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Abstract

Patchy colloids promise the design and modelling of complex materials, but the realization

of equilibrium patchy particle structures remains challenging. Here, we assemble pseudo-trivalent

particles and elucidate their phase behaviour when confined to a plane. We observe the honeycomb

phase, as well as more complex amorphous network and triangular phases. Structural analysis

performed on the three condensed phases reveals their shared structural motifs. Using a combined

experimental and simulation approach, we elucidate the energetics of these phases and construct

the phase diagram of this system, using order parameters to determine the phase coexistence lines.

Our results reveal the rich phase behaviour that a relatively simple patchy particle system can

display, and open the door to a larger joined simulation and experimental exploration of the full

patchy-particle phase space.

I. INTRODUCTION

Colloidal particles are an ideal system for studying the assembly of complex materials.

Despite their apparent simplicity, they can assemble into complex structures, sometimes even

mimicking atomic materials, while still being easily studied using convenient light scattering

or microscopy methods [1]. Modern synthesis methods can go far beyond the classic isotropic

colloidal sphere, endowing particles with specific particle shape and valency to achieve higher

complexity of assembled structures [2–4]. A subfield of colloidal assembly that has grown

especially prominent over the past decade is the study of so-called patchy particles. These

particles are decorated with patches of a material or surface affinity different from the bulk;

the patches are typically used to induce specific attraction to other patches, and thus to

steer the assembly towards specific phases [5–7].

Simulations and experimental studies have revealed a wealth of structures that even rel-

atively simple patch geometries can assemble into. Even one of the simplest possible cases -

two-dimensional assembly of divalent particles - can lead to assembly of the complex kagome

lattice [6, 8]. Adding more patches leads to increasingly complex phase behaviour: tetrava-

lent particles can assemble into a diamond lattice [9, 10] - although with significant kinetic

difficulties [11], flexible patches or mixed patch numbers can lead to so-called “equilibrium

gels” [12–14], and particles with 5 or 7 regularly arranged patches can assemble into 12-fold

symmetrical quasicrystals [15]. The formed equilibrium structures do not only depend on
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particle geometry, but also on patch attractive strength and particle density [11, 16, 17].

Unfortunately, most of our knowledge about patchy particle assembly comes from simula-

tions due to the challenge of realizing well-defined, reversibly assembling patchy particles

and controlling their anisotropic interactions, making simulations the method of choice to

elucidate their assembly and phase behaviour [7].

However, recent advances in colloid chemistry and new experimental strategies are en-

abling the production of more complex particle geometries and the study of their equilibrium

assembly in experiments [18–21]. Yet, experimental realization of reversible patch-patch

bonding to produce equilibrium structures is still challenging, while it would open the door

to many complex structures, analogues of atomic compounds and beyond [22–24]. One way

to realize selective patch-patch attraction of tunable magnitude is through critical Casimir

interactions that depend on the solvent affinity of the particle surfaces [25–28]. The critical

Casimir force arises in binary solvents close to their critical point when the confinement of

solvent fluctuations between the particle surfaces causes an effective attractive force on the

order of the thermal energy, kBT , tunable by the temperature offset ∆T from the solvent

critical point, Tc [29–31].

In experimental work on patchy particle systems, investigation of the complex phase

behaviour has been rarely reported, with notable exceptions [6, 7, 10, 12]: varying density

and attractive strength is an added complexity of an already complex experimental system.

Nevertheless, this is worthwhile, since the rich phase behaviour is one of the hallmarks of

patchy particle systems, as highlighted by a range of simulations [15, 17, 32–34].

Particular interest lies in tri-valent and tetra-valent particles as they promise to form

phases analogous to those of carbon atoms: the graphene phase for the former, mimicking

the sp2 hybridized state of carbon atoms, and the diamond lattice for the latter, mimicking

the sp3 hybridized state [10, 16, 32]. Both structures are interesting candidates for photonic

and phononic materials as they exhibit photonic and phononic band gaps [22, 35]. Indeed,

for trivalent particles, simulations have revealed a rich phase diagram, including besides the

honeycomb lattice, also amorphous and triangular phases, but the experimental counterpart

has remained elusive [16].

