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Elastogranular Columns and Beams

Arman Guerra,a† Casey Lautzenhiser,a† Xin Jiang,a Kate Flanagan,a David Rak,a Skylar
Tibbits,b and Douglas P. Holmesa*

String and grains can be combined to create structures capable of bearing significant loads. In this
work, we prepare columns and beams through a layer-by-layer deposition of granular matter and loops
of fiber strings, and characterize their mechanical properties. The loops cause the grains to jam, and
the inter-grain contact leads to a Hertzian-like constitutive response. Initially, one force chain that
propagates vertically through the column bears most of the compressive load. As the magnitude
of the load is increased, more force chains form in the column, which act in parallel to increase its
stiffness, akin to a “super-Hertzian” regime. Applying a compressive prestress enables the structures
to withstand shear, enabling the fabrication of cantilevered beams. This work provides a mechanical
framework to use elastogranular jamming to create rapid, reusable infrastructure components, such
as columns, beams, and arches from inexpensive, commonplace materials, such as rocks and string.

1 Introduction
The art of dry stone walling is considered by UNESCO to be one
of the intangible cultural heritages of humanity1. Dry stone struc-
tures lack mortar, and rely upon the precise, layer–by–layer place-
ment of stones to provide structural integrity. In lieu of an ad-
hesive binder, the combination of friction and geometric inter-
locking provides the structures with significant strength, a pro-
cess more generally described by the jamming of granular matter.
Granular matter will jam, undergoing a phase transition from a
fluid–like state to a solid–like state, when the density of the gran-
ular packing reaches a critical point2–5. As this density of particles
increases, so does the number of contacts that a particular grain
has with its neighbors, until the packing is said to be jammed
and isostatic, and each particle is in a state of mechanical equi-
librium. The jammed state is strongly dependent on several crite-
ria, including the frictional properties, shape, and polydispersity
of the grains, and it has been shown that truly novel and com-
plex physics develop near the jamming point6. Once the system
reaches the jammed state, the collective behavior of the grains is
akin to a solid material. However, for packings of disordered par-
ticles at low pressure near this jamming transition, global forcing
does not trivially translate to local contacts, and these systems
show increasingly complex deformation fields under shear load-
ing7. As a result, while the total granular structure can withstand
large applied loads in some directions, they may be quite fragile
when loaded in others8. This interplay is why grains can sustain a
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finite angle of repose under the influence of gravity9, and yet re-
quire intricate placement with interlocking shapes to adopt more
complex forms10–13.

Fig. 1 (a) Elastogranular columns increasing in scale with a fixed vol-
umetric ratio of fibers to grains. Jamming facilitates the formation of
elastogranular (a) columns, (b) cantilever beams, and (c) arches. All
scale bars 40mm.

The stabilization of soils is perhaps even more tightly entwined
with human history than the art of dry stone walling. Chemical
stabilization, by the addition of lime to soils, was used by early
civilizations in Mesopotamia and Egypt14,15. For thousands of
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years, humans have lived in dwellings made of bricks formed by
combining mud and straw16. The underlying principles of chem-
ically or structurally reinforcing earth were revisited in the late
1960’s17, with a particular focus on stabilizing slopes prone to
erosion18. Soil erosion is often caused by deforestation and the
displacement of deep–rooted grasses, as networks of plant roots
act as stabilizers19–21. In addition to these natural stabilizers,
there has been a sustained interest in using synthetic fibers as a
means to stabilize a variety of subterranean granular matter, in-
cluding soils22–25, sand26–29, aggregates30,31, silt32, and ash33

stabilized by synthetic fibers, yarns, geotextiles, laminates, and
randomly oriented inclusions.

