to the lower wall of the channel. Both holograms are cropped to include 20 diffraction fringes. This sphere’s
trajectory is used to assess the performance of CATCHv1 and CATCHv2 for tracking (c, d) and characterization (e, f). Machine-learning estimates are
compared with ground truth values obtained from fitting to the generative model (red). Values for the axial position, zp, obtained from the holograms
in (a) and (b) are plotted with large (red) symbols in (c) and (d). (c) Axial trajectory, zp(t), compared with predictions of CATCHv1 (orange) and (d)
CATCHv2 (blue). (e) Values for the particle radius, ap, and refractive index, np, estimated at each time step in the trajectory by CATCHv1 (orange) and
(f) CATCHv2 (blue). Ground truth values for ap and np are estimated by conventional optimization.

Fig. 7 Detection and characterization of particles in a heterogeneous sample. (a) Typical hologram of colloidal spheres flowing through the microscope’s
field of view overlaid with bounding boxes automatically detected by CATCHv2. (b) Characterization estimates provided by CATCHv2 (circles) for
1133 particles together with refined fits (hexagons) that were initialized with those estimates. CATCH results are colored by the relative density of
observations, ρ(ap,np).
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Systematic discrepancies between machine-learning estimates
for the particle radii and refined values are not surprising be-
cause errors in machine-learning estimates generally are not nor-
mally distributed. Such discrepancies are likely to be exacer-
bated by defects such as aberrations in experimentally recorded
holograms31,50 that are not accounted for in the generative
model used to synthesize training data. Even so, errors in the
polystyrene spheres’ radii fall within the expected range of ∆ap =

±60nm, as do the sizing errors for the 1.5 µm-radius silica sphere
reported in Fig. 6. By contrast, the 170 nm systematic offset for
the more weakly scattering 0.8 µm-radius silica spheres in Fig. 7
is nearly three times larger than expected. In assessing these per-
formance, it should be noted that the only particle-resolved sizing
technique that consistently surpasses the precision and accuracy
of CATCHv2 in this range is the full Lorenz-Mie implementation.

Machine-learning estimates for the two populations’ refractive
indexes agree well with the refined values. Results for the refrac-
tive index, in particular, are sufficiently precise to distinguish the
two types of particles by composition10, which represents a very
substantial improvement over CATCHv1.

Because CATCHv2 performs independent estimates for size and
refractive index, errors in these estimates tend not to be corre-
lated4. This contrasts with conventional optimization techniques
whose results more directly reflect the structure of the error sur-
face for the theory. Correlations are less prominent, for example,
in the machine-learning estimates plotted in Fig. 7(b) than in the
iteratively optimized results.

Predictions by CATCHv2 are sufficiently accurate and precise
that refinement may not be necessary for many applications, in-
cluding classifying impurity particles for quality control in bio-
pharmaceuticals17,18, semiconductor processing75 and environ-
mental monitoring76. Reliable detection of particles across a
wide range of parameters ensures accurate measurement of par-
ticle concentrations19,76, which is valuable across many indus-
tries. Combining this with accurate sizing and differentiation by
material composition affords a particularly detailed view into the
composition of heterogeneous dispersions. All such applications
will benefit from the processing speed afforded by an end-to-end
machine-learning implementation.

4.3 Speed

Both CATCHv1 and CATCHv2 make efficient use of hardware ac-
celeration on CUDA-capable graphics cards. CATCHv1 processes
a single 1280 pixel× 1024 pixel hologram in 21 ms on an NVIDIA
Titan Xp GPU, with 20 ms required for the Localizer and 0.9 ms for
the Estimator4. These times are reduced by 5 % when the same
code is run on an NVIDIA Titan RTX GPU.

Moving from the C-language implementation of CATCHv1 to
the pure python implementation of CATCHv2 incurs a perfor-
mance penalty, all the more so because of the increased size and
complexity of the Localizer module. Running on the Titan RTX
platform, the updated Localizer requires 24 ms to process one
frame, and the Estimator requires an additional 1.3 ms to ana-
lyze each feature. This is still fast enough to process frames in
real time at 30 frames/s.

The dramatic improvement in prediction accuracy gained with
CATCHv2 translates into particularly substantial performance
gains for those applications that no longer require optimization
by conventional algorithms. Even when further refinement is re-
quired, the improved initial estimates provided by CATCHv2 in-
crease the likelihood of successful convergence and reduce the
time to convergence.

