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Symmetry-Based Classification of Forces Driving Chro-
matin Dynamics

Iraj Eshghi, Alexandra Zidovska, Alexander Y. Grosberg∗

Chromatin - the functional form of DNA in the cell - exists in the form of a polymer immersed in
a nucleoplasmic fluid inside the cell nucleus. Both chromatin and nucleoplasm are subject to active
forces resulting from local biological processes. This activity leads to non-equilibrium phenomena,
affecting chromatin organization and dynamics, yet the underlying physics is far from understood.
Here, we expand upon a previously developed two-fluid model of chromatin and nucleoplasm by
considering three types of activity in the form of force dipoles – two with both forces of the dipole
acting on the same fluid (either polymer or nucleoplasm) and a third, with two forces pushing
chromatin and solvent in opposite directions. We find that this latter type results in the most
significant flows, dominating over most length scales of interest. Due to the friction between the
fluids and their viscosity, we observe emergent screening length scales in the active flows of this
system. We predict that the presence of different activity types and their relative strengths can be
inferred from observing the power spectra of hydrodynamic fluctuations in the chromatin and the
nucleoplasm.

1 Introduction

The genome resides inside the eukaryotic cell nucleus, and
carries the information needed for the cell’s life1. The nuclear
interior is filled with nucleoplasm, the solvent, within which the
genome is tightly packed: 2 meters of DNA in a nucleus about
10 microns in diameter2. In this state, the genome takes on
a polymeric form composed of DNA and associated proteins,
known as chromatin3. Chromatin is subject to a variety of
ATP-dependent active processes such as transcription, replication
and DNA repair4. This activity therefore affects chromatin’s
motions and organization5.

The dynamics of chromatin were initially measured through
the tracking of specific genomic structures such as telomeres6 or
single genes7–9. The single-gene studies found that chromatin
moved in a constrained, subdiffusive manner at short times, but
occasionally exhibited directed motion on longer time scales7–9.
More recently, the development of Displacement Correlation
Spectroscopy (DCS) has allowed for simultaneous nucleus-wide
measurements of chromatin dynamics10. DCS uncovered that
chromatin displays two regimes of motion: fast, uncorrelated
motion at short times, and slow correlated motion at long times.
The long-time motion is coherent on scales of about 3−5 µm10.
These correlations disappear upon the depletion of ATP, as well
as inhibition of nuclear enzymes such as RNA polymerase II,
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DNA polymerase and topoisomerase II, while being unaffected by
cytoskeletal perturbations10,11. This demonstrates that enzymes
in the cell nucleus produce coherent motion of chromatin.

Motivated by the DCS measurements, the first theory of
active chromatin hydrodynamics was developed12. This study
introduced two types of events, scalar and vector, and iden-
tified the vector events as those driving the large-wavelength
fluctuations leading to micron-scale coherent motions observed
in experiments10. It was soon followed by a numerical study,
modeling chromatin as a coarse-grained polymer with hydrody-
namic interactions, driven by active force dipoles11. This model
investigates the hydrodynamics of the vector events. Specifically,
it studies the effects of contractile and extensile dipoles, revealing
that extensile dipolar forces are needed for large-scale chromatin
motions to occur11. The main difference in approaches of these
two works11,12 is how the driving forces are modeled. In12,
each (vector) active source was presented as a force dipole with
two equal and opposing forces acting on two locations in the
polymer. In11, one of the forces of the dipole was exerted on
a polymer and the other on the solvent (albeit in the location
point of the neighboring monomer). This seemingly subtle
difference turned out to be very important: as we will show in
this paper, the choice to organize the force dipoles in such a way
leads to dramatic differences in the resulting active flows. On a
more technical level, the numerical algorithm implemented in11

treated hydrodynamics of the solvent under this point-like force
in terms of a Stokeslet appropriately modified to meet the no-slip
condition at the nuclear boundary. Such an approach chooses to
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neglect the hydrodynamic screening due to the polymer matrix.
Several hydrodynamics-free models of chromatin dynamics

have been developed since then. A first group of them have
focused on developing effective polymer models, homopolymers
or heteropolymers, whose interaction parameters are extracted
from experimental data of chromatin conformations from
chromosome conformation capture (Hi-C) experiments13. These
studies predicted the effect of confinement and tight packing
on chromatin14, reproduced experimental dynamical results
such as coherent motion15,16 and found glassy, heterogeneous
dynamics in model chromosomes16. Such models have also
reproduced general features of Hi-C contact maps and nuclear-
scale chromosome architecture, such as reproducing contact
probabilities from select chromosomes17. In contrast, other
models consider chromatin as a simple chain with few free
parameters, allowing for the study of the effects of athermal
noise on chromosomal loci18 or the effects of chromatin’s fractal
structure on its dynamics19,20. Simulations of such simple chains
have allowed for studying the relationship between dynamics and
the establishment of epigenetic domains21. Finally, continuum
approaches have also been developed to model the process of
phase separation of chromatin compartments in the nucleus22,
showing that much of the organization of chromatin can be
accounted for by the process of liquid-liquid phase separation.

In this work, we seek to identify the minimal active ingredients
needed to reproduce the ATP-dependent coherent motion of
chromatin. To this end, we build upon an existing continuum,
two-fluid model of chromatin dynamics which was introduced
in12. A hydrodynamic framework is a natural approach for
studying the motion of chromatin on length scales larger than
the thickness of the polymer. While some earlier studies were
able to reproduce coherent motions of chromatin without explicit
accounting for hydrodynamics, those models rely on chromatin
polymer conformations obtained by HiC.15,23 These conforma-
tions are directly affected by hydrodynamics as they formed
in the presence of the fluid (nucleoplasm) and fluid-mediated
interactions in the cell nucleus in vivo. Our approach follows
the study11, which includes hydrodynamics explicitly and
unambiguously: they model this system as a simple chain in a
solvent with stochastically activated force dipoles, and obtain
coherent motion of the polymer as a result.

The continuum approach allows for the inclusion of active
events and hydrodynamic interactions of the polymer while
remaining analytically tractable. A field-theoretic approach to
studying the active behavior of chromatin allows us to explicitly
harness the symmetries and conservation laws in this system,
such as total conservation of solvent and chromatin. Activity can
be included in a way that naturally respects such symmetries.
Finally, the onset of collective behavior such as the emergence of
coherent flows in chromatin10 is easily studied with continuum
frameworks, since the mathematical tools already developed in
the study of phase transitions can be applied to this system as
well.

We begin in Section II by describing the two-fluid model,
which will serve as the basis for our description of the chromatin-
nucleoplasm system. Then, we identify three possible types of

active sources which can act on such a system in a momentum-
conserving, localized way. The three types of active sources
are distinguished in the way they couple to the two fluids. In
Section III, we proceed to calculate the expected hydrodynamic
flows that isolated sources of each activity type would generate
in our chromatin model. Finally, in Section IV, we use these
single-source flows to calculate the expected power spectra
of polymer and solvent fluctuations, assuming a uniform and
uncorrelated distribution of active events.