The addition of elastic fibers with a negligible bending rigidity
to a granular medium increases the number of contacts on each
grain, and adding additional confinement to the granular parti-
cles. It has been shown that highly confined granular materials
behave qualitatively different from loose or bulk grains34–36. In
this case, the added confinement allows jamming to occur at a
lower granular packing density. In turn, the entangled network
of fibers gives the grains an intermediate scale reinforcing struc-
ture. Granular jamming caused by the confinement of a slen-
der body inside a granular medium results in an intricate cou-
pling of elastic and granular interactions that exhibit bending,
buckling, and reconfiguration of the slender elastic structure and
its surrounding grains37–41. Tuning particle shape alone has a
strong influence on the mechanical response of granular materi-
als11,42,43. Combining elastic and granular materials to form an
elastogranular structure38 can allow for further reinforcement,
and enable the formation of jammed, free-standing elastogran-
ular architecture44–46. Engineering elastogranular columns and
barriers presents a means for large–scale, reversible and reusable
structures10,12,47, which present modern analogs to subterranean
elastogranular reinforcement, a task previously achieved using
mechanically stabilized earth48 and fabric49. Current research
efforts in architectural jamming10,12,47 have demonstrated that
elastogranular structures can be utilized as engineering structures
if we can better understand how to design and build them with
designed mechanical properties.

While the mechanics of subterranean elastogranular structures
have been examined using triaxial testing and numerical meth-
ods50–52, much less is understood about free-standing structures.
The authors recently examined the minimum criteria to enable
free-standing elastogranular structures, finding that for columns
of grains surrounded by loops of fiber, the critical spacing Sc/2R=

max(3sinα, 2sinα+1
1+2βhe

) of exterior loops is a function of the grain ra-
dius (R), the angle of repose (a proxy measure of friction and
grain geometry, α), and a dimensionless, hydroelastic scale βhe

which is a ratio between the hydrostatic force from the grains on
the loops and their bending rigidity53. When the weight of the
grains is large compared to their bending rigidity, i.e. when βhe is
large, friction dominates and the angle of repose sets the critical
minimum spacing to form a free-standing column. Rigid loops,
i.e. when βhe is small, can increase this minimum spacing when
the hydrostatic load is small. While this initial work determined
the criteria to form structures that can bear their own weight, it
did not provide insight into their mechanical response to external

loads.
In this work, we examine the mechanical response of elas-

togranular columns and beams prepared with a variety of gran-
ular matter and fiber reinforcement (Fig. 1). We find that the
stiffness of the columns is a function of the grain stiffness, aver-
age radii, and degree of order of the granular material, while the
stability of grains within the column, and therefore the “smooth-
ness” of their loading response, depends on the amount of added
fiber. Finally, we will examine the effects of shear on columns by
compressing them and then orienting them horizontally like can-
tilever beams. With sufficient preload, elastogranular beams can
bear significant load perpendicular to their long axis, providing
a resistance to shear that is proportional to the magnitude of the
applied compressive load.

2 Columns

Fig. 2 (a) The process for column construction utilizing both interior
and exterior fibers. From left to right – the empty cylindrical mold –
the top–down view of the method of construction within the cylindrical
mold – a completed column. (b) Simulation images of a column being
constructed and subsequently loaded.

2.1 Experiments

For this work, we prepared elastogranular columns via the layer–
by–layer deposition of rocks and loops of fiber within a slip-cast
mold. We used a variety of particles to represent a range of fric-
tional properties, and stiffness, including crushed marble, granite,
sandstone, rubber spheres, plastic garden stones, and chopped
rubber particles (average grain radii R ranging from 1-1.25 cm).
We studied elastogranular columns prepared with two types of
elastic fiber loops: exterior loops of radius 40mm, and interior
loops of radius 15mm (twisted nylon, 18 gauge). Slip-cast molds
were prepared with a piece of Mylar film (0.127mm thick, Mc-
Master) taped into a cylinder of the target diameter (80mm)
and height (120mm). To form a layer we deposited grains by
hand, and tamped gently with a circular acrylic plunger until we
reached a desired layer thickness approximately equal to the aver-
age grain diameter 2R. During this deposition process, we placed
exterior fiber loops at consistent intervals such that the loops were
evenly spaced, and no loops overlapped as depicted in Fig. 2. For
columns prepared with both interior and exterior fiber, we also
placed multiple internal loops as depicted in Fig. 2. To parame-
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terize the amount of external and internal fiber, we consider the
area ratio ψe = Ae/AC and volume ratio ψi = Vi/VL respectively,
where Vi is the total volume of interior fiber in one layer, VL is the
volume of rock in one layer, Ae is the total surface area of exter-
nal fiber coverage, and AC is the total surface area of the column.
Note that minimum Ae is controlled by the critical loop spacing53.
To understand what effect the fiber has on the mechanical prop-
erties of the columns, we constructed many columns, varying ψe

from 0.13 to 0.76 at ψi = 0, and ψi from 0 to 0.05 at ψe = 0.26.

