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Abstract 

The configuration of densely grafted charged polyelectrolyte (PE) brushes is strongly 

dictated by the properties and behavior of the counterions that screen the PE brush charge and the 

solvent molecules (typically water) that solvate the brush molecules and these screening 

counterions. Only recently, efforts have been made to study the PE brushes atomistically, thereby 

shedding light on the properties of brush-supported ions and water molecules. However, even for 

such efforts, there are limitations associated with using a generic definition to estimate certain 

properties of water and ions inside the brush layer. For example, water-water hydrogen bonds 

(HBs) will behave differently for locations outside and inside the brush layer, given the fact that 

the densely closely grafted PE brush molecules create a soft nanoconfinement where the water 

connectivity becomes highly disrupted: therefore, using the same definition to quantify the HBs 

inside and outside the brush layer will be unwise. In this paper, we address this limitation by 

employing an unsupervised machine learning (ML) approach to predict the water-water hydrogen 

bonding inside a cationic PE brush layer modeled using all-atom molecular dynamics (MD) 

simulations. The ML method, which relies on a clustering approach and uses the equilibrium 

coordinates of the water molecules (obtained from the all-atom MD simulations) as the input, is 

capable of identifying the structural modification of water-water HBs (revealed through 

appropriate clustering of the data) inside the PE brush layer induced soft nanoconfinement. Such 

capabilities would not have been possible by using a generic definition of the HBs. Our 

calculations lead to four key findings: (1) the clusters formed inside and outside the brush layer 

are structurally similar; (2) the margin of the cluster is shorter inside the PE brush layer confirming 

the possible disruption of the HBs inside the PE brush layer; (3) the average “hydrogen – acceptor-

oxygen – donor-oxygen” angle that defines the HB is reduced for the HBs formed inside the brush 
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layer; (4) the use of the generic definition (definition usable for characterizing the HBs in brush-

free bulk) leads to an overprediction of the number of HBs formed inside the PE brush layer.  
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INTRODUCTION 

Polyelectrolyte (PE) brushes, which refer to charged PE chains densely grafted to a surface, 

have received wide attention1-8 owing to their extensive applications in a variety of disciplines 

including fabrication of ionic diodes,9 ion and biosensors,10,11 and current rectifiers,12 energy 

conversion,13-15 targeted drug delivery,16 water harvesting,17 oil treatment,18 and many more. For 

all these applications, the responsiveness of the PE molecules to the environmental stimuli (e.g., 

pH and ion concentration of the aqueous medium) becomes critical. While there has been 

significant experimental,19-23 theoretical,24-30 and simulation31-34 studies focused on probing such 

responsiveness and behavior of the PE molecules as functions of the water and ion properties, a 

pinpointed atomistic understanding of the behavior of the brush supported water molecules and 

ions has remained very limited. Only recently, there have been efforts to study the PE brushes and 

the brush supported ions and water molecules using all-atom molecular dynamics (MD) 

simulations:35-40 the utility of such an approach is that they provide unprecedented fundamental 

understanding about the atomistic structure, properties, and behaviors of brush-supported ions and 

water molecules, which in turn can be leveraged for a variety of potential applications (such as 

coion-driven electroosmotic transport41 and simultaneous energy harvesting and flow 

augmentation42 in PE brush functionalized nanochannels). 

Among the parameters of interests that get revealed by the all-atom MD simulations, one 

of the most important one is the water-water hydrogen bonds (HBs) formed by the water molecules 

within the PE brush layer.37 In the brush-free bulk (i.e., outside the brush layer), water shows 

connectivity with nearby water molecules forming HBs; on the other hand, closely grafted PE 

brush molecules create a soft nanoconfinement where the water connectivity becomes highly 

disrupted thereby affecting the HBs inside the PE brush layer. In a previous study,37 we showed 
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that there occurred a significant decrease in the water−water and water-PE hydrogen bond 

strengths with an increase in the degree of PE brush-induced confinement (quantified by the 

grafting density of the brushes). In that study,37 we employed a generic definition of the HB when 

analyzing water−water HBs inside the brush layer. A similar definition was also used for 

quantifying the PE-water HBs. In this generic definition, a cutoff value for the oxygen-oxygen 

distance as well as the angle formed by oxygens and hydrogens is used to describe a HB. These 

values are examined thoroughly and highly calibrated, although mainly for bulk water. Inside a 

highly charged confined system (inside a densely grafted polyelectrolyte or PE brush layer, for 

example), on the other hand, it is possible that water network is disrupted by the charged atoms, 

