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Interplay between substrate rigidity and tissue fluidity
regulates cell monolayer spreading’

Michael F. Staddon,®” Michael P. Murrell,? and Shiladitya Banerjee®*

Coordinated and cooperative motion of cells is essential for embryonic development, tissue morpho-
genesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical
behaviors in collective cell motion is challenging due to the complex interplay between cell-cell in-
teractions, cell-matrix adhesions and active cell behaviors. To overcome this challenge, we develop
a predictive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue
mechanics and active cell properties on the movement of cell collectives. We apply the model to
the specific case of collective motion in cell aggregates as they spread into a two-dimensional cell
monolayer adherent to a soft elastic matrix. Consistent with recent experiments, we find that sub-
strate stiffness regulates the driving forces for the spreading of cellular monolayer, which can be
pressure-driven or crawling-based depending on substrate rigidity. On soft substrates, cell monolayer
spreading is driven by an active pressure due to the influx of cells coming from the aggregate, whereas
on stiff substrates, cell spreading is driven primarily by active crawling forces. Our model predicts
that cooperation of cell crawling and tissue pressure drives faster spreading, while the spreading rate
is sensitive to the mechanical properties of the tissue. We find that solid tissues spread faster on
stiff substrates, with spreading rate increasing with tissue tension. By contrast, the spreading of
fluid tissues is independent of substrate stiffness and is slower than solid tissues. We compare our
theoretical results with experimental results on traction force generation and spreading kinetics of
cell monolayers, and provide new predictions on the role of tissue fluidity and substrate rigidity on
collective cell motion.

Tissue spreading is a fundamental biological process underlying
collective cell movement during development™™, cancer inva-
sion®8, and wound healing®12. The collective motion of cells
during tissue spreading is regulated by the interplay between cell-
cell and cell-matrix adhesions™15 as well as by active processes
such as lamellipodial cell crawling and actomyosin contractility
that control the dynamic mechanical properties of individual cells
and tissues 617, Many of the active mechanical components of
cells are mechanosensitive and interact with each other via com-
plex feedback networks 822 making it experimentally challeng-
ing to decipher the key regulators of cellular mechanical behav-
jors23124)

A common model system for studying the mechanics of col-
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lective cell migration is the spreading of a three-dimensional cell
aggregate over a soft elastic substrate2530, When placed onto
an adhesive substrate, the aggregate spreads out in a process
similar to the wetting of liquid droplets, in which differences in
adhesion between cell-cell and cell-substrate contacts drives the
spreading of the fluid aggregate. However, the spread-
ing dynamics of a living tissue is more complex than the wet-
ting of passive liquid droplets. Recent work has demonstrated the
importance of cellular mechanics and intercellular adhesions in
regulating the spreading dynamics of tissues, whose mechanical
properties can range from fluids to glassy jammed solidsT2133+35]
Both tissue viscosity and cell-cell adhesion strengths are regulated
by E-cadherins20/36137, Upon reduction in E-cadherin expression,
the spreading rate of the cell aggregate is elevated?”, while in-
creasing E-cadherin expression®® or substrate stiffness can induce
dewetting of already spread aggregates=5.

Active, non-equilibrium behavior of cells is another key regu-
lator of collective cell spreading not accounted for in the wetting
model and remains poorly understood. However, recent exper-
iments have begun to uncover how cellular aggregates adapt to
the mechanics of the extracellular matrix in order to drive ro-
bust collective motion??. Depending on matrix rigidity, cells may
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polarize, generating active traction stresses to crawl outwards.
The stiffness of the substrate is important not only for provid-
ing passive friction to cell motion, but can also induce cell polar-
ization?#3%, A recent study showed that cellular aggregates can
tune their mechanics and migratory behaviors depending on ma-
trix rigidity??. On stiff substrates, traction stresses are elevated
at the tissue boundary, driving rapid outward motion of cells. By
contrast, on soft substrates, traction stresses are attenuated and
cell spreading in driven by an outward active pressure.