We then removed the mold and probed their mechanical prop-
erties. We performed displacement–controlled compression tests
using an Instron 5943 (maximum load 500 N) at a rate of 5
mm/min. Excluding the cyclical loading described in Fig. 3,
ten compression tests were run for each sample: the first to a
maximum load of 450 N, the subsequent cyclical tests (load-
ing/unloading) to a maximum load of 200 N. For the entirety
of this loading process, we also measure the displacement of the
loading plate (which is equivalent to the end-shortening in the
columns) δ . In this work we only analyze experimental data
in this force range because of the limitations of our equipment.
However, we have also seen that these columns can handle a
much larger load than we could probe – for instance, when com-
pressed in a hydraulic press, columns constructed with marble
grains could withstand a load capacity of 30kN, and only col-
lapsed when the grains began to pulverize.

2.2 Numerical Simulations

In addition to our physical experiments, we also performed nu-
merical simulations to allow for precision in fiber placement and
for construction of columns with extreme values of ψe (values
near Sc and values near the saturation limit, where Ae ≈ Ac).
These simulations also allowed us to investigate the processes in-
ternal to the columns, motivating the analysis that we used to un-
derstand the nature of their mechanical response. We implement
numerical simulations using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)54 in the manner outlined
in Guerra (2021)53 (Fig. 2). The simulated columns had the same
dimensions as the physical columns, a grain diameter of 1.1 cm,
and fiber diameter 1.5 mm. For the grains, we consider spheri-
cal particles with similar characteristics to hard rubber (Young’s
modulus Eg = 6.5 · 107 Pa, Poisson’s ratio ν = 0.4, coefficient of
sliding friction µs = 1.16 and rolling friction µr = 1), and for the
fibers we consider loops with Young’s modulus Es = 109 Pa. We
vary ψe from 0.38 to 0.89, and use ψi = 0, that is, we do not con-
sider any simulations with internal fiber, simply because simulat-
ing fiber is computationally expensive. We also do not perform
any simulations of the cantilever beams for the same reason. We
discuss these and other possible additional simulations in the con-
clusions.

For each simulation, grains are randomly poured into a cylinder
while the fibers are fixed in place. That cylinder is then removed,
the fibers freed, and a circular force plate is inserted on top of the
column (Fig. 2). Due to the computational demand of the simula-
tions, loading rate could not be matched to physical experiments,
however we found that a loading rate of 100 N/s was sufficiently

slow to ensure an iso-static response. The compression cycles
were modeled after physical experiments and begin with a strain
surface setting cycle with a peak load of 450 N, followed by 3
subsequent cycles with peak loads of 200 N. All image analyses
and visualizations of simulated columns are completed using the
the Open Visualization Tool (OVITO)55. We found that the simu-
lations displayed similar qualitative and quantitative (Figure 4)
characteristics to physical experiments throughout the loading
process.

2.3 Analysis
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Fig. 3 (a) The first 11 cycles of the loading of a cylinder. In the inset we
show how δc decreases with cycle number. (inset) the plastic deformation
of a column seems to scale with the inverse of the cycle number. (b) We
zoom in on the first (orange) loading cycle of the column, and compare
it with five loadings of piles of grains. The dotted line is an empirical
fit with a slope of 1. (c) The loading response (blue line taken from
(a) above) eventually adopts a slope of 3/2 corresponding to a Hertzian
response.

