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Pressure-induced Shape-shifting of Helical Bacteria†

César L. Pastrana,a‡ Luyi Qiu,b‡, Shahaf Armon,c Ulrich Gerlanda and Ariel Amirb

Many bacterial species are helical in form, including the widespread pathogen H. pylori. Motivated
by recent experiments on H. pylori showing that cell wall synthesis is not uniform1, we investigate
the possible formation of helical cell shape induced by elastic heterogeneity. We show, experimentally
and theoretically, that helical morphogenesis can be produced by pressurizing an elastic cylindrical
vessel with helical reinforced lines. The properties of the pressurized helix are highly dependent on
the initial helical angle of the reinforced region. We find that steep angles result in crooked helices
with, surprisingly, reduced end-to-end distance upon pressurization. This work helps to explain the
possible mechanisms for the generation of helical cell morphologies and may inspire the design of
novel pressure-controlled helical actuators.

1 Introduction

Bacteria span a large range of sizes and a diversity of shapes2.
In most species, cell morphology is primarily determined by the
peptidoglycan cell wall, an intricate polymeric mesh that coats
the cell and serves as a stress-bearing structure against turgor
pressure3. Importantly, cells with helical morphology are broadly
present across prokaryotic species and are among the most com-
mon cellular shapes (Fig. 1a)4. In addition to species that nat-
urally grow as helices, mutants of rod-shaped and C-shaped
species may acquire helical morphology in septation-deficient mu-
tants6, when septation is suppresed7, or under environmental
stresses8. These observations might reflect common underlying
mechanisms that the cell can adjust to generate different mor-
phologies, allowing the shape-shifting between helix, curved and
rod cells. Conversely, the ubiquity of helical cell shapes in bac-
teria may indicate a convergent selection of the helical design to
serve specific biological functions. For instance, Helicobacter py-
lori, a gastrointestinal pathogen and paradigmatic example of he-
lical cell, shows reduced pathogenicity in mutants lacking helical
shape5,9.

Since bacterial cells can transition between rod shape or C-
shape to helices, it is natural to ask how cell shape can be tuned
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to accommodate the conditions of the ever-changing environment
characteristic of bacterial life forms. Their ability to control cell
shape relies on the regulation of the synthesis and mechanical
properties of the cell wall. Current models propose a stress-
dependent3,10,11 and/or curvature-dependent1,9,12 remodeling
and growth of the cell envelopes. Moreover, the interaction of
cell envelopes with scaffold proteins, particularly in the form of
stretch-resistance fibers analogous to the cytoskeleton in eukary-
otes, has been proposed as cell shape regulation model, such as
the pioneer work by Wolgemuth13. These two mechanisms are
not mutually exclusive and very likely work in conjunction14,15.
Both processes can, potentially, lead to a complex envelope com-
posed of regions with different rigidities, akin to a composite ma-
terial16,17.

The underlying microscopic organization of the cell envelope

c)

b)a)

Fig. 1 a) Electron micrograph of the helical bacterium Helicobacter
pylori. Scale bar is 0.5 µm. Image reproduced with permission from5. b)
Simulated helical cell obtained after pressurizing a spherocylinder, where
material is reinforced along a helical path with a reinforcement angle
α = 47.6° (corresponding to nr = 2.5 turns of the helix). The pressure
used is such that p̄ := pr0/Y = 0.21 (where r0 is the unpressurized tube
radius and Y the 2d Young modulus). c) Silicone balloon reinforced by
an (effectively) inextensible thread (red), pressurized to p ≈ 0.2 atm.
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Fig. 2 Shape morphology as a function of pressure. a) Spherocylinder with reinforcement along α = 78.6° (corresponding to nr = 2 turns) at
different pressures p, from left to right: 0, 0.60, 1.10 and 1.30 atm (where Y = 60 mN/m and r0 = 200 nm). b) Helix height z as a function of the
nondimensionalized pressure p̄ = pr0/Y . Roman numbers: Minimal energy configurations at p̄ = 0.47 for the reinforcement angles α = 78.6, 81.4,
84.3 and 85.7 degrees. c) Helical angle ζ as a function of p̄. Symbols are simulation results; solid lines are model predictions.

can be manifested upon changes of the internal (turgor) pres-
sure18. For example, in E. coli a decrease of the inner turgor
pressure mediated by hyper-osmotic shock results, as expected,
in a decrease of the cell’s length and radius, though the reduction
in radius is minimal19. This mechanical response has been at-
tributed to the circumferential organization of the cell wall. Con-
versely, in H. pylori, a decrease in turgor pressure results in an
increase of length (Fig. S6, ESI†,20,21). This behavior is not ob-
served in previous mechanical models13.