2 Three types of vector activity driving flows in
chromatin

2.1 The model and equations of motion

Following previous work12, we describe chromatin and its sol-
vent, nucleoplasm, as a mixture of two fluids which dissipate en-
ergy when moving past one another. As in the previous work, we
employ the equations of motion derived for such a polymer and
solvent mixture by Doi and Onuki in24. In addition, we include
two novel aspects with regard to the system’s chromatin hydro-
dynamics12, namely, we keep account of the solvent viscosity and
we extend the application of the active body forces to both the
polymer and the solvent. To write down the equations of motion
for the two-fluid system, let the polymer (i.e., chromatin) velocity
field be vp(r) and its volume fraction φ(r). The solvent velocity
field is vs(r), and its volume fraction 1− φ(r). The equations of
motion are:

ζ (vp −vs) = ∇ ·σ −∇Π−φ∇P+Fp

ζ (vs −vp) = η
s
∇

2vs − (1−φ)∇P+Fs

∂tφ =−∇ · (φvp) = ∇ · ((1−φ)vs)

(1)

Here, ζ is a friction coefficient of polymer against solvent, per
unit volume. Π,σ are the osmotic pressure and stress tensor of
the polymer, respectively. Generally, σ is a function of vp, the spe-
cific form of which depends on the type of fluid. For example,
for a simple Newtonian fluid we have that ∇ ·σ = ηp∇2vp, where
ηp is polymer viscosity. Π is assumed to be an equilibrium func-
tion of density φ(r) because it equilibrates quickly and locally, P
is the hydrostatic pressure, and ηs is the viscosity of the solvent.
In this paper, we include the latter in order to study the effects
of hydrodynamic screening (as explained in Appendix A). Finally,
Fp,s are the force densities (forces per unit volume) acting on the
polymer and solvent, respectively, Fs being a new addition upon
previous considerations to allow for a more complete description
of possible forces. The arrangement of Fp,s(r, t) determines the
activity-generated flows in the two-fluid model.

To highlight the main features of the proposed model, it is use-
ful to juxtapose it with previous works11,12, from which this work
descends. These studies effectively consider different types of vec-
tor activity, with12 considering vector events acting on the poly-
mer only, while11 considers events that act on the polymer and
the solvent simultaneously, in opposite directions. In the present
work, we will address the fact that upon considering both Fp
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Fig. 1 Cartoon of the different types of activity considered, distinguished
by whether they exert force on the polymer, the solvent, or both. Inset:
Schematic representation of the geometry and force arrangement in a
single vector source. a is the size of the motor, n̂ is a unit vector defining
its orientation, R and R− an̂ are centers where two forces f n̂ and − f n̂
are exerted, forming a force dipole. The force dipole shown in the inset is
extensile, while a contractile dipole would have the force vectors pointing
inward instead of outward.

and Fs, there might be multiple types of vector sources which
would couple differently to the two fluids, and we will generalize
the field theoretic consideration of12, accounting for events like
the ones considered in11. In addition, we will consider explic-
itly the solvent viscosity to account for hydrodynamic screening.
We therefore set out to expand the classification of possible active
sources based on considerations of symmetry and conservation
laws in the framework of the model described in Eqs. (1). We
will focus on vector activity and not the scalar activity as identi-
fied in12, since our new symmetry considerations do not add to
the discussion on scalar events. Moreover, we show in Appendix
B that there is a formal connection between scalar and vector
events, where scalar events can be expressed as a superposition
of vector events, and thus the latter can be considered as a suffi-
cient basis for describing both types of activity.

2.2 Active forces generated by different types of motors

The arrangement of the forces in the system must obey both
linear and angular momentum conservation. Active driving
forces are produced by different types of motors. Without making
any assumptions about their mechanism, we imagine a motor
as a solid body of a size a (∼ 10 nm2) which is completely
overdamped in the surrounding chromatin and nucleoplasm
medium. As such, it can exert only balanced forces and torques
on the fluid. In the simplest case, the resulting force distribution
on the fluid must, on length scales larger than a, be that of a
dipole (for a more detailed discussion on other activity types that
could be included, see Appendix B).

Based on these conditions, we consider every source to be
as a force dipole as shown in the inset of Fig. 1. They can

be extensile (in the case f > 0) or contractile (if f < 0). It is
also worth noting that in the overdamped scenario we consider
here, the flows resulting from extensile or contractile sources
are simply time-reversed versions of one another. Furthermore,
all these driving motors have finite processivity. We imagine
that they start at some random time and then their force decays
proportional to some function κ(t) with time scale τ f (further
details regarding estimates for forces and time scales are shown
in Appendix D), for instance κ(t) = e−t/τ f . Three types of activity
are then classified based on where their forces act: Type I,
when both forces act on the polymer, Type II, when both forces
act on the solvent, and Type III, when one force acts on each fluid.

2.2.1 Type I activity: both forces of the same dipole act on
the polymer

The first possibility we consider is for the forces to be entirely
exerted on the polymer. In this case, we approximate the force
dipole generated by the motor as a pair of opposite forces exerted
in points R and R− an̂ (see Fig. 1, inset), such that the force
density entering eq. (1) has the form

Fs(r) = 0

Fp(r) = f κ(t)n̂(δ (r−R)−δ (r−R+an̂))

≃−a f κ(t)n̂(n̂ ·∇)δ (r−R) ,

(2)

where the last transformation is justified by assuming that all
relevant fields change only smoothly over the scale a. Here, f is
a force magnitude. In previous work12, this event was referred
to as "vector activity".

2.2.2 Type II activity: both forces of the same dipole act on
the solvent

Type II activity is analogous to Type I, except that the dipoles
exert their forces on the solvent. Thus, if the dipole points along
n̂:

Fs(r) = f κ(t)n̂(δ (r−R)−δ (r−R+an̂))

≃−a f κ(t)n̂(n̂ ·∇)δ (r−R)

Fp(r) = 0

(3)

2.2.3 Type III activity: one force from the dipole acts on the
polymer, the other acts on the solvent

Finally, there is the possibility that a motor can exert a pair of
equal forces in opposite directions, in the solvent and polymer,
respectively. As a convention, we choose the orientation of the
vector n̂ to point towards the "polymer end" of the dipole. Then,
the forces are:

Fs(r) =−n̂ f κ(t)δ (r−R+an̂)

Fp(r) = n̂ f κ(t)δ (r−R)

(4)
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All types of activity exhibit the same form for the total force den-
sity Fp +Fs ≃ −a f n̂(n̂ ·∇)δ (r−R), which meets the momentum
conservation condition.