The primary means by which we will characterize the mechan-
ical properties of these elastogranular systems is through the use
of force–displacement analyses, in which load is applied to an
object, and the displacement is measured at the point of con-
tact with the loading apparatus. In Fig. 3, we show the first 11
cycles of the force-displacement response of a column cyclically
loaded in uniaxial compression N = 100 times, where each cycle
has a peak load of 200 N. There is a significant amount of hys-
teresis between loading and unloading the column, especially at
small N, and some of this dissipation occurs due to the plastic–like
permanent deformation of the column due to a cycle of loading,
which we refer to as δc. We find that δc/H ∼ N−1 (Fig. 3a inset).
If we zoom in on the first cycle (Fig. 3b), we see the source of
this plastic deformation – for small displacements the force re-
sponse appears to be similar to that of a pile of grains loaded
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in compression under small displacement, where the majority of
that displacement is due to rearrangement of particles. We find
empirically that this seems to follow a power law of F ∼ δ , al-
though we do not propose a mechanism for why that is the case.
The experimental setup described in this work (and our capac-
ity for visualizing granular of the grains) is not sensitive enough
to capture these small rearrangements at low δ , and the simula-
tion time to develop a framework for this behavior is prohibitive,
and therefore we leave a more mechanistic approach to the low-
displacement force response of elastogranular structures to future
work.

In Figure 3c we show the force-displacement curve for one of
the later loading cycles from Figure 3a. We find that, after this
initial grain rearrangement regime, in this log-log plot the curve
approaches a slope of ≈ 3/2. We can understand this behavior
through classical approaches for analyzing the contact between
two non-adhesive elastic spherical bodies, as developed by Hertz
(1882)56 and further elaborated by Johnson (1987)57. This ap-
proach yields the following relation between force (F) and dis-
placement (δ)

F = Kδ
3/2. (1)

Where K = (4/3)E∗R*1/2 is the “Hertzian stiffness,” E* =(
(1−ν2

1 )/E1 +(1−ν2
2 )/E2

)−1 is the effective Young’s modulus,
R* = R1R2/(R1 +R2) is the effective radius, and Ei, νi, and Ri are
the Young’s moduli, Poisson’s ratios, and radii of the bodies. We
might expect then that this 3/2 slope in the force-displacement is
due to the elastic deformation of the granular materials, since any
elastic deformation of the fiber would induce a different slope58.

Next, we will build upon the contact mechanics of single par-
ticle response to understand the response of the elastogranular
columns. In Figure 4a, we show simulations of a specific col-
umn at increasing load from left to right, where the opacity of
the granular particles is set by their pressure. We can see that at
low load, there is approximately a single “force chain”59–62 which
traverses from the top of the column to the bottom. As this load
increases and the particles deform, the number of force chains
increases until many grains are part of a force chain. We can pre-
dict the force-displacement response of a force chain (assuming
all particles remain in contact over the course of their loading,
and particles do not slide against each-other) by considering the
particles as being in-series with each-other, such that their total
stiffness will be

1
Kc

=
n

∑
I=1

1
Ki

(2)

where Kc is the stiffness of the chain of grains, n is the number
of grains in a chain, and Ki is the stiffness of grain i. This sim-
ply comes from the fact that if you compress a stack of particles
(such as the one shown in the inset of Figure 4 b) each particle
experiences the same compressive force, and so the total defor-
mation is simply the sum of the deformations of each particle.
Since the stiffness is inversely proportional to the deformation, it
is also inversely proportional to the number of particles. Instead
of using the mathematical value of K listed above (since we do
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Fig. 4 (a) Simulation images where the load on the column is increasing
from left to right. In the center three images, the opacity of the granular
particles is set by the pressure from other particles, the loading cell, and
the floor (note that less opaque grains may appear gray). We see that the
number of force chains increases with load, starting with just one chain.
(b) If we nondimensionalize F and δ using Equation 3 – that is, if we
assume that the stiffness of a column is the stiffness of one continuous
force chain – we find that the force–displacement curves (experiments
– circles, simulations – squares) of all column types (after the initial
grain-settling period at low δ) fall onto the directly predicted curve (blue
line), with the exception of the rubber spheres, which pack into a lattice,
increasing the stiffness of those columns. The data is colored by the
Hertzian stiffness K.