In this work we explore the changes in shape of helical cells
by turgor-pressure-dependent deformation of rod-like cells with a
single helical reinforcement (Fig. 1b). We find that the resulting
shape after pressurization strongly depends on the helical angle
of the reinforced fiber (Fig. 2a). For large helical reinforcement
angles, i.e. aligned with the long axis of the rod, pressurization
results in the formation of crooked helices with a non-intuitive
shortening of the end-to-end distance. We develop a theoretical
model that explains the shortening quantitatively and captures
qualitatively the resulting helical properties upon pressurization.
We confirm our theoretical results experimentally using silicone
balloons (Fig. 1c).

2 Results

2.1 Computational model

To study the resulting shapes of cells subjected to turgor pressure,
we construct a triangular spring mesh in the shape of a sphero-
cylinder (Fig. 2). Under small deformations, this mesh model
maps to a continuous material with Poisson’s ratio ν = 1

3 , and 2D
Young modulus Y given by Y = 2√

3
k, with k the spring constant of

the mesh22. We assigned a stiffness to the mesh from the charac-
teristic 3D Young modulus E and a thickness t of Gram negative
cell walls, where Y = Et. Inspired by the experimentally-observed
preferential binding of cytoskeleton-like proteins to concave ar-
eas of the cell surface1,6,7, we consider a reinforced helical re-
gion on the main cylindrical part to be significantly stiffer. This
results in a nearly-undeformable region at the range of pressures
explored. In real cells, the reinforcement can be a consequence of
the anisotropic remodeling of the cell wall, the interaction with
protein scaffolds or a combination of both. We find the configu-

rations of minimal energy using a non-linear conjugate gradient
algorithm (Sec. I(B), ESI†). Upon pressurization, the resulting
difference in the resistance to stretching of the reinforced region
with respect to the main body leads to the formation of cells with
helical morphology (Fig. 2a).

Naively, we would expect that an increase in the pressure p
results in an expansion of the contour length Lc (total length of
the tube, caps excluded), the height of the helix z and the radius
of the tube r concomitant to the formation of the helix. This is
the behaviour observed experimentally in macroscopic models13.
Though the general intuition is correct for Lc and r, in contrast,
a subtle increase of z during the initial steps of the pressurization
is later followed by a shortening, such that z(p)< z0 (Fig. 2a and
2b). This result is compatible with the increase of the end-to-
end distance after a reduction of the turgor pressure, via hyper-
osmotic shocking, observed in H. pylori (Fig. S6, ESI†,20,21). We
study the shortening behavior in a range of biologically-relevant
pressures. We will use a non-dimensional rescaled pressure p̄ :=
pr0/Y , where r0 is the radius of the non-pressurized tube.

The shape after pressurization is highly dependent on the heli-
cal angle of the reinforced line, α, which is defined in the unde-
formed configuration. The shape changes from a tube with helical
bumps on the surface to a coiled helix as α increases from 30° to
86° (Fig. S7, ESI†). For α > 70◦, the resulting shape is well de-
scribed by a helix and this is the parameter regime we focus on in
this letter. We found that for cylinders with a number of turns of
the reinforced line nr greater than 0.5 turns, the resulting helical
shape at different pressure is approximately independent of the
initial length (Fig. S13, ESI†). For the sake of simplicity, we study
the formation of helices in the nr independent regime.

A finite helix can be defined by four parameters: the radius of
the tube r, the radius of the helix R, the pitch L, and the number
of turns of the helix central axis n. Other variables of interest can
be derived from these four parameters, e.g. Lc = 2πn

√
R2 +L2

(not including the caps). We analyze the response of the heli-
cal parameters as a function of pressure (Fig. S8, ESI†). We find
that R increases when the shell is pressurized to low pressures.
However, contrary to r and Lc, its dependency with p̄ can be
non-monotonic. In the large α regime, R shows a well-defined
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Fig. 3 p∗z as a function of the number of reinforced turns nr. Dashed lines
are exponential fits for nr < 0.5 (red) and nr > 0.5 (blue). The intersection
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r ≃ 0.5. Insets. Minimal energy configu-
rations for nr = 0.40 and nr = 0.59 showing the soft transition between
C-shape to helix ( p̄ = 0.47). Data for different aspect ratios Lc0/r0, with
constant r0, and fixed reinforcement helical angle (α = 84.3°).