Here, by finely tuning attractive patch-patch interactions in a system of pseudo-trivalent

particles confined to a surface, we experimentally investigate their phase behaviour as a

function of density and attraction. We employ critical Casimir forces in a near-critical
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binary solvent to adjust the patches’ attractive strength on the scale of kBT , the thermal

energy, enabling us to reversibly and close to equilibrium explore the full range of the

phase diagram. We observe the formation of three structurally distinct condensed phases:

the honeycomb lattice, characterized by the hexagonal honeycomb motif, an amorphous

network, characterized by pentagonal, hexagonal and heptagonal motifs, and the so-called

triangular phase, a honeycomb lattice with the hexagon filled by an additional particle.

These phases are confirmed in simulations performed at similar densities and attractive

strengths. Using the local coordination number and characteristic lattice distance ratios

as structural order parameters, we pinpoint the phase boundaries and compare with the

simulation predictions. Our results reveal that simple surface-confined trivalent particles

display a surprisingly complex phase diagram, highlighting the rich phase behaviour that

even simple patchy particles can display. These results open the door to complex colloidal

(meta-)materials, such as directionally bonded low-density crystals and amorphous networks,

which have potential for phononic and photonic applications [22, 35].

II. METHODS

We fabricate patchy particles from polystyrene (PS) and 3-(trimethoxysilyl)propyl

methacrylate (TPM) spheres by colloidal fusion [20]. The synthesis yields particles with a

PS bulk and tetrahedrally coordinated fluorescently labeled TPM patches (Fig. 1a and b).

The particles have a diameter of σ = 2.0µm and a patch diameter dp ≈ 0.5µm (see SI); the

latter is sufficiently small to allow only single patches to bind with each other. To induce

an effective patch-patch attraction of controllable magnitude, we suspend the particles in a

binary solvent close to its critical point. The confinement of solvent fluctuations between the

particle surfaces then causes attractive critical Casimir interactions on the order of the ther-

mal energy, kBT , tunable by the absorption preference of the patches and the temperature

offset ∆T from the solvent coexistence temperature, Tcx.

We use a binary mixture of lutidine and water with lutidine volume fraction cL = 0.25

close to the critical volume fraction cL,c = 0.27 [36], and solvent demixing temperature

Tcx = 33.95◦C, and add 1 mM of MgSO4 to screen the particles’ electrostatic repulsion and

enhance the lutidine adsorption of the hydrophobic patches [26]. The suspension is injected

into a glass capillary with hydrophobically treated walls (see Supplementary Methods) to

4

Page 4 of 20Soft Matter



which the particle patches bind and the particles become adsorbed via one of their patches

at approx. ∆T ≤ 0.7◦C. The resulting pseudo-trivalent particles diffuse freely along the

surface (see Supplementary Note 1), until at approx. ∆T ≤ 0.45◦C, the remaining free

patches start attracting each other and structures start to form, as illustrated in Figure 1c.

To study the formation of phases, we slowly approach Tc in steps of 0.01◦C or larger

(up to 0.05◦C), starting from ∆T = 0.65◦C. We tilt the sample cell slightly to induce a

small particle density gradient, allowing us to study a range of particle area fractions η at

a constant ∆T , see SI. Several regions in the sample along the density gradient are then

imaged by confocal microscopy to locate both the particles’ centre of mass and fluorescent

patches, allowing us to determine the particles’ bond angles with their neighbours (for

tracking details, see SI). By focussing at different heights, we can accurately determine

the horizontal position of the particle centre (from the glass-bound patch) and the bonds

between particles (from the bonding patches).

We also perform Monte Carlo (MC) simulations to aid the mapping of the phases. The

interaction between particles is set by a generalized Lennard-Jones (LJ) repulsive core and

an attractive tail modulated by an angle-dependent function, which is a reasonable model for

our patchy particle system [37, 38]. Further simulation details are given in SI. Simulations

are performed at a range of different reduced temperatures (T ∗) and surface coverages. We

calibrate the inter-particle potentials at several ∆T and T ∗ to be able to directly compare

experiments and simulations at similar attractive strength (see Supplementary Note 4).