In this paper, we develop a cell-based active vertex model
for cellular monolayers to investigate the role of substrate stiff-
ness and tissue mechanics in monolayer spreading. A variety of
theoretical models and methods have been developed in recent
years to describe the collective motility of cells, including contin-
uum models#%#5 particle-based models4®47 lattice-based mod-
els4849 a5 well as vertex-based®%>2 and voronoi models®3.
While continuum models of tissue spreading have been success-
ful in predicting traction force organization*2 wave-like dynam-
icsl and wetting transitions2>28144 these models assume fixed
constitutive relations for tissue materials properties, and thus do
not account for dynamic changes in tissue mechanical properties
due to single-cell level active mechanical behaviors. On the other
hand, discrete cell-based models for tissues have not yet been im-
plemented to study how cellular aggregates adapt to substrate
mechanical properties in order to drive collective cell motion. We
bridge this gap by developing an active vertex model for cell ag-
gregate spreading that allow us to study the interplay between tis-
sue mechanics, substrate mechanics, as well as the role of active
single-cell behaviors in the collective motility of cell monolayers.

We model the collective motion of cells in a three-dimensional
aggregate as they spread into a two-dimensional monolayer ad-
herent to a flat substrate (Fig.[Ih). The aggregate acts as a reser-
voir of cells, feeding cells into the spreading monolayer by a pro-
cess called permeation?® (Fig. ). By developing an active ver-
tex model for the monolayer, we study how changes in substrate
stiffness affects the speed and the modes of monolayer spreading.
Our model successfully captures the experimental behaviour ini-
tially reported by Ref.22. We find that monolayer spreading on
soft substrates is driven by an active pressure due to the influx
of cells coming from the aggregate. By contrast, on stiff sub-
strates, monolayer spreading is driven by active crawling of cells
that generate elevated traction forces at the monolayer boundary.
To conceptually understand the role of substrate stiffness in col-
lective cell motion, we develop a simple mechanical model of the
monolayer as a viscoelastic material that spreads by active crawl-
ing as well as due to growth in the preferred area of the material.
This model captures the key results from the vertex model, and
predicts that tissue stiffness governs the long term spreading rate
of the tissue. To test this prediction, we vary both monolayer
tension and substrate stiffness in the vertex model, and find that
tissues with increased tension display increased sensitivity to sub-
strate stiffness. Moreover, we find that solid-like tissues spread
faster than fluid-like tissues due to a reduced bulk modulus of the
tissue overall. These results provide a theoretical understanding
for the role of both tissue fluidity and substrate rigidity, and their
interplay, on the spreading dynamics of multicellular aggregates.
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Fig. 1 Mechanical forces driving the spreading of a multicellular aggre-
gate. (a) Schematic showing the side view of an aggregate spreading as
a monolayer over a soft adhesive substrate. Spreading is driven by the in-
flux of cells coming from the aggregate into the center of the monolayer,
as well as by active cell crawling that generate traction stresses on the
substrate. (b) Schematic showing the top view of the spreading mono-
layer that is modeled using an active vertex model. (c) Schematic for an
active vertex model of a spreading monolayer. Blue arrows indicate the
orientation of cell polarity, which indicates the direction of cell crawling.
Cell edges are under tension due to actomyosin contractility.

1 Active vertex model for collective cell

spreading

To describe the dynamics of cell monolayer spreading, we
model the cell monolayer underneath the aggregate as a two-
dimensional tissue using the framework of the vertex model>4+>7,
The aggregate generates a continuous flux of cells into the mono-
layer uniformly within a central region that marks the contact
area of the aggregate (Fig[Th). Cells in the monolayer are able to
actively crawl out into the free space during spreading, while the
cell influx from the aggregate, modeled by stochastic insertion of
new cells, increases the number of cells in the monolayer over
time (Fig[Th-b). Each cell in the monolayer is modeled by a two-
dimensional polygon, with edges representing the cell-cell junc-
tions and the vertices representing tri-cellular junctions (Fig[Ip-
¢). The mechanical energy E of the monolayer is given by