as we showed in our previous study.37 Other studies have shown that HBs might demonstrate 

different structural behaviors when formed under different settings (e.g., in presence or in absence 

of confinements, with variation in species participating in such HB formation, etc.), and in the 

process, cover a large range of structural properties and energy values.43-45  As water structure and 

water density might change inside the brush layer, a definition of the HB, which is used for the 

water molecules present in the bulk water (i.e., outside the highly charged confined system), might 

not be representative of the actual local environment. Therefore, it is not always prudent to use a 

generic definition (known for water) for quantifying the HBs without considering the scenario 

where such bonds have formed. On the other hand, a method to analyze and quantify HB that is 

specific to a particular system (e.g., HBs formed inside the PE brush layer) will not only ensure a 

more robust quantification (including the number density, angle associated with the HB, etc.) of 

the HBs formed inside the soft nanoconfinement, but will also unearth several finer features of the 

HBs that would have been missed if one would have used the existing generic definition of 

characterizing the HBs. A machine learning (ML) algorithm can help in this case. A cluster-based 
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algorithm, for example, can analyze the atomic coordinates (of the atoms of the water molecules 

present inside the densely grafted layer of the charged PE brushes) and provide us useful 

information about the distribution of bonds associated with these coordinates. From these clusters, 

we can identify hydrogen bonds and as a result we can also check how the structural definition of 

hydrogen bond is changing inside a highly charged confined environment (namely the densely 

grafted layer of the charged PE brushes). 

 In this paper, we first obtain an all-atom MD simulation-based description of the structure 

of a cationic PE brush and the brush-supported ions and water molecules. Using this all-atom MD 

simulation enabled information of the equilibrated atomic coordinates of the water molecules 

inside the cationic brush, we employ an unsupervised machine-learning (ML) based approach for 

obtaining an agnostic definition of HB structure46 inside the PE brush layer. The approach relies 

on identifying the structural modification of water-water HBs inside the PE brush layer and in the 

process quantifies the disruption of the number density of the HBs inside the brush-enforced soft 

nanoconfinement. Our machine learning model is based on the model of Gasparotto and Ceriotti,46 

which identifies atomic patterns automatically from molecular trajectories, thereby providing an 

algorithmic definition of a bond (here a HB) based solely on structural information. There have 

been several studies in the broad domain of application of ML in soft matter systems, where 

unsupervised learning has been employed to discover previously unknown recurring structural 

patterns or motifs in different macromolecular systems.47-49 The specific method of Gasparotto and 

Ceriotti provides clusters of possible short ranges of recurring patterns: HBs can be distinguished 

from other clusters by analyzing the corresponding inter-atomic distances. As this method relies 

solely on the available atomic coordinates, possible modification of the HB structure inside the PE 

brush layer can be analyzed using this method. Using these clusters, we can provide the structural 
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definition of a HB inside the brush layer. Our calculations, enable us to obtain the following key 

results. First, we find a qualitative similarity in the cluster formation inside the brush layer and in 

the bulk (outside the brush layer). Second, the analysis of the HB cluster (or the cluster that can be 

considered to represent HBs) shows that the margin (in terms of the parameters used to define the 

cluster) of the cluster is shorter inside the PE brush layer. This result indicates the possible 

disruption of the HBs inside the soft nanoconfinement imposed by the grafted PE brush layer. 

Third, the average “hydrogen – acceptor-oxygen – donor-oxygen” angle that defines the HB is 

reduced for the HBs formed inside the brush layer (as compared to the HBs formed in the brush-

free bulk). Fourth and final, our approach enables us to define a more rigorous set of conditions 

that should be used in defining the HBs that are formed inside the specific cationic PE brush layer 

simulated here: use of these set of conditions in defining the HBs show that we invariably 

overpredict the number water-water HBs formed inside the brush layer in case we use a generic 

definition (used to define the HBs in the brush-free bulk) to characterize the HBs inside the brush 

layer.   

 

METHODS 

Molecular Dynamics Simulation 

Our all-atom MD simulations considered 36 fully charged (positively charged) poly(2-

methacryloyloxy)-ethyl-trimethylammonium (PMETAC) chains grafted in a 6*6 (x*y) array (Fig. 