maximum that precedes its decrease when higher pressures are
applied. The helical pitch L does not coincide with the pitch of
the reinforced line and follows a similar trend to that observed
for z, more precisely, an increase of less than 15% during the ini-
tial steps of the pressurization before a reduction with further in-
crease of p̄. A proxy for the shape and crookedness of the helix is
given by the helical angle ζ = atan(L/R). For every reinforcement
angle, ζ decreases monotonically with p, where steep α leads to
smaller helical angles for a given pressure (Fig. 2c). Surprisingly,
we note that n is higher than the original number of turns of the
reinforced string n(p) > nr, with a deviation increasing with α.
This behavior is consistent with the observed absence of coupling
between the pitch of the helix and that imposed by the reinforced
line. Nonetheless, n shows hardly any variation prior or during
the shortening transition. Therefore, initial shortening is mostly
dependent on the expansion of R. We note however that n shows
a significant increase at high pressures. This change of trend is
approximately coincident with the the critical pressure at which
maximum R is obtained.

We also examined if surface torsion τ is involved in the short-
ening transition (Fig. S9 and Sec. II(B), ESI†). We find that τ

grows super-linearly with pressure and that its absolute value for
a given pressure is decreasing with α. Furthermore, we find that
τ has a smooth dependency on p̄ and no change of τ during pres-
surization can be associated with a reduction of z, thus discard-
ing torsion as a major determinant of the shortening transition.
We observe a very similar response of the helical parameters and
the torsion upon pressurization in vessels with wider reinforced
strings (Fig. S10, ESI†).

We studied the response of shells molded in the shape of he-
lices in the relax configuration. Shells with uniform mechanical
properties does not show shortening when pressurized (Fig. S11,
ESI†). By reinforcing the inner most region of negative Gaussian
curvature, we observe a decrease in length and reduction of the

helical angle (Fig. S12, ESI†).
We have shown the pressure-induced formation of helices with

steep reinforcement angles α. However, the angle α is a function
of the number of turns of the reinforced string nr and the contour
length of the tube in its undeformed configuration Lc0 . We per-
formed simulations with different initial lengths Lc0 considering a
fixed reinforcement angle (α = 84.3°), hence varying nr. Only the
longer tubes show a length-independent behaviour (Fig. S13).
We analyze the response of the critical pressure leading to max-
imum extension, p∗z , as a function of nr. We observe two clearly
distinguishable regimes. For initial lengths that result in nr < 0.5
we find an exponential decrease of p∗z , whilst for lengths result-
ing in nr > 0.5 turns, the critical pressure is mostly insensitive to
nr (Fig. 3). From visual inspection of the resulting shapes, we
note a transition separating a C-shaped-regime for nr < 0.5 from
a helix-dominated regime for nr > 0.5. Thus, nr ≈ 0.5 is a tran-
sition point between a C-shaped morphology upon pressurization
and a helical shape.

The experimental evidence suggest that helical shape may
involve the relaxation of the cross-linking bonds of the cell
wall1,9,23. Simulations where the helical region is weakened
instead of reinforced indicate that weakening is also a feasible
mechanism for the formation of helices. Helical parameters dur-
ing pressurization show a similar response to that observed by
reinforcing, including the shortening for large reinforcement an-
gles and the formation of crooked helices (Fig. 4 and Fig. S14,
ESI†).

2.2 Experimental verification
Our numerical model predicts a substantial reduction of z at large
reinforcement angles α as a result of the formation of highly
crooked helices. To further test this observation, we performed
experiments using custom-made silicone balloons with a non-
extensible embroidery thread wrapped and embedded on the sil-
icone body (Sec. III, ESI†). We explore pressure-induced forma-
tion of helices in the large α regime (Fig 5). Silicone shows a
hyper-elastic stress-strain response and thus a quantitative com-
parison with simulation is not possible. Yet, we find qualitative
agreement between the experiment and our computational re-
sults (Fig. S20, ESI†). We observe a similar response of the heli-
cal radius R to that observed in the simulations: the increase of
R with pressure until reaching a critical point from where subse-
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Fig. 4 Pressurization of tubes with helical weakening. a) Height of the
helix, z. b) Helical angle, ζ . Lines connecting dots are a guide to the
eye. The weakening is adjusted by reducing the 2D Young modulus Y of
the helical domain by 1/3. Lines connecting dots are a guide to the eye.
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Fig. 5 Shape morphology of pressurized silicone models reinforced along
a helical path. The string, visible as a red line, is initially set at α = 73°,
and is effectively inextensible. The nondimensionalized pressures used
are, from left to right, p̄ = 0, 0.38, 0.76, 1.14 and 1.52.

quent increase in p reduces the helical radius. This is linked to
the development of the helix into a more compact structure, re-
sulting in rapid decrease of z. Remarkably, the magnitude of the
deformations for the indicated helical parameters are on the same
scale to that obtained from the numerical simulation.