III. RESULTS AND DISCUSSION

A. Observation of honeycomb, amorphous network, and triangular phases

At low patch-patch interaction strength (high ∆T ) and low area fraction (η . 0.5), the

particles form a two-dimensional colloidal fluid, see Figure 1d. By measuring the diffusion

constant of the particles, we confirm that they can diffuse freely over the surface, see SI.

When we increase the patch-patch interaction strength by decreasing ∆T to . 0.38◦C, the

particles form flakes of honeycomb lattice coexisting with a dilute fluid phase, see Figure 1e.

In the lattice, each particle binds three other particles at 120◦ angle with respect to each

other, resulting in the typical repeating 6-membered rings motif of the honeycomb lattice.
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FIG. 1. Pseudo-trimeric tetrahedral particles and their phases: fluid, honeycomb,

amorphous and triangular (a-c) Tetrahedral particles become trivalent upon attachment of one

patch to the substrate. (a) Scanning electron microscopy (SEM) image of a patchy particle with

patch highlighted in orange. (b) Confocal microscope image of a particle taken under fluorescence.

The projected angle between the patches is indicated by α, corresponding to 120◦. The scale bar

in both panels is 1µm. (c) Reconstruction of surface-bound particles, exhibiting three remaining

patches to bind to other particles. (d)-(g) Confocal microscopy images of experimentally observed

phases: fluid (d), honeycomb-fluid coexistence (e), amorphous network (f), and triangular phase

(g). Inset shows part of the image with particles superimposed in red. (h)-(j) Snapshots of the

phases observed in the simulations, corresponding to the experimental phases in (d)-(g). In panel

(j), the red patches are hidden to highlight the triangular packing of particles.

The honeycomb lattice is common in nature and engineering at all length scales due to

its extraordinary mechanical and electronic properties [39, 40]. Famous examples include

graphene, formed by the two-dimensional assembly of trivalent atoms.

At higher densities, more exotic structures emerge. At an area fraction of η ∼ 0.55, an

amorphous network is observed as shown in Figure 1f. This network is characterized by a

wide distribution of ring sizes, in which particles exhibit non-ideal bond angles, slightly above

or below 120◦C. In this network, the open nature of the honeycomb lattice is preserved, but

the order is lost: unlike in the honeycomb lattice, the rings do not periodically tile the surface

but fill the plane seemingly without long-range order. As we applied the same slow increase
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of the attractive strength, at a density that is still low enough for rearrangement (far below

random close packing), we believe this amorphous network to be an equilibrium phase. This

is confirmed in our simulations that show a similar transition from the honeycomb lattice

to the amorphous phase, albeit with small structural differences to the experimental one,

as depicted in Fig. 1h and i. Such an equilibrium phase formed by limited valency particles

has long been predicted by simulations and theory [14, 41]

At yet higher densities, η & 0.6, the particles pack tightly in the triangular phase, see

Figure 1g, where we focus on the surface-bound patches demarcating the particle centres to

highlight the underlying structure: the particles are ordered in a dense hexagonal crystal,

while still being bonded to their neighbours via their attractive patches. The triangular

lattice can be regarded as a honeycomb structure with each honeycomb cell occupied by an

additional particle, although the additional particles that fill the voids typically destroy the

honeycomb bond network. This phase is likewise confirmed in the simulations, as shown

by the snapshot in Fig. 1j. The simulations thus capture our experimental results very

well: simulated and experimental snapshots display remarkably similar structures; the three

condensed phases are formed both in experiment and simulation.

B. Structural analysis

To further elucidate the relation of the amorphous and triangular phases to the honey-

comb lattice, we analyse their structures in more detail. Important structural motifs are

the rings, whose sizes are characteristic of the phases: they are strictly 6-membered in the

honeycomb lattice, and more broadly distributed in the amorphous phase [16, 32, 42, 43].