3 Flows resulting from isolated events

3.1 Simplifications and approximations
For conceptual simplicity, in this section we consider the flows re-
sulting from the action of a single active dipole. We evaluate this
for all three types of active events we introduced in Section II.
Further, we consider a linearized approximation, assuming that
polymer density deviates only slightly from a spatially uniform
value φ0, namely φ(r) = φ0 + δφ(r). Within this range, polymer
osmotic pressure Π can be approximated as a linear function of
density: Π = Π0 +Kδφ(r) where K is the "osmotic rigidity" of the
polymer matrix. Similarly, the polymer stress tensor is a linear
function of velocities. For simplicity we assume that this depen-
dence, just as that of osmotic pressure, is local in space, but it can
have memory in time:

∇ ·σ = η
p(t)∗ (∇2vp) , (5)

where * means convolution with the time-dependent causal ker-
nel η p(t).

We also make the assumption of an infinite boundless domain.
In that case, we can resort to Fourier transforms in both space and
time, following standard convention

f (r, t) =
∫ dωd3q

(2π)4 fq,ω ei(q·r−ωt)

fqω =
∫

d3rdt f (r, t)e−i(q·r−ωt) ,

(6)

which allows a separate consideration of transverse (divergence-
free) and longitudinal flows.

Finally, we introduce the ratio of the frequency-dependent vis-
cosity of the polymer, and the constant viscosity of the solvent.

χω = η
p
ω/η

s (7)

It is noteworthy that the time-dependent kernel ηp(t) has units of
viscosity per unit time, whereas ηs has units of viscosity. Thus, the
ratio χω is unitless, since Fourier transforming in time multiplies
the units of ηp(t) by time. If the polymer viscosity is constant,
then ηp has units of viscosity, and χ is a unitless constant. For the
frequencies of interest, χω is much larger than 1, allowing us to
simplify expressions below.

The physical effects left out from the framework of our sim-
plified treatment include non-linear rheological response of the
polymer, such as shear-thinning and/or -thickening effects. These
effects would be important if the shear in the system is too large,
which we do not expect to be the case in the real systems driven
by molecular motors, which exert forces on the order of 10 pN25

(more detailed estimates of the forcing from an example molec-
ular motor can be found in Appendix D). Another group of ne-
glected effects has to do with non-locality of rheological response
(see26), which are expected to become important at sufficiently

small length scales or long time scales. For measurement times
of about a second, the non-local effects become significant when
r ≪ 1µm. In such a regime, the scaling of the resulting velocity
profiles would be significantly affected (for more details on the
estimation of this regime, see Appendix D). Since the value of
a micron is close to the lengthscales we are interested in, these
nonlocal rheology effects are likely significant to the problem we
are studying. Nevertheless, we choose to neglect them at present,
leaving their consideration for a later study. Our results would
also be affected by the presence of boundaries, both in space and
time. Finite time effects in this case should be negligible, because
the time scales we are interested in are on the order of seconds
whereas the interphase of a typical cell lasts for periods of over
several hours2. Since the equations of motion we consider are
linear, spatial boundaries can be dealt with by considering col-
lections of image sources induced by the boundary conditions, in
analogy with electrostatics.

3.2 Transverse flows

Transverse flows are those which are perpendicular to the
wavevector q for a given Fourier mode. In real space the resulting
fields are divergence-free, meaning they are not associated with
any density variations. Indeed, applying the transverse projection
operator to the linearized equations eliminates the field δφ , and
thus the variables of motion are only vs

⊥ and vp
⊥, where ⊥ denotes

the transverse component of a field. This results in the equations

ζ (vp
⊥−vs

⊥) = ∇ ·σ⊥+Fp
⊥

ζ (vs
⊥−vp

⊥) = η
s
∇

2vs
⊥+Fs

⊥ ,

(8)

where ∇ ·σ is given by Eq. (5). Notice that in the terms Fp
⊥, Fs

⊥
we are implicitly taking the transverse part of a source, which is
singular, as shown in (2-4). This is a nontrivial matter which we
discuss in Appendix C. The equations of motion (8) can be solved
by Fourier transform in space and time (the ω dependence will be
suppressed except where specifically relevant)

vp
⊥αq =

1
ηp

[
Hαβq

(
Fp

βq +Fs
βq

)
+GαβqFp

βq

]
vs
⊥αq =

1
ηp

[
Hαβq

(
Fp

βq +Fs
βq

)
+χGαβqFs

βq

]
,

(9)

where the q-dependent tensors Gαβq and Hαβq are defined as
follows:

Gαβq =
δαβ − (qα qβ )/q2

1/l2 +q2

Hαβq =
δαβ − (qα qβ )/q2

l2q2(1/l2 +q2)

(10)

In Eqs. (9-10), repeated indices are summed over, except for q.
We define q = |q|, and l =

√
ηs/ζ . Note that the length scale l

is of the order of the polymer mesh size, as it follows from the
physical meaning of friction coefficient ζ . Inverting the Fourier
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Fig. 2 Transverse flows showing yz components of vector fields in Eqs. (16)-(18), where n̂ = ẑ. vs is shown in the top row and vp on the bottom, for
χ = 10.

transform, one obtains in real space

Gαβ (r) =
1

4πr

(
δαβ h1(r/l)+

rα rβ

r2 h2(r/l)
)

Hαβ (r) = Oαβ (r)−Gαβ (r)

Oαβ (r) =
1

8πr

(
δαβ +

rα rβ

r2

)
,

(11)

where auxiliary functions are defined below:

h1(x) =−x−2 + e−x(1+ x−1 + x−2)

h2(x) = 3x−2 − e−x(1+3x−1 +3x−2)

(12)

We included in Eq. (10) the standard Oseen tensor O (also called
Stokeslet), which is just the Green’s function of the usual low
Reynolds number hydrodynamics27.

Since the field theoretic framework of this paper is valid only
on scales above the mesh size, we consider the above solutions,
in Eq. (11) in the range r ≫ l. For this example, we ignore the
frequency dispersion of polymer viscosity (i.e., assuming χω = χ

constant):

Gαβ (r)≃
l2

4πr3

(
3

rα rβ

r2 −δαβ

)
(13a)

Hαβ (r)≃ Oαβ (r) =
1

8πr

(
δαβ +

rα rβ

r2

)
(13b)

To better understand the origin and meaning of these two tensors,
we consider the dynamics of the field w = vp

⊥−vs
⊥, describing the

relative velocity of polymer and solvent. w obeys the following
equations:

ζ (1+χ)w−η
p
∇

2w = Fp
⊥−χFs

⊥ (14)

The solution of this equation is directly obtained by subtracting
Eqs. (9) from one another:

wαq =
1

ηp Gαβq

(
Fp

βq −χFs
βq

)
(15)

This means that Gαβq plays the role of Green’s function for Eq.
(14). In real space, Gαβ (r) (13a) falls off at large distances as
1/r3, significantly faster than the regular Stokeslet (or Oseen ten-
sor) in Eq. (13b); in Fourier space, of course, this corresponds to
the factor 1/(l−2 +q2). This is the phenomenon of hydrodynamic
screening. Accordingly, Eq. (14) is referred to as the screened
Stokes equation28. Thus, relative shear w of the solvent past poly-
mer is suppressed beyond the distance l of the order of mesh size.
Beyond this distance, polymer and solvent move largely together,
which is why at these distances Hαβ (r) ≃ Oαβ (r) (note that the
latter comment is valid only for transverse components).