not know the Young’s moduli of our particles, or the average radii
Ri of the surface features of the grains), we perform additional
force-displacement experiments on single grains, and find an av-
erage fit value of K for each particle type. If we assume that the
stiffness of each grain is the same, then we have that Kc = K/n. If
we consider only one force chain to be bearing the majority of the
load (Figure 4a) then we would expect that the stiffness of the en-
tire column would simply be the stiffness of one force chain. Or
in other words, combining Equation 1 with the predicted chain
stiffness (K/n) and rearranging,

Fn
KR3/2

=

(
δ

R

)3/2
(3)

In Figure 4b we plot this non-dimensionalized response –
where the data is colored by our fit values of K – for all grain
types (circles), and for our simulated columns (squares). All
force-displacement curves indeed collapse to what Equation 3 in-
dicates, except for the experiments with rubber spheres. During
construction of columns with these particles, because of the care-
ful layer-by layer approach, these particles tended to pack into a
regular lattice. We expect that, because of this lattice arrange-
ment, multiple force chains become active closer to the beginning
of the loading cycle (though not all of them, as force networks are
still disordered in lattice arrangements of granular particles63).
We expect that it is this effect that leads the columns to be stiffer
than our model predicts.

For much of the post-grain-settling (elastic) section of the force-
displacement response of these columns, we indeed find that the
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response fits well into the classical 3/2 understanding of grain
contact. And indeed, for some grain types, especially those with
higher K, the responses match this classical prediction for the en-
tire loading cycle. However, we find that when δ reaches the
order of a grain radius (which we only observed for some grain
types, as we were not able to compress columns made with very
stiff grains this much Figure 4b), the columns seem to adopt a
new response. We zoom in on the high-δ section of the force-
displacement curves of the rubber chunks in Fig. 5c, and find
that at a consistent value of δ/R, the columns transition into a
“super-Hertzian” regime, where the force becomes proportional
to a higher-than-3/2 exponent of δ .
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Fig. 5 (a) In our simulations, we find that as we compress a column
made up of particles whose material properties are modeled after the
chopped rubber, the number of force chains increases. (b) An illustration
of our mathematical model. As the column gets loaded, subsequent force
chains become active, supporting the load in parallel and increasing the
stiffness of the column. The necessary displacement to activate force
chain i (δi) is shown for i = 3, and the displacement between subsequent
force chains forming γi is shown for i = 1,2,3. (c) If we zoom in on the
high-load portion of the force–displacement curve for the rubber chunks
and overlay the numerical result of our mathematical model (Equation 4,
red line) we find that our predictions capture the deviation from classical
Hertzian behavior (blue line) of the columns, as well as the slope in the
super-Hertzian regime.

We already know, however, that when the force on the columns
is significant, the number of force-chains which are in compres-
sion increases. This is analogous to the Steuermann extension
of Hertzian contact57,64, in that the columns begin to “conform”
to the applied load. When only one force chain is loaded (at
low δ), the stiffness of the column is simply the stiffness of this
chain. But, as the displacement increases and more force chains
become loaded (Figure 5a), they bear the load in parallel, and
we would expect that the in-parallel stiffness of multiple chains
is larger than the stiffness of one single chain. We can formu-
late this mathematically based on the illustration in Fig. 5b. We
consider a column to be made up of m force chains which will
become activated at different δ . We call δ j the necessary column

displacement such that force chain j will become active. If this
arrangement is loaded, we would expect that

Fn
KR3/2

=
m

∑
i=1

Heav(δ −δi)

(
δ −δi

R

)3/2
(4)