Ring-size distributions of both phases are shown in Figure 2a, where bars indicate exper-

imental measurements and dots simulation results. Indeed, the honeycomb phase consists

primarily of 6-membered rings as expected, while also showing a small fraction of 5- and

7-membered rings, which we associate with defects, mostly situated at grain boundaries,

see Fig. 1e and h. The amorphous network phase, in contrast, displays a much broader

distribution of ring sizes, indicating that this phase consists of a variety of motifs in its bulk,

including large fractions of 5- and 7- membered rings. This broad ring-size distribution is

a hallmark of two-dimensional trivalent particle networks: similar distributions have been

found in amorphous silica and the theoretical triangle network, even though the bond details
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FIG. 2. Structural analysis. (a) Ring size distribution in the honeycomb phase (yellow, deter-

mined from 8 representative images) and amorphous phase (blue, determined from 2 representative

images). The histogram shows experimental results, the dots the results from simulations. (b) Ra-

dial distribution function, g(r) of the three different condensed phases, honeycomb (solid line),

amorphous (dotted line), and triangular (dashed line). The g(r) has been normalized to the height

of its nearest-neighbour peak as well as shifted along the y-axis. The vertical dotted lines indicate

theoretical peak locations, full analysis can be found in the SI. The inset shows a schematic draw-

ing of the three smallest typical distances in our system, 1σ (yellow), 1.74σ (blue) and 2σ (red).

The corresponding peaks in the g(r) are highlighted. (c) Triangular lattice: confocal image and

bonding network. The top-left half of the image shows the glass-bound patches, indicating the

particle centres, while the bottom-right shows the overlaid bonding network where the patches and

their bonds are highlighted in yellow.

(bending and stretching strain) are very different from our case [42]. Comparison of the ex-

perimental and simulated ring-size distributions reveals an interesting effect: in experiments,

the number of 5-membered rings is significantly larger than that of the 7-membered rings,

while in simulations, the distribution is more symmetric. This difference may originate from

kinetic effects, favouring smaller ring sizes in the experiments, from the different effective

patch sizes of experiments and simulations, or from many-body effects in experiments.

Further distinction of the amorphous and honeycomb phases can be made via the pair

correlation function g(r), plotted in Figure 2b. At short distances, the g(r) of the two phases

is remarkably similar: all initial peaks coincide, indicating similar short-range distances, a

direct result of their very similar basic structural motifs. Both phases consist of rings related

to the particles’ valency: hexagons in the honeycomb case, a mix of mainly penta-, hexa-,
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and heptagons in the amorphous case. These rings share similar typical internal distances,

leading to similar short-range radial distribution functions (see SI). For the amorphous

phase however, the peaks diminish after a few particle radii, as g(r) decorrelates at larger

distances because each shell of rings introduces a diverging number of ring-size combinations

and associated characteristic distances. These effects are in line with other observations of

amorphous networks consisting of trivalent subunits, and have been observed at length scales

spanning from atomic to macroscopic [42, 44].

In contrast to the open honeycomb and amorphous phases, the triangular phase is char-

acterized by a dense hexagonal crystal, giving rise to a dense network of patch-patch bonds.

The bonds can be organized in a honeycomb lattice with particles in the voids, or as a

disordered network of bonds [16]. In our case, we rather observe a disordered network of

bonds, as shown by the split, annotated microscopic image in Figure 2c, which illustrates

the two layers of organization: triangular lattice (top left) and disordered bond network

(bottom right). The glass-bound patches in the top-left demarcate the particle centres,

clearly showing the dense hexagonal lattice of the phase. The bottom-right of the figure

highlights the network of bonds between particles overlaid onto the image. Combined, both

halves of Figure 2c reveal the dense bonding network of the triangular phase. The structural

relation to the honeycomb lattice is reflected in the g(r) (Figure 2b): the peak positions

of the honeycomb and triangular lattices largely coincide, while the peak intensities differ

significantly: for instance, the peaks corresponding to the second and third coordination

shell at 1.74σ and 2.00σ respectively, have different relative heights (see Supplementary

note 2). In the honeycomb lattice there are six neighbours in the second coordination shell

and three neighbours in the third coordination shell, while in the triangular phase there are

six neighbours in each of these two coordination layers. The intensity ratio R of the two

peaks in Fig. 2b thus characterizes open and closed phases: a ratio below 1 indicates an

open structure (the honeycomb and amorphous phases), while a ratio above 1 corresponds

to the closed triangular phase, see Supplementary note 4. Furthermore, in the absence of

peaks, this ratio equals 1, signalling a low-density fluid phase.
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C. Order parameters

Based on these structural properties, we can now define order parameters of the phases

to pinpoint the coexistence lines and construct the phase diagram. In Fig. 3, we follow the

main structural changes along lines of constant density and constant attraction and use the

structural order parameters to determine the phase transition. The resulting experimental

phase diagram is shown in Fig. 4a.