We now return to the velocity fields (9) resulting from the ac-
tion of one dipole motor positioned in the origin. Plugging in the
expressions of forces (2-4), we arrive at the following expressions
for velocity fields driven by a single force dipole motor positioned
at the origin:

Type I activity

vp
⊥α

(r) =−a f κ(t)
ηp ∇γ (Hαβ +Gαβ )n̂β n̂γ

vs
⊥α

(r) =−a f κ(t)
ηp ∇γ Hαβ n̂β n̂γ

(16)
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l ≪ r

Types I,II,III vp
⊥ ∝

l2

r2 P2(cosθ)r̂(
vp
⊥

2
)

q
∝

ρ

(ql)2 (λ
2)q

Type I vs
⊥ ∝

l2

r2 P2(cosθ)r̂(
vs
⊥

2
)

q
∝

ρ

(ql)2 (λ
2)q

Type II l ≪ r ≪ l
√

χ l
√

χ ≪ r

vs
⊥ ∝ χ

l4

r4 (P1(cosθ)n̂−P2(cosθ)r̂) vs
⊥ ∝

l2

r2 P2(cosθ)r̂(
vs
⊥

2
)

q
∝ ρχ2(ql)2(λ 2)q

(
vs
⊥

2
)

q
∝

ρ

(ql)2 (λ
2)q

Type III l ≪ r ≪ l2χ/a l2χ/a ≪ r

vs
⊥ ∝ χ

l4

ar3 (3P1(cosθ)r̂− n̂) vs
⊥ ∝

l2

r2 P2(cosθ)r̂(
vs
⊥

2
)

q
∝ ρχ2 l2

a2 (ql)0(µ2)q
(

vs
⊥

2
)

q
∝

ρ

(ql)2 (λ
2)q

Table 1 Summary of leading behaviors for the velocity fields vs
⊥, vp

⊥ and their respective power spectra, as produced from the three source types in this
study. The functions

(
λ 2)

q ,
(
µ2)

q are defined in Eq. (28). The different regimes are delineated by characteristic distances from the source, which
correspond to the emergent screening lengths resulting from the friction and viscosity of the two fluids. The units of velocity in these expressions are

a f
ηpl2 . Numerical factors are dropped along with the κ(t) time dependence. Pn(x) denotes the nth Legendre polynomial.

Type II activity

vp
⊥α

(r) =−a f κ(t)
ηp ∇γ Hαβ n̂β n̂γ

vs
⊥α

(r) =−a f κ(t)
ηp ∇γ (Hαβ +χGαβ )n̂β n̂γ

(17)

Type III activity

vp
⊥α

(r) =
f κ(t)
ηp

(
Gαβ −a∇γ

(
Hαβ

)
n̂γ

)
n̂β

vs
⊥α

(r) =− f κ(t)
ηp

(
χGαβ +a∇γ

(
Hαβ +χGαβ

)
n̂γ

)
n̂β

(18)

The above equations are written for simplicity neglecting the fre-
quency dependence of polymer viscosity. In a more realistic case,
when χ is a function of frequency, then in the above solutions all
products κχ turn into convolutions

∫
κ(t)χ(t − τ)dτ. The spatial

dependence remains unchanged.
Our intent is to describe flows at distances larger than the mesh

size l, where our model is applicable. In the very far field, at
r → ∞, any one of the three activity types causes a similarly look-
ing flow. This is because H ∼ r−1, while tensor G, describing the
relative shear of solvent with respect to polymer, decays much
faster, G ∼ r−3. That means these relative motions are screened
out and irrelevant at sufficiently large distances, resulting in the
flow field, in which polymer and solvent move together as

vs
⊥,α (r) = vp

⊥,α (r) =−a f κ(t)
ηp ∇γOαβ (r)n̂β n̂γ

=
a f κ(t)

ηp
rα

8πr3

(
3cos2

θ −1
)
,

(19)

where cosθ = r̂ · n̂. The flow field in Eq. (19) is exactly what we
would expect from a force dipole a f in an incompressible fluid

medium. Although formula (19) is valid for any activity type, the
range of distances where it is applicable changes between differ-
ent types, as summarized in Table 1.

The flows generated by Type I activity belong to the long-range
regime (19) for all r ≫ l, since tensors G and H are multiplied
by the same coefficient, and G ∼ H when r ∼ l, and H decays
far slower (∼ r−1) than G does (∼ r−3). For Type II, the shear-
ing of polymer past solvent is enhanced by a factor of χ due
to the source being in the solvent (see Eq. (14)). Therefore, a
crossover in the resulting solvent flow takes place where H ∼ χG,
which is at a distance r ∼ l

√
χ. In contrast, Type III activity gen-

erates net transport of solvent and polymer past one another. In
the flow equations, the resulting transition in regimes takes place
when χG ∼ a∇H, thus the onset of long-range behavior occurs at
a larger distance: r ∼ χl2/a.

In all cases, the near-field flows of the polymer get screened
on lengthscales larger than l due to the friction between the flu-
ids, combined with the larger viscosity of the polymer relative
to the solvent, and therefore vp takes its long-range form for all
length-scales in this model. The different scaling regimes for the
behavior of the velocity fields are outlined in Table 1.

3.2.1 Extensile vs. contractile activity

It is worth asking the question of whether it makes a difference if
these force dipoles are contractile or extensile. The calculations
in this section are for extensile dipoles when f > 0. As mentioned
earlier, there is a simple mapping which relates the two cases: if
we take f → − f for our sources, then they become contractile.
All of our flows are linear in f , so they simply switch sign. This
can also be understood as a result of the reversibility of transverse
low-Reynolds number hydrodynamics. Switching the sign of the
source term in our equations is equivalent to running the system
backwards in time, which implies all velocities switch sign.
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3.3 Longitudinal flows

Due to the incompressibility of the system, the divergences of
vp, vs are both exactly described by δφ , the local changes in the
density of the polymer network. We denote the longitudinal com-
ponents of the velocity and polymer flow fields vs

∥, vp
∥ respectively.