1 1
Emech = ) 5 K(Aa —A0)* + 3, 5T (Pa = Po)* | ¢b)
o o

where o indicates the cell number, and A, and P, are the area
and the perimeter of the " cell, respectively. The first term rep-
resents the area elasticity of the cell, describing in-plane com-
pressibility with elastic modulus K and preferred area Ay. The
second term represents a balance between cytoskeletal contrac-
tility, interfacial tension, and cell-cell adhesion, where T is the
contractility of the cell and B, is the preferred perimeter defined
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as Py = —y/2I, with y the interfacial tension on cell edges=°.
Each cell contributes a resultant tension on each edge equal to
I'(Py — Py). The mechanical force acting on each vertex is given
by the energy gradient

F, = Ofmean @

where i indicates the vertex number, and x; is the vertex posi-
3
tion. In simulations, we non-dimensionalize force scales by KA;

1 ~
and length scales by Aj so that our non-dimensional energy E
becomes

- 1 1~
E:;E(“a*1)2+;ir(Pa*P0)27 (3)

where ag = Aq /Ao, pa = Pa/Ay', po = Py/v/Ao, and T' = T'/KA.

To model active cell crawling, each cell is assigned a unit po-
larity vector p, that defines the direction of cell crawling or
self-propulsion. Self-propulsion models for cell motility have
been extensively studied in the active matter literature, including
in particle-based models=8€0, active gel models#1#42l6ll vertex
models>152102163] and self-propelled voronoi models for cell lay-
ers3 with various different rules for cell polarity dynamics in-
cluding random rotation®32, alignment with the polarity of cell
neighbors212215263l - ce]] migration direction®128100 or the total
force acting on each cell®l, Here we assume that cells on the
boundary attempt to crawl into free space, setting the polarity
vector to be a unit vector perpendicular to their free edge point-
ing outwards. Cells within the monolayer then align their polarity
vector with their neighbours

dpa P Po
dz—k,,Z(B—> @

F\"p N

where f labels the neighbouring cells of the cell ¢, &, is the po-
larity alignment rate, nq and ng are the number of neighbors for
cells @ and B respectively. The resultant effect is a diffusive re-
laxation of polarity from the edge to the center of the monolayer,
with cells near the center of the monolayer crawling outwards
but slower, consistent with experimental observations of cell ve-
locity distribution in spreading aggregates2?., We expect using a
model where polarity aligns with cell velocity®!l would give simi-
lar results, as motion is mostly radially outwards due to outward
crawling and pressure from the center, and so polarity and motion
are correlated. Assuming over-damped motion, force balance at
cell vertices is then given by

dx;
NCTZZ = wvo(pa)i +F; (5)

where p is the friction coefficient, vy is the cell crawling speed,
and (pq); is the average polarity vector for cells containing vertex
i. The traction force generated on the substrate is then given by
1(§E —vo(pa)i) = Fi.

For computational efficiency, we do not explicitly model the
substrate but assume an effective model that the cell-substrate
friction u increases monotonically with substrate elastic modu-
lus E, such that u = pyyE, where p is a constant. This result

follows from our previous workd122 where we had shown that

Soft Matter

cell-substrate friction increases with substrate stiffness by explic-
itly modeling the substrate as an elastic network adherent to a
migrating cell collective. Furthermore, the linear relationship be-
tween friction and substrate stiffness also follows from a kinetic
model of focal adhesion complexes®, which predicts that cell-
substrate adhesive interactions provide a frictional drag that in-
creases with the elastic modulus of the substrate. At high elastic
modulus, the friction is likely to saturate. Cell polarity and mi-
gration speeds are also substrate stiffness-dependent. Experimen-
tally it was observed that actin stress fiber organization and direc-
tionality of cell movement is substrate stiffness dependent, such
that cell polarization increases monotonically with substrate elas-
tic modulus2322165-67 While single-cell migration speeds show
biphasic stiffness dependence©8.62
gration increases monotonically with substrate stiffness”2. Based
on these observations, we assume for simplicity that cell crawling
speed in a tissue increases linearly with substrate elastic modu-
lus, vo = coE, where ¢( is a proportionality constant, although
typically the crawl speed would saturate at high rigidity.