The fluid phase is characterized by a low number of bonded neighbours. Therefore, to

pinpoint the fluid-honeycomb phase boundary, we determine the mean number of neighbours

〈Nnb〉 of a particle as those with centres within 1.1σ of the particle under consideration. The

resulting 〈Nnb〉 as a function of η at two different interaction strengths (arrows 1 and 2 in

Figure 4a) is shown in Fig. 3a. In both cases, 〈Nnb〉 ∼ 0 at low η, but jumps to 〈Nnb〉 > 0 and

grows linearly with η at high η as a result of the growing fraction of the honeycomb phase in

the fluid-honeycomb phase coexistence. This strong increase in 〈Nnb〉 signals the transition

from the low-density fluid to fluid-honeycomb coexistence. The exact nature of the transition

such as amount of supercooling, finite-size effects, etc. cannot be concluded from the current

data, neither the exact location of the transition. The plotted dashed lines are therefore

indicative only. At much lower attraction, 〈Nnb〉 increases continuously with η, indicating

the pure fluid phase, while at much higher attraction, 〈Nnb〉 saturates at ∼ 3, indicating the

honeycomb phase, as consistently shown for experiments and simulations in Fig. 3b. The

behaviour of experimental and numerical data is strikingly similar: the evolution of 〈Nnb〉

in the fluid phase (at T ∗ = 0.2 and ∆T = 0.42◦C) almost perfectly overlap, as may be

expected from their similar attractive strength (Supplementary note 4). In the honeycomb

phase (at T ∗ = 0.05 and ∆T = 0.04◦C), the trend is also similar, while the slightly lower

〈Nnb〉 observed in experiments reflects the higher number of defects and surface particles

lacking one bonding neighbour. At this interaction strength equivalent to ∼ 20kBT , the

fluid-honeycomb coexistence phase extends all the way to low density, resulting in the 〈Nnb〉

plateaus.

We also explore the fluid-honeycomb transition along vertical lines in the phase diagram,

by plotting the experimentally observed 〈Nnb〉 as a function of ∆T for three different volume

fractions (arrows 3, 4, and 5 in Fig. 4a) in Figure 3c. At high ∆T (low attraction) the

system is in the fluid phase and 〈Nnb〉 is low. When the attraction increases towards smaller
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∆T , 〈Nnb〉 jumps and increases strongly, signalling the transition from the fluid phase to

honeycomb-fluid coexistence. While the transitions cannot be pinpointed unambiguously

from the experimental data, our simulations predict that the transition temperature ∆T

increases, i.e. the attraction decreases for increasing density.

At higher density, 〈Nnb〉 is no longer a good indicator of the phases. Instead, we can

make use of the characteristic height ratio R of the g(r) peaks at 1.74σ and 2.00σ as an

order parameter of the phase transitions, as shown by the g(r) curves in Fig. 2b. We

exploit this ratio R for characterizing the transition from fluid and triangular phases to the

honeycomb phase (along paths 6 and 7 in Figure 4a) in Figure 3d. Within each phase,

we expect R to be constant due to the constant nearest-neighbour structure of each phase

(neglecting the slight dependence of the fluid nearest neighbour structure on density). This

is roughly displayed by the data, though firm conclusions are prohibited by the large spread

of the data. Depending on the density, we observe different behaviour: At lower density

η6 = 0.40, R is approximately 1 at low interaction strength and drops to values lower than

1 at ∆T6 ≈ 0.35K, indicating a transition from the fluid phase to the honeycomb lattice. At

higher density 0.53, in contrast, R adopts values larger than 1 at low interaction strength,

and again transitions to values lower than 1 as interaction strength increases, indicating that

the system undergoes a transition from the triangular to the honeycomb lattice, as shown

in the phase diagram in Figure 4a.