1 shows the PMETAC molecule and the simulation snapshot). Cl- counterions are used to 

neutralize the polyelectrolyte (PE) segmental charge in a solvent consisting of explicitly-modeled 

SPC/E water molecules.50 Continuous Lennard Jones (LJ, 12-6) and reflective walls (the LJ σ or 

the LJ distance parameter is 3 Å, with a cutoff of 3.36 Å) are placed at the bottom and the top of 
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the simulation box, respectively. This prevented the mobile counterions and the water molecules 

from leaving the simulation system. Because of the LJ parameter and associated cutoff, the wall 

does not allow any atom up to a distance 3.36 Å from the wall. Chains are grafted by fixing the 

end carbon above the bottom reflective wall. The distance between the wall and the grafted carbon 

is 3.36 Å. The size of the equilibrated simulation system is x×y×z = 9.4×9.4×19 nm3 (the z distance 

is the wall-to-wall distance). Also, the bulk water region is around 5 nm above the PE layer. The 

bulk water resides within the box. We have checked the water density along the simulation box 

system. The water density is smaller within the PE brush layer since a significant amount of water 

is replaced by the PE atoms (please see Fig. S2 in the Supplementary Information). The particle 

trajectories were calculated using the Velocity-Verlet algorithm with a time step of 2 fs. Non-

bonded interactions were modelled as the sum of a shifted-truncated 12-6 Lennard Jones potential 

(ULJ) maintaining the cut-off of 13Å. PPPM (particle-particle particle-mesh) algorithm was used 

to calculate the long-range Columbic interactions.51 The bonds and angles of water molecules were 

conserved using the SHAKE algorithm.52 Periodic boundary conditions were applied in x and y 

directions, while the fixed boundary condition was incorporated in z direction. Simulations were 

performed in LAMMPS (version 21st July, 2020).53 OVITO was used to visualize the simulation 

system.54 We have used OPLS-AA force field55 to model the interaction parameters for the 

PMETAC chains. The Lennard Jones (LJ) parameters for the Cl- counterions were taken from the 

work of Joung and Cheathan.56 Geometric mixing rules were used for calculating the LJ 

interactions between the different atom types. For mobile-ion-water interactions, we used the 

Lorentz-Berthelot mixing rules to be consistent with Joung et al.56 These parameters are very 

accurate for monovalent ions in an aqueous system.  For example, ion parameters are calibrated to 

obtain proper hydration free energy of the solvated ions, as well as proper ion-oxygen distance. 
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The LJ parameters are also calibrated for different water models, and we are using the calibrated 

value for SPC/E water model.56 The different forcefield parameters have been summarized in the 

supplementary information (SI). 

After creating the initial configuration, the system was first simulated in the NPzT ensemble 

(the subscript Z means that only the system height was allowed to change) to obtain the correct 

simulation box height at a temperature of 300 K and a pressure of 1 atmosphere by applying the 

Nosé-Hoover thermostat and the Nosé-Hoover barostat,57,58 with relaxation times of 0.1 ps and 1 

ps for temperature and pressure, respectively. Subsequently, the system was equilibrated in the 

NVT ensemble to obtain the correct equilibrium configuration of the system by using the Langevin 

thermostat.59 We performed simulation until the brush height reached a plateau. After 

equilibration, we performed the production run for 12 ns. 

 

Agnostic Description of Hydrogen Bond 

We have used unsupervised machine learning approach to identify hydrogen bonds (HBs) inside 

the brush layer as well as in the bulk (i.e., outside the brush layer). This machine learning approach, 

which follows the method proposed by Gasparotto and Ceriotti,46 has been briefly described below.  

The basis of the machine learning approach is that we consider structural features to identify the 

formation of HBs. A HB involves three atoms: one hydrogen atom (“H” atom), one donor oxygen 

atom (“𝑂” atom),	and one acceptor oxygen atom (“𝑂′” atom). The distances between these three 

atoms can be checked to identify the formation of a HB.  

Following Gasparotto and Ceriotti, we create a training data set	𝜒 = 	 {𝐱!}, where {𝐱!} is a three-

dimensional vector such that each element of {𝐱!} can be expressed as 𝑥! = (𝑣 = 𝑑(𝑂! − 𝐻!) −
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𝑑(𝑂′! − 𝐻!), µ = 𝑑(𝑂! − 𝐻!) + 𝑑(𝑂"! − 𝐻!)	, 𝑟 = 𝑑(𝑂! − 𝑂′!)). Here 𝑣 is the proton transfer 

coordinate, µ is the symmetric stretch coordinate, and 𝑟 is the acceptor-donor coordinate. These 

three parameters describe the configuration of a triplet of atoms (namely, the H, 𝑂, and 𝑂′ atoms, 

see above) that might lead to the formation of a HB. 𝑟 indicates the distance between 𝑂 and 𝑂′ 

atoms; 𝑣 and µ specify the position of H. These coordinates have been schematically shown in Fig. 