Their dynamics are obtained by taking the divergence of Eq. (1).
After applying continuity and incompressibility, we obtain(

1− l2
χ∇

2
)

δ φ̇ =
(1−φ0)

2

ζ/φ0
∇

2
Π+F0

≈ D∇
2
δφ +F0 ,

(20)

where D =
K(1−φ0)

2

ζ/φ0
is the effective diffusion coefficient of the

polymer. We have dropped a factor of (1− φ0)
2 multiplying the

Laplacian on the left-hand-side for brevity, since φ0 is expected to
be of order 1/2 and thus should not affect the magnitude signifi-
cantly. F0 is the following source term:

F0 =− (1−φ0)
2

ζ/φ0
∇ · (Fp − φ0

1−φ0
Fs) (21)

The Laplacian acting on the time derivative makes this PDE
difficult to evaluate, but on length scales larger than l

√
χ it

reduces to a heat equation:

δ φ̇ = D∇
2
δφ +F0 , (22)

Using the fact that vs
∥,v

p
∥ are potential fields, we have (away from

the singularity at the source):

vs
∥ =

D
1−φ0

∇δφ

vp
∥ =− D

φ0
∇δφ

(23)

The solution to Eq. (22) can be found by convolution of the
source with the fundamental solution to the heat equation in 3D,
which in the absence of boundaries is known to be a Gaussian
function, whose width increases as the square root of time.

As before, we can ask what happens if we take the sources to
be contractile instead of extensile. In this case, performing the
transformation f → − f flips the sign of the source term F0, but
does not qualitatively change the dynamics significantly. How-
ever, the dynamics are not reversible since diffusion plays a role,
so we cannot simply map the contractile case to the time-reversed
extensile case as we did for the transverse flows.

4 Flows resulting from ensembles of active events
In this section, we consider the flows generated by many motors
of a single type. To this end, we will now consider an ensemble
of events uniformly distributed in space and time in a system of
infinite volume. We assume this ensemble to have a finite space-
time density ρ. i.e. ρ∆t∆v motors working simultaneously in a
volume element ∆v during a time interval ∆t. We imagine these
active sources to be randomly distributed in space and time. Thus,

106

104
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100

10-3 10-2 10-1

q-2

q2

Type I
Type II
Type III

Fig. 3 Power spectra of transverse solvent fluctuations for three activity
types (Type I, II and III), where velocity units are a f

ηpl2 , ρ = 1, a = l, and

χ = 103.

the resulting random velocity fields will be considered statistically
and we will calculate the moments of their distribution.

Each of the active sources turns on randomly at a time, and
stays active for a period of time as described by the earlier de-
fined function κ(t). We examine the orientation distribution of
these events for a possible spatial order. Such orientation order-
ing would be different for different types of activity. Specifically,
type III events are polar (since their two ends are different), and
therefore may exhibit polar order with a non-zero average direc-
tion vector: ⟨n̂⟩= M. By contrast, Type I and II motors are apolar,
for them n̂ and −n̂ are physically equivalent, such that ⟨n̂⟩ = 0.
Accordingly, for them, orientation order is characterized by the
nematic order parameter:

⟨n̂α n̂β ⟩= Qαβ +
1
3

δαβ , (24)

Since we assume the system to be translationally invariant, the
coarse-grained fields Qαβ and Mα can be considered constant
throughout the space.

In a spatially uniform system, average velocities must be zero,
as it is clear from Eqs. (9) and (20) for transverse and longi-
tudinal parts, respectively. Therefore, we will consider the power
spectra of transverse and longitudinal velocity fluctuations, which
are related to the second moments of the corresponding veloci-
ties distributions. As a reminder, the power spectrum of any field
s(r, t), which we denote as

(
s2)

qω
is defined by the relation

⟨sqω s∗q′ω ′⟩= ∆t ∆v
(

s2
)

qω
δqq′δωω ′ , (25)

where (s2)qω is also the Fourier transform of the real-space corre-
lation function ⟨s(r, t)s(0,0)⟩.

4.1 Power spectrum of transverse fluctuations
The flows resulting from a single source at the origin, as described
in Eqs. (16-18), are linear response relations. As such, the power
spectra resulting from a uniform distribution of sources can be
calculated in Fourier space by taking the squared magnitude of
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the response function and multiplying it by the power spectrum
of the source. In other words, for a general field sqω obeying the
following linear response relation with some response function R

and a stochastic source f

sqω = Rqω fqω (26)

we can obtain its power spectrum:(
s2
)

qω
=
∣∣∣R2

∣∣∣
qω

(
f 2
)

qω
(27)

In our case, the tensorial structure of the response functions will
only enter into the final power spectrum in the form of a trans-
verse projection operator Pαβq = δαβ − qα qβ

q2 acting on the source
term. This results in two possible spectra, depending on whether
the response function is linear in n̂ or has higher order depen-
dence.

(λ 2)q = ⟨q̂α q̂β n̂α n̂β Pγδ n̂γ n̂δ ⟩

= ⟨(q̂ · n̂)2 − (q̂ · n̂)4⟩(
µ

2
)

q
= ⟨n̂αPαβ n̂β ⟩

= 1−⟨(q̂ · n̂)2⟩

(28)

It is worth noting that in the case of an isotropic distribution of
n̂, we have ⟨(q̂ · n̂)2⟩ = 1/3, ⟨(q̂ · n̂)4⟩ = 1/5. The tensors H and G
can be rewritten by factoring out from them the transverse projec-
tion operator Pαβ . Then, Hαβq = hqPαβq and Gαβq = gqPαβq.
Using the definitions in Eqs. (10), we obtain an expression for
hq, gq:

gq =
1

1/l2 +q2

hq =
1

l2q2(1/l2 +q2)
.

(29)

We then write down the power spectra for the polymer and sol-
vent fluctuations resulting from all three source types.

Type I activity

(
vp
⊥

2
)

qω
=

∣∣∣∣a f κω

η
p
ω

∣∣∣∣2 ρq2(hq +gq)
2(λ 2)q

(
vs
⊥

2
)

qω
=

∣∣∣∣a f κω

η
p
ω

∣∣∣∣2 ρq2h2
q(λ

2)q

(30)

Type II activity

(
vp
⊥

2
)

qω
=

∣∣∣∣a f κω

η
p
ω

∣∣∣∣2 ρq2h2
q(λ

2)q

(
vs
⊥

2
)

qω
=

∣∣∣∣a f κω

η
p
ω

∣∣∣∣2 ρq2(hq +χω gq)
2(λ 2)q

(31)

Type III activity

(
vp
⊥

2
)

qω
=

∣∣∣∣ f κω

η
p
ω

∣∣∣∣2 ρ

[
g2

q(µ
2)q +a2q2h2

q(λ
2)q

]
(

vs
⊥

2
)

qω
=

∣∣∣∣ f κω

η
p
ω

∣∣∣∣2 ρ [χ2
ω g2

q(µ
2)q

+a2q2(hq +χω gq)
2(λ 2)q]

(32)

It is important to note that the mean transverse flow of polymer
and solvent is 0 in the isotropic case: upon taking an ensemble
average of the Eqs. (16-18) with ⟨n̂⟩= 0 and the second moment
defined as in (24), then the flows are all directly proportional to
Qαβ , and thus go to 0 in the isotropic limit. However, the sec-
ond moment of the velocity distribution remains nonzero since in
the isotropic case (λ 2)q, (µ

2)q remain nonzero. Importantly, the
same power spectrum scaling is shared for all three types of ac-
tivity in the solvent in the far field.