Performance differences between C-based and python-based
implementations should decrease as development efforts con-
tinue to improve the processing speed of python programs.
CATCHv2 also would benefit from optimizations such as parame-
ter pruning and quantization, neither of which have been applied
to the demonstration implementation presented here.

5 Discussion
The implementation of the CATCH machine-learning system pre-
sented in this study solves a central problem in soft-matter sci-
ence: characterizing and tracking individual colloidal particles
in their native media in real time. When analyzing data from
the reference holographic microscopy instrument, CATCH pro-
vides three-dimensional tracking data with ∆r = 50nm accuracy
in-plane and ∆zp = 350nm along the axial direction in a 100 µm×
100 µm×30 µm observation volume. CATCH simultaneously mea-
sures a micrometer-scale particle’s radius with a median accuracy
of ∆ap = 40nm for particles ranging in radius from ap = 200nm to
ap = 5µm. In large regions of parameter space, CATCH achieves
precision and accuracy which rivals that of the conventional algo-
rithms.

Holographic characterization offers the substantial advantage
relative to other particle-characterization technologies of measur-
ing a recorded particle’s refractive index, thereby providing infor-
mation about its composition. CATCH estimates the refractive
index with an accuracy of ∆np = 0.026 over the range from near-
index-matching, np = 1.38, to very strong scattering, np = 2.5.

These estimates for the system’s accuracy are consistent with
the illustrative example of a colloidal sphere sedimenting through
water. The training protocol therefore appropriately accounts for
instrumental imperfections that might otherwise degrade predic-
tion accuracy.

The ability of CATCH to estimate particles’ positions and char-
acteristics with an accuracy of one or two percent is sufficient
for many of the applications that already have been identified for
holographic particle characterization, including particle charac-
terization in biopharmaceuticals18,19, agglomerate detection in
semiconductor polishing slurries75 and process control for ma-
terials synthesis73. In more specialized applications where part-
per-thousand accuracy is desirable, predictions from CATCH can
be used to initialize parameter refinement using the generative
model from Eq. (3). Both the speed and reliability of iterative
optimization are improved by the high quality of the starting es-
timates provided by CATCH37.

CATCH can be readily adapted to work with new instruments
and can be trained automatically to cover different parameter
ranges. For example, CATCH can be trained to accommodate par-
ticles with refractive indexes smaller than that of the medium.
Training over a smaller parameter range can improve the accu-
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racy of CATCH’s predictions to the point that machine-learning
estimates rival the precision and accuracy of state-of-the-art opti-
mization while retaining their substantial speed advantage.

Having demonstrated that a machine-learning system can pro-
vide precise end-to-end holographic analysis of colloidal spheres
in real time, we can speculate on possible generalizations of our
implementation. CATCH currently treats the refractive index of
the medium as a fixed parameter, for example. More generally, nm

can be allowed to vary at the cost of increased training complex-
ity, and indeed could be obtained as an output of the Estimator.
Such a generalized model would be useful for analyzing most dis-
persions of micrometer-scale colloids without any a priori knowl-
edge about their composition and without requiring any retrain-
ing. The Localizer can be trained to differentiate holograms into
categories such as “spherical", “rod-like" and “irregular", “large"
and “small", “high-index" and “low-index". Such classifications
could be used to transfer holograms to specialized variants of the
Estimator for detailed analysis. The value of such elaborations
hinges on the rapidly increasing variety of applications for holo-
graphic particle characterization.

As the simplest and presumably smallest machine-learning im-
plementation of holographic particle characterization, the present
implementation CATCH can be incorporated readily into commer-
cial instrumentation. CATCH is small enough, for example, to be
realized on a field-programmable gate array (FPGA) suitable for
board-level integration.

The diminutive 200 kB memory footprint of the CATCH model
also hints at opportunities for recasting Lorenz-Mie theory itself.
The standard formulation of light scattering by small particles is
technically challenging to compute. It is possible that the con-
densed representation learned by CATCH can guide the develop-
ment of a greatly simplified analytic formulation77, which would
be broadly useful. CATCH therefore can play a role in the emerg-
ing paradigm shift toward machine-driven discovery of funda-
mental principles.

The full open-source implementation of CATCHv2 is available
at https://github.com/laltman2/CATCH/. The open-
source pylorenzmie package for Lorenz-Mie analysis is available
at https://github.com/davidgrier/pylorenzmie/
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