2. This data set 𝜒 will be used to obtain the corresponding probability distribution: we employ the 

kernel density estimation (KDE) to obtain an estimate of this probability distribution.  

To select a sparser set of data points (for computational efficiency) that will be used to calculate 

the KDE, we select subset of the data samples Υ ⊆ 𝜒 using minmax criteria. Obviously, one can 

write Υ = {𝐲!}. Subsequently, the KDE on each grid point (of the data set Υ) can be expressed as: 

𝑃(𝐲!) = ∑ 𝑤#𝐾(;𝐱# − 𝐲!;, 𝜎#)/ ∑ 𝑤#$
#%&

$
#%& .       (1) 

In eq.(1), K is a Gaussian kernel expressed as: where a gaussian kernel is used as 

𝐾(𝑥, 𝜎) = (2𝜋𝜎')()/'𝑒(
!"

"#" .  (2) 

Also, in eq.(1) 𝑁 is the total number of distance tuples, 𝑤# is a weight function, and 𝜎# is an adaptive 

kernel width. We follow the procedure of Gasparotto and Ceriotti46 to obtain 𝑤# and 𝜎#. Also, in 

eq.(2), D is the dimensionality of the problem (for our case D=3).  

After calculating KDE, we proceed to identify different clusters. Quick shift60 algorithm is used to 

separate different clusters. With the knowledge of the set of data points 𝐲! and the probability P(𝐲!) 

[obtained using eq.(1)] associated with that data point, the quick shift algorithm constructs a tree 

where each data point serves as a node, while the data point with highest probability value serves 
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as the root. Each data point is connected to the nearest point with a higher probability density; in 

other words, 𝐲! is connected to 𝐲# 	such that  

𝑗 = 	 arg	min
+,𝐲$./+(𝐲%)

;𝐲! − 𝐲#;.    (3) 

This search for data point with higher probability density is stopped by introducing a cut-off length 

𝜆. If no data point with higher probability is found within 𝜆 from the current data point, the quick 

shift stops moving and an enclosed cluster is found. It is to be noted that the quick shift is not 

particularly influenced by this cut-off, so it automatically selected at around ~5𝜎# where 𝜎# is the 

kernel grid point width (see eq. 1). By this procedure we automatically get clusters associated with 

the atomic arrangements of H, 𝑂, and 𝑂′ atoms. From these clusters we can define the hydrogen 

bonds to be associated with the clusters with the shortest (𝑣, 𝜇, 𝑟)	tuples as this will give strongest 

non-bonded interactions. 
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Figure 1: (Left) Atomic structure of the poly(2-methacryloyloxy)-ethyl-trimethylammonium 

(PMETAC) and (Right) snapshot of the simulation system. In this snapshot, red circles represent 

the counterions, blue circles represent the atoms of the PMETAC, and small green dots represent 

the water molecules. Our system has total 864 METAC monomers and correspondingly 864 Cl- 

counterions. Periodic boundary conditions were applied in x and y directions, while the fixed 

boundary condition was incorporated in z direction (perpendicular to the brush layer). 
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RESULTS AND DISCUSSIONS 

We analyzed the structural modification of HBs inside the cationic PE brush layer, as compared 

to the HBs in the bulk (outside the brush layer), by using the machine learning approach described 

above. For this purpose, we consider the positions of 𝐻 and 𝑂 atoms of the water molecules from 

two slabs (one inside the brush layer and another in the PE free bulk) of height 30Å. We use a 

cutoff of 𝜇, 𝑟 ≤ 4Å to exclude non-hydrogen bonded interactions. Fig. 2 shows the distribution of  

(𝑣, 𝜇, 𝑟)	tuples in the bulk (outside the brush layer) and inside the brush layer. One observes a 

symmetry along 𝑣 = 0 since a given 𝑂 atom behaves as a “donor” in one HB and an “acceptor” in 

another HB. The probability density values are colored according to the partition in clusters. 