R is also a suitable order parameter to detect the transition from the amorphous to the

triangular phase along arrows 8 and 9 in Figure 4a. We follow it as a function of η at

∆T8 = 0.28◦C in Figure 3e. The transition at η8 = 0.58 indicates the phase transition from

the open amorphous lattice to the triangular lattice. We note that there may be a small

coexistence region as suggested by the fact that some of the rings in Figs. 1f and i are filled

with a particle; we therefore indicate the jump of R more gradual, with a sloped line in

Figure 3e. The simulations show a similar transition from an open to a closed structure in

Figure 3f. The transition occurs at a slightly higher density compared to experiments, which

is expected given the somewhat shifted phase diagram of the simulations. The difference in

magnitude of R between simulation and experiment is probably due to the inherent noise

present in the experimental data, leading to R values closer to R = 1. The evolution along

path 9 at ∆T9 > 0.43◦C is more ambiguous. We notice a continuous slight increase in R,

reflecting some degree of triangular ordering towards high density. At these low attractions,
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FIG. 3. Structural order parameters as a function of density and temperature. (a-c)

Average number of neighbours 〈Nnb〉 as a function of surface coverage η (a,b) and ∆T (c). Panel

(a) shows experimental data for two different attractive strengths (along arrows 1 and 2 in Fig. 4a,

see legend), while (b) compares data from simulations in the fluid and honeycomb phase (black

solid symbols and lines) with experimental data at corresponding attractive strength (coloured

open symbols). Panel (c) shows 〈Nnb〉 as a function of ∆T for three densities (along arrows 3, 4

and 5 in Fig. 4a). (d,e) Height ratio R of characteristic g(r) peaks as a function of ∆T (d) and

η (e). Panel (d) shows R as a function of ∆T for two high surface coverages (arrows 6 and 7 in

Fig. 4a.), while panel (e) show R as a function of η for experiments along arrow 8 and simulations

at T∗ = 0.05. The latter reveals good qualitative agreement of R in experiment and simulations.

In all Figure panels, dotted lines are guides to the eye.

the phase behavior of the system should go over into that of hard spheres. More precisely,

our particles are slightly charged, lowering transition densities with respect to those of hard

spheres, but we expect qualitatively similar behavior. The rather continuous increase in

triangular ordering indeed reminds of the continuous transition observed in 2D hard-sphere

crystallization [45].
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FIG. 4. Phase diagrams (a) Experimental phase diagram constructed from the order parameters

in Fig. 3. The fluid phase is indicated in grey, the honeycomb-fluid coexistence in yellow, the amor-

phous network phase in blue and the triangular phase in red. Black arrows and dots indicate scans

and estimated transitions shown in Figure 3. (b) Corresponding phase diagram from simulations.

Each point corresponds to a separate simulation. Gray circles indicate fluid, yellow hexagons indi-

cate honeycomb, blue heptagons indicate amorphous network. Note that coexistence points have

2 symbols. (c-f) Illustrations of the experimentally observed phases: fluid (c), honeycomb-fluid

coexistence (d), amorphous network (e) and triangular lattice (f). Here, patchy particle sketches

are overlaid on small sections of confocal microscope images (insets of Figure 1d-g) to illustrate

the assembled structures most clearly.

IV. DISCUSSION

The resulting density-temperature phase diagram for the experiments (Figure 4a) shows

the fluid phase indicated in grey, the honeycomb-fluid coexistence in yellow, the amorphous

network phase in blue and the triangular phase in red. Each point in the diagram represents

an observation. For comparison, the phase diagram from simulations is shown Figure 4b.

Illustrations of the observed phases based on experimental snapshots are shown in panels

c-f.

The fluid phase present at high ∆T (low interaction strength) and low density consists

of freely diffusing, non-bonded particles. The fluid-to-honeycomb transition occurs upon

increasing interaction strength (decreasing ∆T ) as indicated by arrows 3 to 6, and upon

increasing density, along arrows 1 and 2. The phase transition from fluid-honeycomb coex-

istence to the amorphous phase takes place at surface coverage η ∼ 0.53. The amorphous
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phase, while leaving part of the open honeycomb structure intact, packs particles at a higher

density by introducing different ring sizes. This results in a structure, which is slightly denser

than the honeycomb lattice, and contains only few unsaturated patches. Due to its open

structure, the honeycomb lattice has a maximum packing fraction η ≈ 0.60, beyond which

the lattice simply cannot accommodate more particles, unless the lattice is deformed [16].