The influx of cells from the aggregate into the monolayer is
modelled by stochastically inserting new cells into the the 2D
monolayer, within a region that the aggregate occupies above
the monolayer?? (Fig. [1). When a new cell is added, an exist-
ing cell within the aggregate area is randomly selected and subdi-
vided into two, with the new cell initialized to have zero polarity.
The cell influx, or rate of cell additions, increases with monolayer
area, as the aggregate has more contact area to add cells in, until
the monolayer spreads outside of the aggregate area. This results
in a time-dependent cell flux J(t) = Gmin(A(¢),Aag)/a*, where G
is the maximum flux, A(r) is the area of the monolayer at time
t, Agg is the contact area of the aggregate at 90° contact angle,
and a* is the area of a single cell at the mechanical equilibrium.

, the speed of collective cell mi-

Thus, without cell crawling, the monolayer area will grow expo-
nentially until it is larger than the aggregate area, after which it
will grow linearly. Without the addition of cells from the aggre-
gate, the monolayer would exhibit Kelvin-Voigt type viscoelastic-
ity, in which the aggregate would increase in area up to a maxi-
mum value. However, at longer timescales cells in the monolayer
may adapt their shape to stretch and get thinner, or divide, giving
a more fluid like behaviour of the tissue which is often used to
model monolayers.

The model is implemented in Surface Evolver”d and solved
numerically using the forward Euler method, with a timestep
dt = 0.05 min. At each time step, we update the vertex position
and then perform 7; transitions, or neighbour swaps, for edges
that become lower than a length threshold L* = 0.05. To imple-
ment cell influx from the aggregate we calculate the rate of cell
additions, J(t) = Gmin(A(t),Aag)/a*, where a* is the mean area of
a single cell at equilibrium. Then, with probability Jdr, a random
cell from the monolayer within the aggregate area is subdivided
into two cells by splitting the cell with a new edge. The tissue me-
chanical parameters are taken from a previous study on MDCK
monolayers’l, while the cell flux rate and crawling speeds are
chosen to reproduce experimentally measured spreading rates of
the monolayer? (Table. To simulate monolayer spreading, we
begin with a monolayer of half the maximum contact area of the
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aggregate, located at the center of the aggregate and beginning
from a state of mechanical equilibrium. The aggregate remains
fixed in position as the monolayer spreads out, injecting cells into
the monolayer over a maximum area A, 0. We then simulate cell
spreading including cell flux and crawling for 400 minutes, track-
ing the monolayer area and traction forces at each cell vertex of
the tissue.

Parameter Symbol Value
Contractility r 0.166

Shape index Po 1.5

Crawl speed coefficient co=w/E 1

Friction coefficient o =H/E 0.1 min
Polarity alignment rate kp 1 min
Aggregate flux rate G 22.5 %/ hour
Aggregate area Aag 100

Table 1 List of default parameter values in the vertex model.