Several clusters indicate that there are more than one recurring configurations, possibly happening 

in the second solvation shell. Generally, in aqueous solution, water mediated HBs are considered 

to have been formed when the oxygen-oxygen distance is less than 3.5 Å and the 𝐻 − 𝑂’ − 𝑂 angle 

is less than 30°.61,62 In Fig. 2, among the different clusters, the blue cluster (for 𝑣 > 0) and the 

green cluster (for 𝑣 < 0) are the representation of the HBs. Water connectivity is severely 

disrupted inside the PE brush layer (or the confinement effect imposed by the densely grafted PE 

brushes) since the PE atoms take up a significant amount of space and introduce additional 

interactions between PE atoms and water atoms. Despite such possible disruption, qualitatively 

similar clusters are observed for water both in the bulk as well as inside the brush layer. Other than 

the HBs, four different clusters (two for 𝑣 > 0 and two for 𝑣 < 0) are also partitioned inside the 

brush layer. This shows that long-ranged recurring patterns continue to remain distinguishable 

even after the water connectivity is disrupted by the presence of the PE chains. This method can 

be important for analyzing effects (such as ion-ion correlation, ion condensation, and bridging 

interactions), which significantly influence the morphology and properties of the PE chains.  

Page 13 of 25 Soft Matter



 14 

 

  

Figure 2: Top Panel: The HB and the coordinates employed to perform the cluster analysis have 

been defined schematically. The dashed line indicates a HB between doner H and acceptor 𝑂". 

Among the coordinates, 𝑟 is shown explicitly. We have also shown 𝑑(𝑂" − 𝐻) and 𝑑(𝑂 − 𝐻). 

Please note that 𝜇 = 𝑑(𝑂" − 𝐻)	+ 	𝑑(𝑂 − 𝐻) and 𝑣 = 𝑑(𝑂" − 𝐻) − 	𝑑(𝑂 − 𝐻). Bottom Panel: 

The distribution of (𝑣, 𝜇, 𝑟) for water in bulk and inside the brush layer have been shown. The size 

of the point at a given yi (i.e., a given value of 𝑣, 𝜇, 𝑟) is proportional to the corresponding 

underlying probability distribution P(yi) (obtained from the KDE) associated with yi.. Different 

color represents different clusters. Hydrogen bond clusters are indicated with arrows to guide the 

readers.  
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We next look into the hydrogen bond clusters (blue and green clusters in Fig. 2) more 

closely in Fig. 3. As SHAKE algorithm is used to keep the 𝐻 − 𝑂 distance fixed (~1	Å) , 𝑣 =

𝑑(𝑂! − 𝐻!) − 𝑑(𝑂′! − 𝐻!) is always ~2	Å	less than  µ = 𝑑(𝑂! − 𝐻!) + 𝑑(𝑂"! − 𝐻!). So, a 2D 

scatter plot of (	𝜇, 𝑟) corresponds one-to-one to the 3D plot of (𝑣, 𝜇, 𝑟).	In Fig. 3, we plot the two 

hydrogen bond cluster in (𝜇, 𝑟) space: one cluster represented [in 2D (𝜇, 𝑟) space] the HBs formed 

by the water molecules inside the PE brush layer, while the other cluster represented [in 2D (𝜇, 𝑟) 

space] the HBs formed by the water molecules in the bulk (outside the PE brush layer). We can 

see the qualitative similarity between these two clusters; both the clusters peaked around 𝑣 =

0.75	Å and 𝑟 = 2.7	Å and smeared out at high 𝑣 values. Interestingly,	we can observe the margin 

of the cluster is shorter inside the PE brush layer. These points after the margin are now clustered 

with the next cluster. These findings confirm that the HB clusters are getting compacted inside the 

brush layer. Water molecules form extensive HB network in the bulk water. But the water 

molecules cannot form these extensive networks inside the brush layer due to the presence of the 

polyelectrolytes. Our results indicate that this disruption can influence the putative HBs with large 

v. As large 𝑣 indicates that the acceptor O is very far from the doner H, the spatial disruption 

caused by the presence of the PE chain can cause the HBs to break or get disrupted. As a result, 

we are not seeing HBs in this region. As a result, we are not seeing HB in this region This result 

shows the importance of agnostic definition of structural motifs in different situations and the 

manner in which a generic definition of a quantity (here HBs) can be modified inside a 

nanoconfinement (here, this nanoconfinement is the densely grafted PE brush layer enforced 

nanoconfinement).  
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Figure 3: Distribution of (𝑣, 𝑟) for water in bulk and inside brush layer. The size of the point at a 

given yi (i.e., a given value of 𝑣, 𝜇, 𝑟) is proportional to the corresponding underlying probability 

distribution P(yi) (obtained from the KDE) associated with yi. The dashed lines indicate the average 

location (in 𝑣) of the edge of hydrogen bond cluster  
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We next check the manner in which the hydrogen bond angle is modified inside the PE 

brush layer. We use the (𝑣, 𝑟) margins from Fig. 3 as the cutoff of the HB search. We manually 

analyzed the simulation snapshots using 𝑣 and	𝑟 and count this angle (charactering the HB 

formation). It can be observed that there is a significant modification of the angle distribution (H-

acceptor-O-donor-O angle or 𝐻 − 𝑂’ − 𝑂 angle) inside the brush layer. For the HBs distribution 

inside the brush layer, there is a slight shift of the distribution peak towards the smaller values of 

the 𝐻 − 𝑂’ − 𝑂 angle: this indicates that the HBs inside the brush layer become more linear. From 

this HB distribution plot, we also observe the possibility of the number of HBs with larger 𝐻 −