where the Heaviside step function (Heav(x) = 1 if x > 0, 0 other-
wise) simply ensures that we do not count any force chains which
are not yet loaded. In more plain terms, this equation models the
idea that force chain i will only become active once we have sur-
passed the necessary displacement δi such that it activates. Fur-
thermore, once it is active, it will respond to its loading with a
force given by Equation 1 where the displacement is offset by
δi. We can also define γ j = δ j+1− δ j to be the displacement be-
tween the formation of force chains j and j+ 1. In other words,
once we have activated force chain j, we must compress the col-
umn an additional γ j to activate force chain j+ 1. If we assume
that the height difference between subsequent force chains is on
the order of one grain radius γi = γ = r, we can find a numerical
version of Equation 4. We plot this in Figure 5c (red line) and
find that this model captures the point of deviation from the 3/2
response (black dotted line), as well as the slope in the super-
Hertzian regime. We note that, as we have zoomed in heavily on
this section of our data, we can now see that the prediction (blue
line) which comes from our nondimensionalization (Equation 4)
is off by a factor of order 1 (≈ 1.4). Indeed, if the same zoom is
performed for all particle types in Figure 4 we find similar kinds
of deviations, where the true stiffness of the columns is off from
our prediction by a factor of ±2. We expect that this comes from
the approximations that we made in arriving at Equation 3, as
well as second-order corrections coming from the exact shape of
the grains, their frictional properties, the mode of construction of
the column, etc.

In Figure 4b, we find that the columns exhibit a similar re-
sponse regardless of the amount of external fiber that they are
constructed with. We show this again in Figure 6b, where we plot
the average total stiffness of each column Kt normalized by the
stiffness of a column constructed with the lowest possible ψe, and
ψi = 0 against ψe and ψi. We find that increasing ψe increases the
stiffness of some columns by at most a factor of ≈ 1.8 (however
this finding is not universal to all particle types) and increasing ψi

has no regular effect on the column stiffness. In other words, the
fiber effect on the columns is mostly kinematic, providing con-
straints on motion, while the grains set the material response.

We did find, analogous to53, that increasing the amount of
fiber, inside or out, increased the stability of the particles in the
columns. When loading a column with a low amount of inter-
nal and external fiber, we noticed large shifts in grain positions,
which resulted in a “jagged” force-displacement response (Fig. 6d
inset black). Increasing the amount of fiber led to “smoother”
curves (Fig. 6d inset orange). To quantify this effect, we sum
the difference between all adjacent peaks and troughs through-
out the force–displacement profile, which we call ∑∆F . We plot
this value in Fig. 6d and indeed find that it decreases with both
ψe and ψi. Experiments also suggest that internal loops increase
the maximum load bearing capacity of the column, by preventing
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Fig. 6 Columns with increasing (a) ψe and (b) ψi from left to right. (c)
The stiffness of a column Kt normalized by the stiffness of a column at
the minimum ψe and ψi vs ψ̄e (blue) and ψ̄i (red) where the bar indicates
that the value of ψ is normalized by the maximum value that we used
in our experiments, where ψe max = 0.64 and ψi max = 0.05. We find that
the addition of fiber, inside or out, has a small and irregular (i.e. grain-
type-dependant) effect on the stiffness of a column as compared to the
grain stiffness. (d) We plot the sum of the height of jumps in the force
against the amount of fiber, and find that both interior and exterior fiber
increases the smoothness of the loading response. An example is shown
in the inset, where the black curve has no internal and little external
fiber, and the orange curve has the same amount of external fiber, and
ψi = 0.05.

rocks from being crushed under the compressive loads. Prelimi-
nary results indicate that columns can withstand higher ultimate
loads, but fail in an explosive manner as the bounding loops frac-
ture, allowing particles to be forcibly ejected from the column. A
mechanistic understanding of the ultimate load of elastogranular
columns is beyond the scope of this work.

3 Beams
The elastogranular columns characterized in the preceding sec-
tion are formed by a layer-by-layer assembly which includes el-
ements (loops of fiber) that act to prevent grains from escaping
laterally, and ensure that the column will remain stable under
large compressive loads. However, since the columns lack elastic
elements that resist deformation in the long axis of the column,
the structures are remarkably weak in shear. By maintaining a
residual compressive load, or prestress, the structures can resist
shearing and bending, and self-support their weight (Figure 7).
In the following section, we will form cantilevered beams and
characterize their effective shear modulus. Since the beams are
not homogenous or isotropic, classical relations between E, G,
and ν do not hold. While Euler-Bernoulli developed the simplest
model for a cantilever beam, since these structures are shearable,
we will develop insight into their shear modulus by employing
the Timoshenko beam theory65.