In the near field, the different scaling regimes for the power
spectra are delineated by the screening length scales, which con-
trolled the regimes for the Green’s functions in Section III. Analo-
gously to those results, we find that the power spectrum for poly-
mer fluctuations is the same for all types of activity, and scales
uniformly as q−2 for all length scales of interest, i.e., for r ≫ l. In
the far field, the solvent power spectrum follows the same scaling.
However, scaling laws for velocity fluctuations change and cross
over at the length scales l

√
χ and l2χ/a.

It is possible that two or all three types of activity may operate
in the same system. In such a case, it is important to consider
how their spectral signatures contribute to the total power spec-
trum of velocity fluctuations. If all types of activity are present
in comparable amounts and with comparable power, Type III ac-
tivity dominates the power spectrum of the solvent fluctuations
across all length scales, with a transition from q−2 to q0 behav-
ior at the characteristic spatial frequency q ∼

(
l2χ/a

)−1. If Type
III dipoles are absent, weak, or present in far smaller quantities
than Types I and II, then the power spectrum of the solvent is
dominated by Type II activity, with a transition from q−2 to q2 de-
pendence at around q∼

(
l
√

χ
)−1. The polymer power spectrum is

monotonous over the frequencies q of interest, scaling as q−2 with

the prefactor characterizing an overall power scale
(

a f κω

η
p
ω

)2
ρ.

The power spectra, being proportional to f 2, are unaffected by
whether we choose the sources to be contractile or extensile. This
remains true as long as the individual dipoles are non-interacting.

4.2 Power spectrum of longitudinal fluctuations

As in the case of longitudinal flows from a single source, the lon-
gitudinal power spectra of both vs

∥, vp
∥ will be determined from

the fluctuation spectrum of δφ , due to incompressibility:(
vp
∥

2
)

q
=

ω2

q2φ 2
0

(
δφ

2
)

qω

(
vs
∥

2
)

q
=

ω2

q2(1−φ0)2

(
δφ

2
)

qω

(33)
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Since Eq. (20) is linear, the spectrum of density fluctuations is
readily obtained:

(δφ
2)qω =

(F2
0 )qω

|iω(1+χω l2q2)−Dq2|2
(34)

The power spectra of the Type I and II sources are very similar to
one another, but since Type III sources pull apart the two fluids in
opposite directions, they have a more pronounced effect on the
longitudinal dynamics. Similarly to before, the angular distribu-
tion of sources determines the quantities

(
Γ2)

q and
(
Ω2)

q:(
Γ

2
)

q
= ⟨(q̂ · n̂)4⟩

(
Ω

2
)

q
= ⟨(q̂ · n̂)2⟩ .

(35)

Equipped with these expressions, we write the longitudinal power
spectra for all three source types:

Type I activity

(F2
0 )qω = |νω |2(1−φ0)

2q4
(

Γ
2
)

q
(36)

Type II activity

(F2
0 )qω = |νω |2q4

(
Γ

2
)

q
(37)

Type III activity

(F2
0 )qω =

|νω |2

a2 q2
(
(aq)2

(
Γ

2
)

q
+
(

Ω
2
)

q

)

≃ |νω |2

a2 q2
(

Ω
2
)

q
, q−1 ≫ a

(38)

Here, we have defined |ν |2ω = ρ

∣∣∣ a f κω

ζ

∣∣∣2 (1−φ0)
2φ 2

0 . It is clear that

the longitudinal spectrum resulting from Type I and II activity is
identical up to a factor of (1− φ0)

2. Evidently, those two types
of activity do not affect the density distribution in very contrast-
ing ways. However, the third type of activity is dominated by a
q2 dependence for all length scales of interest (since we assume
that a and l are both smaller than the coarse-graining scale of this
theory). This is simply due to the fact that these types of sources
shear the two fluids apart, and thus result in a much stronger
spectrum of density fluctuations at long range (small q), com-
pared to their counterparts.

Finally, just like in the transverse case, the longitudinal flow
power spectra are unaffected by the contractile or extensile na-
ture of the sources generating them.

5 Discussion

In this work, we have developed a classification scheme for the
active forces that could act on a two-fluid system such as chro-
matin. We enforce conservation of linear and angular momen-
tum, and know that the long-range effects of a force distribution
are dominated by its lowest order multipole. Thus, we find that
the dominant contribution to the flows comes from force dipoles.
These force dipoles can then be of three different types, depend-
ing on which fluid each end acts upon. We have shown the ef-
fects of these three types of vector activity acting in a chromatin-
nucleoplasm system: pairs of forces acting either both on the
polymer (Type I), or both on the solvent (Type II), or one on the
polymer and the other on the solvent (Type III). Their effects on
the two fluids can be read out through the following dynamical
fields: the solvent flow velocity field vs, the polymer flow velocity
field vp, and the polymer density field φ .

We find that the flows generated by single active dipoles, and
the power spectra resulting from collections of active events, do
not change significantly if we consider contractile instead of ex-
tensile dipoles. This remains true as long as one neglects hydro-
dynamic interactions between the active bodies generating the
force dipoles. As soon as such interactions are relevant, the dif-
ference between extensile and contractile dipoles becomes very
significant, as was emphasized in11.

We found that the friction between the two fluids in our model
leads to hydrodynamic screening in the flows resulting from ac-
tive sources. Two length scales are produced by this screening,
dictated by the mesh size of the polymer l =

√
η s

ζ
and the (gen-

erally frequency-dependent) ratio between the viscosities of poly-
mer and solvent, χω . The different types of activity generate dif-
ferent magnitudes of flows, which leads to screening occurring
on different scales. Specifically, Type III activity does not con-
serve momentum in any one fluid, since it pushes both fluids in
opposite directions, thus it results in the largest screening length
scale. Type I and II activity, in contrast, act only on one of the two
fluids and conserve momentum within that fluid. Thus, the flows
they generate in the solvent are screened within a smaller range
from the source. Type II activity, since it acts on the solvent di-
rectly and the solvent has lower viscosity than the polymer, leads
to a larger screening length than Type I activity, which is screened
on the scale of the polymer mesh size. On length scales above
these screening lengths, the polymer and solvent flow together in
a pattern identical to a Stokeslet.