𝑂’ − 𝑂 angle reducing inside the brush layer. This kind of variation in hydrogen bond angles have 

been previously observed in different ice phases as well as in HBs formed by different 

molecules;63-65 here we are witnessing this with water being a strong confinement imposed by the 

presence of the densely grafted PE brushes. Generally, an angle criterion of 𝐻 − 𝑂’ − 𝑂	angle 

being less than 30°  is used in the structural definition of water mediated hydrogen bond formation. 

In Fig. 4, we calculate that for the HBs in the brush-free bulk, 90% of the HBs correspond to the 

𝐻 − 𝑂’ − 𝑂 angles that are smaller than 30°. However, for the HBs inside the PE brushes, as the 

𝐻 − 𝑂’ − 𝑂 angle distribution (corresponding to which HBs are formed) is shifted towards the 

smaller angle (see above), 90% of the HBs will correspond to a much lower value of the 𝐻 − 𝑂’ −

𝑂 angle: indeed, our calculations using Fig. 4 establish this cut-off angle as 24° for the case of the 

HBs inside the PE brush layer. 
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Figure 4: Normalized distribution of the HBs as functions of the 𝐻 − 𝑂’ − 𝑂	(H – acceptor-O – 

donor-O) angles inside the PE brush layer and the brush-free bulk.  
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Finally, we calculate the total number of HBs per water molecules inside the brush layer. 

We consider two conditions or definitions (see below) used to identify the formation of the HBs 

and compare their impact on the total number of HBs inside the PE brush layer. The first 

condition/definition is the generally accepted definition for the HB formation in the bulk water: 

oxygen-oxygen distance is less than 3.5 Å and the 𝐻 − 𝑂’ − 𝑂	angle is less than 30°. In second 

definition, we modify the condition on the 𝐻 − 𝑂’ − 𝑂 angle that is associated with the HB 

formation inside the PE brush layer: as per Fig. 4, we identify this condition on the 𝐻 − 𝑂’ − 𝑂 

angle to be less than 24°. Table 1 provides the number of HBs computed by these two separate 

definitions at different locations within the PE brush layer. This second definition leads to a much 

smaller number of HBs inside the brush layer. This result, therefore, shows that if we use the 

definition of HB in a bulk water for calculating the HBs inside a densely grafted (affording 

significant nanoconfinement) PE brush layer, we would overcount the number of HBs.  

Distance from grafted carbon 5.4 Å 15.7 Å 26.0 Å 36.3 Å 

Using generally accepted 

definition 

2.50 2.51 2.53 2.57 

Using modified definition 2.29 2.37 2.39 2.42 

Table 1: The number of HBs per water molecules along the PE brush height. Distances represent 

the centers of the corresponding slabs where the averaging are performed.  
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Conclusions 

ML based approach has been used to account for the specific scenario, associated with the soft 

nanoconfinement effect experienced by the water molecules present inside the densely grafted 

cationic PE brush layer, probed using all-atom MD simulations, while calculating the water-water 

HBs inside the PE brush layer. The ML method is based on a clustering approach: the result is 

multiple groups of clusters and the HBs are represented only by certain specific clusters. While 

the overall clustering data is similar to for the water molecules inside and outside the PE brush 

layer, through these data, we are able to identify several differences between the water-water HBs 

formed inside and outside the PE brush layer. First, we are able to identify that the margin of the 

cluster gets shortened within the PE brush layer: this can be attributed to the possible disruption 

of the HBs inside the PE brush layer. Second the 𝐻 − 𝑂’ − 𝑂	angle that characterizes the HBs gets 

reduced for the case of the water-water HBs formed inside the PE brush layer: this can be 

interpreted as the HBs inside the brush layer becoming more linear. Third, we establish if the HBs 

that are formed inside the specific cationic PE brush layer simulated here are characterized by the 

generic definition of the HBs (used to define the HBs in the bulk water outside the brush layer), 

we overpredict the number water-water HBs formed inside the brush layer. Overall, we anticipate 

that our paper will motivate new research problems aimed at re-evaluating the properties of ions 

and water molecules inside a PE brush layer using a more system-specific 

definition/characterization motivated by different ML approaches. 