2.3 Continuum theory

To explain the physics behind the formation of helices, the short-
ening transition and its dependency on α, we model the system
analytically by using continuum elasticity. Inspired by the obser-
vation that the radius of the tube r and the contour length of the
central axis Lc have little dependency on the reinforcement angle
(Fig. S15 and Fig. S16, ESI†), we assume a separation of the
overall swelling of the system and other deformations. Namely,
we use an empirical expression for r and Lc as functions of p in-
dependent of the reinforcement angle α (Sec. II(A), ESI†). The
reinforced line always lies along the shortest path with the fixed
number of turns on the surface connecting the two ends of the he-
lix to minimize the elastic energy penalty. The analytical expres-
sion for this path is provided in Sec. II(B), ESI† (Equation S32).
Since the springs in the reinforced region are so stiff that the re-
sults do not change with further increase of reinforced spring con-
stant, we assume this reinforced line is unstretchable. This would
be equivalent to a constraint that the inner-most part of the helix
has a fixed length L f . We consider the energy per unit length Φ

of a hollow rod subjected to uniform bending and twisting under
a linear elasticity framework24:

Φ =
EI
2

κ
2 +

µJ
2

τ
2. (1)

Here τ is the twist rate and κ is the local curvature of the he-
lix central axis. The parameter µ = E

2(1+ν)
is the second Lamé

coefficient, and I and J are the moments of inertia and twist, re-
spectively. For a thin-walled tube, I = πr3t and J = 2πr3t, in which
r is the radius of the tube and t is the wall thickness. The bend-
ing and twisting magnitude of a helix deformed from a cylinder
are τ = 2πn

Lc
(sinζ − nr/n) and κ = 2πn

Lc
cosζ , see Sec. II(B) (ESI†).

Again, ζ = arctan(L/R) is the helical angle, nr is the number of
turns of the reinforced area in the zero pressure case and n is

the number of turns of the helix. The state of the system at any
pressure can be determined by minimizing the energy given the
empirical functions r(p) and Lc(p) under the constraint that the
length of the inner-most path of the helix is fixed. This frame-
work allows us to predict, analytically, the helix parameters as
a function of pressure (Sec. II(C), ESI†). A comparison between
simulation results and the analytical formulation can be found in
Fig. 2 and in ESI† (Fig. S9 and Fig. S17). It is worth noting that
in the simulation we observe wrinkles formed near the reinforced
string (Fig. S18, ESI†). As a consequence of restrained stretch-
ing, regions adjacent to the reinforcement string are wrinkled in
a direction perpendicular to the string and show well-defined pe-
riodicity. The agreement between simulation and theory suggests
that energy changes associated with wrinkling are negligible.

In Fig. 6, we show a phase diagram representing the change in
z with respect to the rescaled pressure, as a function of α and p̄.
The diagram clearly shows the regions of lengthening and short-
ening in z. We can predict analytically the critical pressure of
the transition from lengthening to shortening for a given helical
angle.

Due to the constraint that the reinforced path is not stretchable,
we have:

L f =
√

z2 +(2πn)2 · (R− r)2. (2)

Since the value of L f is held fixed when pressure increases, it is
then clear that the helix height z ≤ L f and the maximum of z is
achieved when R = r. This corresponds to a configuration where
the reinforced line becomes completely straight. Such straighten-
ing behavior of the reinforced string is observed in the simulation:
at low pressures, for every α, the reinforced string is straightened,
increasing its alignment with the long axis of the tube (Fig. S19,
ESI†). This initial alignment results in the positioning of the rein-
forced string to the internal (concave) side of the incipient helix.
By requiring R = r we can derive the criteria for the critical pres-
sure at the maximum height under the proper approximations
(Sec. II(D), ESI†),

cot2(α) =
(Lc(p)/Lc0)

2 −1
(r(p)/r0)2 +1

, (3)

where Lc0 and r0 are the contour length and the tube radius in
the undeformed state, and Lc and r are functions of pressure.
The right hand side depends on the material properties of the
tube, which turns out to be non-linear for the triangular mesh.
Equation 3 also reveals that the state of maximum height may
not be achievable when α is small, as observed in the simulation.
A comparison between Eq. 3 and simulation results can be found
in Fig. 6.