3.1 Experiments

To construct beams, we first construct a hollow elastogranular
cylinder (with marble, slate, and plastic particles) using a similar

Fig. 7 (a) We clamp columns of length L = 0.24 m and rotate them
90◦ to form a beam. (b) A picture of the longest stable beam that we
constructed. (c) We consider only the first 1 mm of deflection of the
beams in our analysis.

process as outlined for the columns above (interior loops of ra-
dius 15mm, exterior loops of radius 60mm), with removable my-
lar film along the inner and outer diameter. Through the middle
of each cylinder we run a flexible wire rope (Extra-Flexible Wire
Rope 3/16"), with one end attached to a solid aluminum cap at
the top of the cylinder which acts to clamp down the structure
with a force which we refer to as the “pre-compression” (Fpre).
We include this pre-compression so that the beam does not col-
lapse when we eventually rotate it. The other end is attached to
a DDE-500N-002-000 miniature in-line load cell, allowing us to
measure (Fpre), which we vary by adjusting the length of the flex-
ible wire. We then rotate the set-up 90◦, and apply a cyclical load
perpendicular to the normal axis of the beam. Displacement (δ)
within the force–displacement curves represents the distance that
the end-point of the beam is deflected. All applied beam theory is
valid only for small deflections and so we limit our analysis to the
initial 1 mm of deflection (Fig. 7c). To further ensure this valid-
ity, one would naturally choose beam lengths that are lower than
the elastogravity length, which is found through a balance of the
force required for beam deflection and the force due to gravity.
However, we don’t know the expected beam deflection a priori, so
instead we select a length L=240mm, which we found, for all our
particle types, ensures that δg/D� 1 (δg/D< 0.1) where δg is the
deflection due to gravity (which arises when we orient the beam
horizontally), and D is the diameter of the beam (for instance,
we would not include results from the beams shown in Figure 1b
and Figure 7b, we include these simply to show how robust the
beams are to deflection). To mitigate the end-shortening caused
by our imposed deflection, we set the beam on a roller support
(RB Linear Air Bearing Slide model A109 with 300mm travel).

3.2 Analysis
As we deflect these beams, there is significant shearing between
adjacent grains. We can understand the expected deflection of
beams with shear using Timoshenko-Ehrenfest Beam theory65,
which predicts the following deflection per unit force:

δ

L
=

PL2

I

(
1

3E
+

I
AGkL2

)
(5)

where P is the load, E is the Young’s modulus, L is the length, I
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is the second moment of area, A is the cross-sectional area, G is
the shear modulus, and k is the geometry-dependent Timoshenko
shear coefficient of the beam (we used a circular cross-sectional
value of 0.89). Note that the first term in the parentheses gives
the deflection of a beam with no shear (G→∞), as given by classi-
cal Euler-Bernoulli beam theory65, whereas the second term gives
the additional deflection which comes from shearing within the
beam. In this equation there are two unknown material constants
– E and G. We might expect that both depend on Fpre. For in-
stance, as the pressure on a granular array increases, so does its
shear modulus, as more grains will become more tightly packed
and locked in place66. Similarly, we would expect E to increase
with the pre-compression on the beams because of our above
analysis. In the previous section we found that the elastogranu-
lar beams have a Hertzian (F ∼ δ 3/2) response in compression.
The Young’s modulus is the slope of a linear fit to the force-
displacement curve and therefore, since the force-displacement
curve is nonlinear, it will change as the beam is compressed. We
can find the E by taking the derivative of our relation from the
previous analysis

E =
L
A

dF
dδ

=
3
2

(
K
n

)2/3 LF1/3
pre

A
(6)

where we have inserted our earlier estimate (Equation 3) for the
expected stiffness of a column. To test this prediction, we pre-
tensioned each elastogranular beam to an initial load in incre-
ments of 50 N, from 100 N to 250 N, and then apply a uniaxial
cyclical compression test as outlined in the previous section. We
synced the internal load cell data and Instron load cell data to
find the total load on each cylinder throughout the testing pro-
cess. We plot fit values of E to these curves against our expected
value from Equation 6 in Figure 8a, and find that the data indeed
collapse according to the relation, however, we seem to be off
by a constant factor of order 1 (≈ 1.65) (Figure 8a, dotted line).
Similar to in the previous section, we expect that this comes from
the approximations in our model. Because of this constant factor,
in the following analysis we will use the values of E found from
experiments rather than the result of Equation 6.