 

  

Page 20 of 25Soft Matter



 21 

Acknowledgement: This work has been supported by the Department of Energy Office of Science 

grant DE-SC0017741. The authors also gratefully acknowledge the Deepthought2 High-

Performance Computing cluster at the University of Maryland for providing necessary 

computational resources. 

 

Author Contributions: S.D. conceived the problem. T.H.P. ran the simulations, analyzed the 

data. T.H.P. and S.D. wrote the paper. All authors commented on the paper. 

  

Page 21 of 25 Soft Matter



 22 

References: 

1. P. Pincus, Macromolecules 1991, 24, 2912. 

2. M. Ballauff and O. Borisov, Curr. Opin. Colloid Interface Sci. 2006, 11, 316. 

3. M. Ballauff, Prog. Polym. Sci. 2007, 32, 1135.  

4. M. Geoghegan, Soft Matter, 2022, 18, 2500. 

5. Y. Mir, P. Auroy, and L. Auvray, Phys. Rev. Lett. 1995, 75, 2863.  

6. E. B. Zhulina and M. Rubinstein, Macromolecules 2014, 47, 5825. 

7. T. Kreer, Soft Matter, 2016, 12, 3479. 

8. S. Das, M. Banik, G. Chen, S. Sinha, and R. Mukherjee, Soft Matter, 2015, 11, 8550. 

9. M. Ali, P. Ramirez, S. Mafe, R. Neumann, and W. Ensinger, ACS Nano, 2009, 3, 603. 

10. M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, and O. Azzaroni, J. Am. Chem. 

Soc., 2008, 130, 16351. 

11. S. Umehara, M. Karhanek, R. W. Davis, and N. Pourmand, Proc. Natl. Acad. Sci. U. S. A., 

2009, 106, 4611. 

12. M. Ali, B. Yameen, J. Cervera, P. Ramirez, R. Neumann, W. Ensinger, W. Knoll, and O. 

Azzaroni, J. Am. Chem. Soc., 2010, 132, 8338. 

13. S. Chanda, S. Sinha, and S. Das, Soft Matter, 2014, 10, 7558. 

14. G. Chen, H. S. Sachar, and S. Das, Soft Matter, 2018, 14, 5246. 

15. H. S. Sachar, V. S. Sivasankar, and S. Das, Soft Matter, 2019, 15, 5973. 

16. S. Mura, J. Nicolas, and P. Couvreur, Nature Mater., 2013, 12, 991. 

17. G. Liu, M. Cai, X. Wang, F. Zhou, and W. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 

11625.   

18. L. Yang, K. Shen, J. Xu, M. Ren, and F. Cao, J. Appl. Polym. Sci. 2022, 139, e52709. 

Page 22 of 25Soft Matter



 23 

19. J. Xu, N. E. Jackson, X. Xu, B. K. Brettmann, M. Ruths, J. J. de Pablo, and M. Tirrell, Sci. 

Adv. 2017, 3, eaao1497. 