3 Discussion and Conclusions
How bacterial shape is generated is an important question in
microbiology. Here, we have shown that reinforced rod-shaped
cells with the mechanical properties of bacterial cell walls can
transit to helical shape upon pressurization. Simulations indi-
cate that large deformations can occur in response to turgor pres-
sure. In particular, large reinforcement angles lead to crooked
three-dimensional helices with reduced pitch and large radius,
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which can result in the shortening of the cellular end-to-end dis-
tance. During pressurization, the localization of the reinforced
region is reallocated to the internal side of the helix. Then, the
experimentally-observed filamentous proteins on the concave re-
gion of the cell may reflect strong interactions with the cell wall
combined with a resistance to stretching rather than a curvature-
dependent binding affinity6,25.

Helical cells display a large variability of the helical parameters,
ranging from nearly straight to highly sinuous1,26. This variabil-
ity might be attained by precise tuning of the cell wall parameters,
namely the helical angle of the reinforced region and the stiffness
of reinforced and non-reinforced regions. Interestingly, we find
that that helical shapes can be formed by both reinforcement and
weakening.

It is generally assumed that a given bacterial species has a char-
acteristic distinct shape. However, bacterial shape is not written
in stone and the cell can modify its morphology in response to
the environment26. Changes in morphology can be plastic, by
means of cell wall growth, and operating at slow time scales9,27.
At faster time scales, cell shape can be elastically altered by vari-
ations of turgor pressure18,28. In short, both envelope synthesis
(plastic deformation) and elastic deformations contribute to bac-
terial shape.

Our computational results show an example of how cell
growth, in combination with elastic deformations, is a poten-
tial mechanism to trigger shape transitions. We observe that a
number of reinforced turns nr ≈ 0.5 turns marks a transition be-
tween C-shaped cell and helical cells. Therefore, C-shaped cells
(nr < 0.5 turns) growing in length and keeping a constant α will
develop a helical shape as a result of the increase on nr (Sec.
I(E), ESI†). This agrees with the experimental observations of C-
shaped cells acquiring helical morphology upon inhibition of cell
division6,7. Thus, under conditions favouring growth, bacteria

can plastically shift from crescent to helical shape13.

Nevertheless, the cell could exploit turgor pressure to elasti-
cally and dynamically modify its shape. Human-made soft robots
composed of elastomers reinforced with helical fibers, known as
McKibben actuators, have been designed to produce a variety
of extension, bending and/or twist deformations in response of
pneumatic pressures29–31. Are helical bacteria exploiting turgor
pressure to operate as biological McKibben actuators? Variations
of turgor pressure could be used to tune cell shape for a spe-
cific biological function. In the example of Helicobacter pylori, the
digestive process leads to variations of the external ionic condi-
tions32 (Sec. IV, ESI†) and hence to (transient) variations of tur-
gor pressure. The underlying changes on the helical shape could
promote the passive penetration through the mucus of the gut,
for instance by means of contraction and expansion combined
with variations of the helical radius. The mechanism would re-
semble that found for the self-burial of the coiled seeds in plants
in response to changes of the environmental humidity33. Alter-
natively, the cell could use an active mechanism for altering its
shape28: since the ionic conditions of the intracellular medium
can be regulated, the cell could, to some extent, alter its osmo-
larity to adjust cell morphology and the ensuing drilling of the
gut. Shifts in turgor pressure in combination with the anisotropic
properties of the cell wall have been proposed as drivers of the
Venus fly trap snap or the rapid folding of the leaves in Mimosa
pudica34,35. It is plausible to think that bacteria could use similar
mechanisms to that used by plants to drive morphological adap-
tations and dynamical changes of shape. Our numerical observa-
tions, validated with macroscopic experimental models, are pro-
voking for verification in live bacterial cells. Carefully-designed
experiments combining fluorescence microscopy with microflu-
idics devices have permitted to visualize the response of bacteria
to changes in turgor pressure19,36. Hence, it is feasible to char-
acterize the instantaneous change of the cell helical properties in
response to osmotic shocks. The cross-fertilization between ex-
periments and simulations will aid in the understanding of the
mechanisms driving cell morphology.

Appendix

In this appendix we list the main parameters and observables
used in this work.

Table 1 Geometric parameters and observables

Parameter Description
z Helix height
r Tube radius
L Helical pitch (tube)
R Helix radius
α Helical angle (reinforced string)
ζ Helical angle (tube)
Lc Contour length (tube, caps not included)
L f Contour length (reinforced string)
n Number of turns (tube)
nr Number of turns (reinforced)
τ Torsion of the tube’s surface
κ Curvature tube’s central axis
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Table 2 Mechanical parameters

Parameter Description
p Pressure
E 3D Young’s modulus
Y 2D Young’s modulus
t Shell thickness
I Moment of inertia
J Moment of twist
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