2 Substrate rigidity regulates the driving
forces for collective spreading

To understand how substrate rigidity regulates collective cell
spreading, we simulated the active vertex model of a spread-
ing monolayer at different values of substrate stiffness, E. Our
simulations reveal two distinct mechanisms of cell monolayer
spreading which are dependent on the substrate stiffness. On soft
substrates, cell spreading is driven by an active pressure arising
from the influx of cells from the aggregate into the center of the
monolayer (Fig. [2h,b, Movie 1-2). As cells are added into the
monolayer, pressure builds up from the newly incorporated com-
pressed cells, producing radially outward traction stresses local-
ized around the center of the monolayer that increase in magni-
tude over time (Fig. [2b, Movie 2). By contrast, monolayer spread-
ing on stiff substrates is driven primarily by cell crawling. This
results in faster spreading rates on stiff substrates as compared
to soft (Fig. , Movie 3), and radially inward traction stresses
accumulate on the border of the monolayer (Fig. [2d, Movie
4). While peripherally localized traction stresses have been ob-
served in experiments of spreading tissues before283342 and re-
produced in theoretical models?841H3] pressure-driven traction
stresses at the center of the tissue have been recently reported in
experiments on cell aggregates spreading on soft substrates2?.,
The dynamics of monolayer area depend on the mechanism
driving monolayer spreading. When cell monolayer spreading is
driven by the influx of cells from the aggregate, the monolayer
area initially increases exponentially, as the cell influx rate is pro-
portional to the monolayer area (Fig. [3R). Once the monolayer
spread area is larger than the contact area of the aggregate, cells
are added at a constant rate, resulting in a constant rate of mono-
layer area increase. On a soft substrate, the radial traction stress
(0,) builds up to positive values due to the accumulation of com-
pressed cells near the center of the monolayer, before plateauing
(Fig. ). As substrate stiffness increases, there is a transition to
crawling-driven spreading resulting in negative (inward) traction
stresses. At high substrate stiffness, the monolayer area initially

4| Journal Name, [year], [vol.], 1
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< 0/Omax >

O  Traction stress map ©

=200 min

Traction stress map
< 0/Omax >

Fig. 2 Cell spreading dynamics and collective migration modes are sub-
strate rigidity-dependent. (a) Cell outlines, and (b) traction stress maps
of the cell monolayer during aggregate spreading on a soft gel (E =35,
dimensionless units), at t =50, 200, and 350 min. The pink shaded re-
gion indicates the contact area of the aggregate above the monolayer, at
90° contact angle. See Movies 1 and 2 for a time-lapse video. (c) Cell
outlines, and (d) traction stress maps of cell monolayer spreading on a
stiff gel (E =30), at r =50, 200, and 350 min. See Movies 3 and 4 for a
time-lapse video. Scale bar represents 5 units of length.

increases rapidly due to border crawling forces until the cells are
strained, creating large inward traction stresses (Fig. [3h). The
monolayer area then increases linearly in time, at a faster rate
than on soft gels, with a gradual increase in the magnitude of
traction stresses (Fig. [3p).

Next, we investigate how the speed of cell crawling and the rate
of cell additions control the spreading rate and the pattern of trac-
tion forces generated by the cell monolayer. At high cell addition
rate, cell motion is pressure-driven (outward traction stresses),
whereas at high crawling speeds, cell motion is crawling-driven
(inward traction stresses). The interplay between pressure-driven
and crawling-driven motion is regulated by substrate stiffness, as
discussed previously (Fig. [Bp-b). At a fixed (intermediate) value
of substrate stiffness, we find that the area growth rate, measured
by the rate of area increase as the monolayer doubles in size, in-
creases with crawl speed, but is limited by the rate of cell addition
(Fig. Bk). When the crawling speed is high but the cell addition
rate is low, the monolayer is unable to effectively spread. When
we compute the traction forces, we find large outward tractions
when the cell addition rate is high (compared to cell crawling
speeds), indicating pressure-driven spreading. In the limit where
cells are unable to crawl but the cell addition rate is high, spread-
ing rates still remain high, with crawling forces providing a small
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Fig. 3 Cell monolayer spreading may be pressure-driven or crawling-
based depending on the rigidity of the substrate. (a) Monolayer area, and
(b) total radial traction stress over time for different values of substrate
stiffness. (c) Heatmap of monolayer area growth rate, (d) and total radial
traction stress for varying cell crawl speed and cell addition rate at an
intermediate value of substrate stiffness (E = 15).

boost to the overall spreading rate while reducing the magnitude
of traction stresses (Fig. [3d). By contrast, large inward traction
forces are generated as cells stretch during spreading driven pri-
marily by crawling forces (Fig. ). In this case, spreading rates
are limited by the lower rate of stress relaxation in the form of
newly added cells.