20. J. D. Willott, B. A. Humphreys, G. B. Webber, E. J. Wanless, and W. M. de Vos 

Langmuir 2019, 35, 2709 

21. J. Yu, J. Mao, G. Yuan, S. Satija, Z. Jiang, W. Chen, M. Tirrell, Macromolecules 2016, 49, 

5609 

22. J. Yu, N. E. Jackson, X. Xu, Y. Morgenstern, Y. Kaufman, M. Ruths, J. J. de Pablo, M. 

Tirrell1, Science 2018, 360, 1434  

23. R. Farina, N. Laugel, P. Pincus and M. Tirrell, Soft Matter, 2013, 9, 10458 

24. S. Misra, S. Varanas, and P. P. Varanasi, Macromolecules 1989, 22, 4173 

25. E. B. Zhulina, O. V. Borisov, J. Chem. Phys. 1997 107, 5952  

26. I. O. Lebedeva, E. B. Zhulina, and O. V. Borisov. J. Chem. Phys. 2017, 146, 214901 

27. E. B. Zhulina and O. V. Borisov, Langmuir 2011, 27, 10615 

28. O. V. Borisov, and E. B. Zhulina, J. Chem. Phys. 2018, 149, 184904 

29. H. S. Sachar, V. S. Sivasankara and S. Das. Soft Matter, 2019,15, 559 

30. S. A. Etha, V. S. Sivasankar, H. Singh Sachar and S. Das, Phys. Chem. Chem. Phys., 

2020,22, 13536 

31. S-z. He, H. Merlitz, L. Chen, J.-U. Sommer, and C.-X. Wu, Macromolecules 2010, 43, 

7845 

32. H. Merlitz, C. Li, C. Wu, and J.-U. Sommer, Soft Matter, 2015, 11, 5688 

33. N. E. Jackson, B. K. Brettmann, V. Vishwanath, M. Tirrel, and J. J. de Pablo. ACS Macro 

Lett. 2017, 6, 155 

34. P. R. Desai, S. Sinha, and S. Das, Phys. Rev. E 2018, 97, 032503 

Page 23 of 25 Soft Matter



 24 

35. H. S. Sachar, T. H. Pial, P. R. Desai, S. A. Etha, Y. Wang, P. W. Chung, S. Das, Matter 

2020, 2, 1509 

36. H. S. Sachar, T. H. Pial, B. S. Chava, and S. Das, Soft Matter, 2020,16, 7808 

37. H. S. Sachar, B. S. Chava, T. H. Pial, and S. Das, Macromolecules 2021, 54, 2011 

38. T. H. Pial, H. S. Sachar, and S. Das, Macromolecules 2021, 54, 9, 4154–4163 

39. H. S. Sachar, B. S. Chava, T. H. Pial, and S. Das, Macromolecules 2021, 54, 6342 

40. T. H. Pial, M. Prajapati, B. S. Chava, H. S. Sachar, and S. Das, Macromolecules 2022, 

55, 2413 

41. T. H. Pial, H. S. Sachar, P. R. Desai, and S. Das, ACS Nano 2021, 15, 6507 

42. H. S. Sachar, T. H. Pial, V. S. Sivasankar, and S. Das, ACS Nano 2021, 15, 17337 

43. M. Jabłoński, and M. Solà, J. Phys. Chem. A 2010, 114, 10253 

44. K. Wendler, J. Thar, S Zahn, and B. Kirchner, J. Phys. Chem. A 2010, 114, 9529 

45. J. Grdadolnik, F. Merzel, and F. Avbel, Proc. Natl. Acad. Sci.  2017, 114, 323 

46. P. Gasparotto, and M. Ceriotti, J. Chem. Phys. 2014, 141, 174110 

47. A. L. Ferguson, J. Phys.: Condens. Matter 2018, 30 043002 

48. N. E. Jackson, M. A. Webb, and J. J. de Pablo, Curr. Opin. Chem. Eng. 2019, 23, 106 

49. I.-B. Magdău. and T. F. Miller, Macromolecules 2021, 54, 3377 

50. H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem., 1987, 91, 6269 

51. R. W. Hockney and J. W. Eastwood, Computer Simulations Using Particles, McGraw-

Hill International Book Co, New York, 1981 

52. J.-P. Ryckaert, G. Ciccotti and H. J. Berendsen, J. Comput. Phys., 1977, 23, 327 

53. S. Plimpton, J. Comput. Phys., 1995, 117, 1 

54. A. Stukowski, Simul. Mater. Sci. Eng., 2010, 18, 015012 

Page 24 of 25Soft Matter



 25 

55. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, J. Am. Chem. Soc., 1996, 118, 

11225 

56. I. S. Joung and T. E. Cheatham III, J. Phys. Chem. B, 2008, 112, 9020 

57. W. G. Hoover, Phys. Rev. A: At., Mol., Opt. Phys., 1985, 31, 1695 —1697 

58. S. Nosé, J. Chem. Phys., 1984, 81, 511 

59. T. Schneider and E. Stoll, Phys. Rev. B: Condens. Matter Mater. Phys., 1987, 17, 1302 

60. A. Vedaldi and S. Soatto, Computer Vision-ECCV 2008 (Springer, 2008), pp. 705–718. 

61. S. Han, Sci. Rep. 2018, 8, 9347. 

62. A. Luzar, D. Chandler, Nature 1996, 379, 55. 

63. R. Zangi and A. E. Mark, J. Chem. Phys. 2004, 120, 7123 

64. W.-H. Zhao, J. Bai, L.-F. Yuan, J. Yanga, and X. C. Zeng, Chem. Sci., 2014, 5, 1757 

65. I. Jukic´, M. Pozˇar, B. Lovrincˇevic´, and A. Perera, Phys. Chem. Chem. Phys., 2021, 23, 

19537 

 

Page 25 of 25 Soft Matter