It is important to estimate what these screening lengths are,
so that we may compare them to the known dimensions in the
case of chromatin and nucleoplasm in a cell nucleus. We expect
the mesh size, l, to range from around 30 nm to 100 nm29,30.
The size of individual molecular motors, a, is on the order of
10 nm (the size of bacterial RNA polymerase has been measured
to be 17 nm31, and eukaryotic RNA polymerase II is around the
same molecular weight2). In contrast, the ratio of viscosities χ is
harder to estimate. Bare nucleoplasm has been measured to have
a viscosity on the same order to that of water32,33, ηs ≃ 10−3 Pas
, whereas a wide range of chromatin viscosities have been mea-
sured, ηp ≈ 0.6− 3000 Pas34–39. Thus, experimental ranges for
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χ lie between 102 and 106. The two screening length scales we
expect above the mesh size are l

√
χ and l2χ/a. At the upper limit

of the estimates, these length scales become much larger than the
size of the nucleus, making them irrelevant for our system of in-
terest. The lower limits for their estimates are l

√
χ ≈ 300 nm and

l2χ/a ≈ 4 µm. For comparison, the size of the coherent domains
in chromatin was found to be around 3 µm10. Therefore, there is
a range of parameters consistent with existing experiments, which
makes the screening lengths be comparable to the length scales
which are relevant to chromatin’s active dynamics as measured
by DCS10.

We calculated the power spectra for both active transverse and
longitudinal fluctuations of the medium and found characteristic
changes in the scaling of the power spectrum. The length scales at
which these changes in scaling occur correspond to the screening
length scales l

√
χ and l2χ/a estimated above. Thus, from the spa-

tial frequency dependence of the power spectra, parameters de-
scribing the material and its active components may be measured.
For example, if the two length scales l2χ/a, l

√
χ were measured,

with the prior knowledge of the motor size a, both the mesh size
and the viscosity ratio of the chromatin-nucleoplasm system can
be determined. By measuring the overall magnitude of the power

spectrum itself, the quantity
(

a f
ηp

)2
ρ can be measured. Given a

and ηp (the latter is already measurable by looking at the screen-
ing length scales), this can be used to constrain the value of f 2ρ,
which gives an estimate of the force density being injected into
the system by active dipoles. Using values found in the literature,

we can derive an estimate of
(

a f
ηp

)2
ρ ≈ 1 µm3s−2 (for more de-

tails, see Appendix D).
Previous studies have focused on the power spectrum obtained

from fluorescently-labeled chromatin12. This was used to identify
the regimes of relevance for transverse and longitudinal fluctu-
ations respectively, as seen in the polymer fluctuation spectrum.
Here we have shown that additional information may be obtained
by measuring the power spectrum of solvent fluctuations. In
identifying the regimes in the power spectrum scaling (or lack
thereof), it is possible to rule out types of activity present in the
nucleoplasm (for example, if a q0 scaling is absent, then Type III
activity is either absent or present only in very small amounts), as
well as measure the screening lengths in the two-fluid solution.

Thus, our description of transverse fluctuations takes few ex-
perimentally measurable parameters as inputs: the mesh size of
chromatin, and the viscosities of chromatin and nucleoplasm. The
model predicts that each type of source produces a particular q-
dependence in the solvent velocity power spectrum, as outlined
in Table 1. The values of the mesh size and viscosities give the
length scales bounding different scaling regimes of q-dependence,
as shown in Figure 3. These predictions may be be verified by
future experiments. So far, the power spectrum of chromatin ve-
locity fluctuations has successfully been measured using DCS12.
A similar measurement for nucleoplasm dynamics, which would
enable comparison with our predictions, has not been performed
so far. Future experiments revealing the scaling exponents of the
nucleoplasmic velocity power spectra and screening length scales
delineating the crossovers may test our predictions.

6 Conclusions
We have extended a framework for the classification of active
forces in a polymer-solvent system as a model for chromatin and
nucleoplasm’s active fluctuations. These active sources are ap-
proximated as first order in a multipole expansion, and classified
based on the type of coupling they have to the two fluids, yield-
ing three different categories of forces, each of which we found
to generate a different scaling in power spectrum of solvent fluc-
tuations. We considered these sources as independent and im-
movable. Yet, in the cell these motors could work cooperatively,
hence the collective behavior of these sources is of much interest,
as the motors which are the sources of the flows should be ad-
vected by chromatin and nucleoplasm themselves. Therefore, the
consideration of the continuum dynamics of other fields, such as
the density and orientation of these sources, will inform on the
system’s dynamics, including self-organization and alignment of
the sources. In addition, consideration of the nuclear boundary
may provide further insights into the active behavior of the sys-
tem found in vivo.

Our model aims to study the genome’s dynamical properties, by
identifying and classifying the effects of different active sources
on chromatin. This expands our understanding of the genome
as a nonequilibrium system. It also contributes to our efforts
to elucidate the physics of nonequilibrium materials by enrich-
ing the types of possible activity. Our symmetry-based classifica-
tion scheme applies to any active system composed of two flu-
ids, and could systematically be extended to multicomponent sys-
tems as well. For example, this framework could be extended
to account for more components within the nucleoplasm which
may interact preferentially with different forms of activity, or be
extended to multiphase separated systems such as nucleoli40,41.
Thus, we have shown that because of symmetry and conservation
laws, there are few possible forms that active events can take in a
two-fluid system. Then, it is straightforward to study the effects
of these forces on the system of interest. In a complex biological
system such as chromatin, with a myriad of different components
interacting, this approach gives promising avenues for identifying
and studying the possible sources for observed nonequilibrium
effects.
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Appendix A Solvent viscosity

The equations of motion presented in12 are adequate for the
description of fluids, where the viscosity of the solvent is a lot
larger than that of the polymer (chromatin) but the resulting phe-
nomenology does not capture the effects of hydrodynamic screen-
ing.

Here, we show with a simple argument, why this is the case.
Consider the polymer to be a Newtonian fluid, such that ∇ ·σ =

ηp∇2vp. Then, consider the case, where the system is transla-
tionally symmetric in the x and y directions, so all dynamical pa-
rameters are only functions of z. Then, we have the following
equations of motion:

ζ (vp −vs) = η
p
∂

2
z vp − ẑ∂zΠ− ẑφ0∂zP

ζ (vs −vp) =−ẑ(1−φ0)∂zP .

(A39)

Now, consider a situation, where the half-space z < 0 is filled with
a polymer-solvent mixture, where the polymer is held fixed, so
vp = 0. In the half-space z > 0, we have φ = 0, and we impose a
shear flow of solvent at a velocity vs = ux̂.

The classical result for a colloidal solution in such an arrange-
ment with a solvent of viscosity ηs is a screening effect where the
solvent velocity goes vs ∝ x̂ez/l for z < 0, with l ∼

√
ηs

ζ φ0
where ηs

is the solvent viscosity42. Such a screening cannot result from
Eqs. (A39). Since vs −vp ∝ ẑ∂zP, no difference in flow is possible
along the shear direction x̂. This means that no friction along that
direction is permissible, and thus no screening.