The amorphous network on the other hand can accommodate higher particle densities and

has a higher configurational entropy, but pays an energy penalty for bending bonds out

of their equilibrium angles to form non-ideal ring sizes. The balance between bending and

bonding energies determines whether the amorphous network can be formed, and at what

densities it is stable. Finally, the transition to the triangular phase is observed at area

fraction η ∼ 0.6, above which a dense packing of spheres is observed (Fig. 4f). Here, the

particles are assembled in a dense hexagonal structure, with respective orientations such

that as many patch-patch bonds as possible are formed. Nevertheless, even in a perfect tri-

angular lattice, only 2 out of 3 patches can be bonded [16], making this phase energetically

unfavourable at lower densities.

At low interaction strength (high ∆T ), experiments show a continuous increase in tri-

angular ordering, indicated as a shaded transition from grey to red in Fig. 4. Simulations

show a fluid phase up to about η . 0.7, fluid-triangular coexistence at 0.70 . η . 0.85,

and the triangular lattice at η & 0.85. As the patches are only weakly attractive at such

high ∆T , the particles interact mostly like isotropic colloids. At vanishingly low patch-patch

interaction, the particles interact like hard spheres, which in two dimensions are expected

to show continuous crystallization at packing fractions larger than η & 0.7 [45–48], in agree-

ment with the simulations. We hypothesize that the crystallization observed in experiments

is akin to hard-sphere crystallization in 2D, but occurs at a somewhat lower density due to

effective repulsions between the particles due to charging [45].

The simulations show phase transitions at similar densities, albeit at systematically

slightly higher values, which we attribute to the better equilibration of phases yielding

slightly higher packing densities. The density of the pure honeycomb phase (at moderate

temperature T ∗ = 0.05) is η ∼ 0.60, consistent with the value obtained by setting the

nearest-neighbour distance to that of the minimum of the potential. The density of the

amorphous phase is η ∼ 0.65− 0.70, again higher than that of the honeycomb crystal, but

still significantly lower than random close packing of spheres in a plane, ηcp = 0.84 [49],
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allowing for sufficient rearrangements and equilibration of the Monte Carlo simulations.

Despite this difference, the phase diagram Figure 4b is in good agreement with the exper-

imental one: the fluid, honeycomb and amorphous and triangular phases are all present at

similar attractive strength and densities. At the same time, there is an interesting character-

istic difference between experimental and simulated phases: in contrast to the experiments,

the simulations show a pure honeycomb lattice in a narrow region of phase space in ad-

dition to the fluid-honeycomb coexistence. Yet, this difference is not too surprising: due

to the short range of the critical Casimir force (on the order of 0.01σ, see Supplementary

note 6), the pure honeycomb region is expected to be extremely narrow and easily missed.

Furthermore, kinetic effects may quickly lead to the amorphous phase.

V. CONCLUSION

By utilizing the exquisite control over patch-patch attraction offered by the critical

Casimir force, we experimentally explore the pressure-attraction phase diagram of pseudo-

trivalent colloidal particles adsorbed at a substrate. The relatively simple particles display

a surprisingly rich phase behaviour, not only assembling into the honeycomb lattice, but

also into an amorphous network and a triangular phase at increasing particle density. The

three condensed phases are structurally closely related, and by combining experiments with

simulations, we find that a delicate balance between bending and bonding energies deter-

mine their interconversion. By following order parameters along isobars and isotherms, we

construct the phase diagram of the system.

The exploration of the complex phase diagram illustrates the increasingly advanced con-

trol over patchy particle assembly, and opens the door to experimental investigation of the

full phase space of the assembly of patchy particles with different valencies. The surpris-

ingly rich assembly behaviour found in this simple patchy particle system hints at a wealth

of interesting behaviours in more complex systems; there is a huge phase space to explore,

while varying parameters such as density, attractive strength, particle geometry, and system

dimensionality.
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