We can approximate G by fitting the Timoshenko-Ehrenfest
equation to the beam deflection data using a linear regression. We
show the results of some regressions in the inset of Figure 8b, and
plot G as a function of pre-compression in Figure 8b. As expected,
as the pre-compression is increased, there is a greater resistance
to shear between particles and the extracted shear modulus terms
increase accordingly.

4 Conclusions

When sufficiently combined10–12,47,53, fiber and grains can form
load-bearing columns and beams. The mechanical response of
the elastogranular structures that emerge is hierarchical: (i.) at
very small displacements (δ/R� 1), deformation is resisted by
friction as the grains rearrange (empirically, F ∼ δ); (ii.) at small
displacements (δ/R < 1), the elastogranular matrix jams, a sin-
gle force chain propagates the length of the column, and the
elastogranular column exhibits a Hertzian force–displacement re-
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Fig. 8 (a) A plot of the fit Young’s moduli at different values of pre-stress
from experiments compared to our expected value based on Equation 6
(green – slate, red – plastic, blue – marble). The solid line is our predic-
tion, and the dotted line shows that indeed the data collapse and seem to
scale as we expect, but our prediction is off by a constant factor. (b) In
the inset, we show linear fits (solid lines) to the force which is required to
deflect slate beams at different pre-compressions (increasing blue → yel-
low→ red). We find that these are around an order of magnitude smaller
than the Euler-Bernoulli prediction (gray dotted line). Using Equation 5,
we can employ these fitted values to find a value of the shear modulus,
which we plot against the pre-stress (σpre = Fpre/A) on a column in the
main frame.

sponse (F ∼ δ 3/2); and finally (iii.) at moderate displacements
(δ/R≈ 1), multiple force chains sequentially engage at consistent
intervals of γi = R, and a “super Hertzian” mechanical response
is observed. If there is a new scaling, it appears to be at least
(F ∼ δ 2), however, this potentially new power law is only ob-
served just above (δ/R ≈ 1), and so it would be presumptuous
to assume this scaling will hold over a larger range of data, or
even that the data will be represented by new power law at all.
Our model suggests a mechanism for this stiffening that would
continue to increase as additional force chains are formed, indi-
cating that, unless there are other mechanisms at play, the super-
Hertzian behavior of these elastogranular columns will not be
characterized by a simple power-law.

Fiber both stabilizes the column, and ensures a smooth force-
displacement response – neither interior nor exterior loops ap-
pear to increase the stiffness of the columns by more than a fac-
tor of 2 once there is enough fiber to stabilize the grains. As
assembled in this work, there is little to resist shear. However,
maintaining a uniaxial compressive prestress on the structures
causes them to remain jammed and withstand marginal amounts
of shear (G/E ≈ 0.1). These preloaded columns can form beams:
spanning structures capable of bearing transverse loads. The ca-
pacity to withstand compression and shear will enable the forma-
tion of more complex structures, such as arches (Fig. 1c).

The ability to create rapid, reusable infrastructure components
through granular jamming, from inexpensive, commonplace ma-
terials, such as rocks and string, presents a new approach to build-
ing engineering structures. Elastogranular structures may aid in
the construction of temporary shelters during disaster relief ef-
forts, and may enable inexpensive, recyclable, and sustainable ar-
chitectural elements, all of which can dynamically adapt, unlike
traditionally static architecture, in response to a changing climate
and environment. ... Novel fabrication techniques, such as mixing
elastic and granular materials (thereby forming an elastogranular
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matrix) until entanglement causes jamming, utilizing tensegrity
mechanisms, or incorporating active matter (e.g. targeted root
growth) and smart materials (e.g. load sensing grains; shape–
shifting fibers), will enable the fabrication of structures that are
built from local and sustainable materials, and are transformable
and adaptable in real-time.
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