This is remedied by the addition of a stress tensor for the sol-
vent, which in our case we take to be Newtonian. Thus, we add a
term ηs∇2vs to the second equation of motion. We then obtain

ζ (vp −vs) = η
p
∇

2vp −∇Π−φ0∇P

ζ (vs −vp) = η
s
∇

2vs − (1−φ0)∇P
(A40)

which, in the 1D shear situation presented above, allows a
solution vs ∝ x̂ez/lfor z < 0 with l =

√
ηsχ

ζ (1+χ)
, where χ is the ratio

of viscosities ηp/ηs.

Appendix B Higher multipole moments

Our consideration is based on force dipoles. One may ask if
higher order force multipoles can be relevant. In general, we can
perform a multipole expansion of our system’s force distribution.
For the nth order of the expansion, the responding flows will
decay like r−(n+1). By momentum conservation we expect the
monopole (n = 0) term to be 0, and then terms higher than the
dipole will be sub-dominant in the far field. Since the length
scales we are considering are larger than the motors themselves,
the far-field expansion applies here. Furthermore, the torque-free
condition means pairs of forces must act along a single line.
Therefore, the local building blocks of the force distribution must
be force dipoles of the three types outlined in the main text.

In the formal structure of our theory, it is worth noting that

there exists a (purely mathematical) correspondence between
scalar active events and a certain arrangement of dipolar sources.
First of all, notice that any shift in osmotic pressure in one of
the fluids is equivalent to an opposite shift in the second fluid’s
osmotic pressure, up to a scale factor. This is a consequence
of incompressibility: the chemical potential of this system is
an exchange chemical potential. Formally speaking, adding any
pressure ∇π in the polymer is equivalent to a pressure − 1−φ0

φ0
∇π

in the solvent.
Scalar activity was considered as precisely such a shift in

pressure, where Fp = −sκ(t)∇δ (r − R). If we consider an
isotropic distribution of either Types I or II active dipoles, such
that ⟨n̂n̂⟩= 1

3 I, we obtain:

⟨f⟩=−a f
3

κ(t)∇δ (r−R) . (B41)

Thus, an isotropic solution of Type I dipoles simply increases
(decreases) the osmotic pressure of polymer (solvent), and
vice-versa for Type II dipoles. However, it is clearly physically
unfeasible to place an infinite number of dipoles in a given
location to produce such a local shift in osmotic pressure, so we
must emphasize that this connection is purely formal.

Appendix C Transverse parts of singular flows

In solving for the transverse parts of the flows in the main text,
we used the notation Fp

⊥, Fs
⊥ to indicate that we were applying

the transverse projection operator to the sources in our equations
of motion. Since these sources take the form of δ -functions or
their gradients, the resulting objects may be ill-defined. Here, we
show a procedure for handling them in the case of our equations
of motion.

Our equations of motion are linear, and we consider them in an
unbounded space. Thus, we may solve them via Fourier transform
in space and time, which transforms the differential equations
into algebraic equations. The transverse projection operator in
Fourier space is

Pαβ = δαβ −
qα qβ

q2 (C42)

for a wavevector q, where q = |q|. In general, we may consider
a transverse velocity field v⊥ which obeys the following linear
response relation

v⊥αq = Rαβq fβq , (C43)

where all repeated indices except for q are summed over. Conve-
niently, in our case the response functions are diagonal in Fourier
space, so all the tensorial structure is given by P: Rαβq =

gqPαβq, which simplifies the linear response relation

v⊥αq = gqPαβq fβq . (C44)

We define the real space Green’s function of this system as fol-
lows:

vα (r) = Rαβ (r) fβ (r) . (C45)
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There are only two rank-2 tensors available to us, so we can write
R as their linear combination:

Rαβ (r) = AR(r)δαβ +BR(r)
rα rβ

r2 , (C46)

where AR , BR are some scalar functions of r = |r|. To find these
functions, we consider the following two invariant combinations:

Rαβ δαβ = 3AR +BR

Rαβ

rα rβ

r2 = AR + r2BR

(C47)

These scalar expressions can be further compared to their analogs
in Fourier space:

Rαβqδαβ = 2gq

Rαβq
rα rβ

r2 = gq (1− (q · r))
(C48)

It is then straightforward to take the inverse Fourier transform of
expressions (C48) and compare them to the expressions (C47),
and solve the resulting set of equations for AR , BR .

These results can be checked by an alternate solution method,
which is more reminiscent of traditional incompressible low-
Reynolds number hydrodynamics. In that case, we implicitly take
the transverse component of a velocity field by imposing incom-
pressibility through an auxiliary scalar field, the pressure. The
Stokes equations are:

η∇
2v+∇P = f

∇ ·v = 0
(C49)

and their solution is the well-known Oseen tensor27. We can
take a similar strategy by taking our original equation of motion,
foregoing the transverse projection operator on the force, and
simply imposing incompressibility by adding an auxiliary pres-
sure and a new equation: ∇ ·v = 0. Using this technique gives the
same results as the procedure outlined above.

Appendix D Estimates

Appendix D.1 RNA polymerase II as a source of activity

There are approximately 105 RNA polymerase II molecules in a
HeLa cell43, whose nucleus is approximately 10 µm across, lead-
ing to a density around 102 molecules/µm3. The force exerted
by RNA polymerase II is on the order of 10 pN, ranging up to 40
pN25,44, and their step size is half a base-pair, corresponding to
0.16 nm45. The rate constants controlling the stepping process
when it is not paused lie around 20− 100 s−1, meaning the step
time is at a maximum around 0.05 s per step.

If we take the force density of these motors Fm, and multiply it
by a step time τm ≈ 0.05 s as well as a step size dm = 0.016 nm,
we get a quantity with units of viscosity, which can be compared
to the viscosity of the polymer, which is still poorly constrained
in the case of chromatin but is likely in the range ηp ≈ 0.6−3000
Pas34–39.

In this case we have Fmτmdm ≈ 0.03 Pa s, and therefore

Fmτmdm ≪ ηp, so we don’t expect a single RNA polymerase II
event to generate a strain of order unity in chromatin.

To approximate the power spectrum magnitude in this case, if
we take the size of a molecular motor to be 10 nm, its density
102 molecules/µm3, and the viscosity of chromatin to be 1 Pas,

then we get
(

a f
ηp

)2
ρ ≃ 1µm3s−2.

Appendix D.2 Length scales of nonlocal rheology

Nonlocal effects are relevant for length scales r where (t/τ0) ≫
r4

b4 τ0, where τ0 is the Rouse relaxation time of a Kuhn length of
polymer, and b is that Kuhn length (as shown in26 Figure 3). In
our case, b ∼ 100 nm30, and τ0 = η sb3

T ∼ 10−4 s (estimated us-
ing viscosity of water and room temperature), where we measure
temperature in units of energy, setting kB = 1.
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