3 Continuum model for collective cell
spreading reveals the relative roles of sub-
strate rigidity and tissue mechanics

While the vertex model simulations describe the role of substrate
rigidity and cell influx on traction force generation and mono-
layer spreading rate, it does not immediately reveal an intuitive
understanding of the relative roles of substrate rigidity and tis-
sue mechanics on cell monolayer spreading. To this end, we de-
velop a continuum mean-field model for the spreading of an elas-
tic monolayer, neglecting spatial variations in dynamics for sim-
plicity. We consider a monolayer of N(r) cells of area a;(¢) each,
where 1 <i < N(¢). Each cell is self-propelled along their polarity
vector at a speed v, and K is the area compressibility modulus or
a 2D bulk modulus of each cell. Total mechanical energy of the
cells in the monolayer is given by

N(1)
Enech = Z E(ai(t) - aO)z (6)

i=1
where qy is the target area of each cell. During migration, me-
chanical force in each cell is balanced by active and dissipative
forces. In the linear response regime, the rate of energy dissi-
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pated by monolayer spreading is given by

N(1)

7=Y 55, @)

i=1

where u is the friction between the cell and the substrate, and &
is the average height of the cell monolayer. The rate of work done
by active forces is given by

N(r)

Wo=Y fedicos(6,)/h, €))]
i=1

where f. = uvy is the crawling force on each cell, 6; is the an-
gle between cell polarity and motion for the " cell. To derive
the equation governing changes in cell area, we use the Onsager’s
variational principleZ?174 adapted for active systemsZ2"7Z which
states that irreversible processes follow the dynamic path that
minimizes the Rayleighian %, given by the sum of the rate of en-
ergy dissipated (2), rate of change in free energy of the system
(Emecn) and the rate of work done by active forces (W,):

KX = @+Emech — VVa . 9@

The equation of motion for cell area follows from minimizing #
with respect to d;:

a; = phvgcos (6;) — K(a; — ag)h* . (10)

Now, we define A(¢) = Z?’:(tl) a;(t) as the total spread area of the
monolayer, and Ay(r) = agN(¢) as the total target area. Net self-
propulsion speed is given by v Zf/:(ll) cos (6;) = voN (1) = voAy(t)/ag,
where we made a simple mean-field assumption that cells are
polarized in the direction of spreading, 6; ~ 0, thereby neglect-
ing spatial variations in cell polarity in the spreading monolayer.
Defining Vi = hvg/ag, we get the following simple equation de-
scribing the dynamics of the spread area of the monolayer:

A =VoAo(r) — K(A(1) — Ao (1)) an

where k = Kh?/u is the stress relaxation rate of the cell mono-
layer. Both Vj and u are functions of the substrate stiffness
E. In this mean-field model, traction stress is simply given by
—K(A—Ap). The above equation is supplemented by the equa-
tion for cell insertion in the monolayer at a rate g:

Ag=2gAo . (12)

The time-dependent solution for monolayer area is given by:

Vo+k\ i Vo+k
A(t) =A(0 — 8t 13
a0 (1= 55 )] o
which can be approximated at long times as A(¢) ~ A(0)e$" (Vp +

k)/(g+k). Since both cell crawling speed vy and friction u in-
creases linearly with substrate stiffness E, we expect Vj o« E and
ko< 1/E. Therefore, on soft substrates k > Vy, A(t) =~ A(0)e*', such
that monolayer spreading is solely governed by cell addition rate
g and is independent of tissue stiffness. On stiff substrates and for
stiff tissues, Vp > k, such that the spread area A(r) =~ A(0)e8'Vy/g
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Fig. 4 Predictions of the continuum model for spreading monolayers.
(a) Model results for the dynamics of monolayer area, and (b) total
radial traction stress over time for different values of substrate stiffness.
(c) Monolayer area over time for different values of tissue area elastic
modulus. (d) Heatmap showing the long-time spreading rates of the
aggregate for varying substrate stiffness and tissue elastic modulus.

is regulated by cell crawling speed independent of tissue mechan-
ical properties. By contrast, soft tissues spread to a larger area on
stiff substrates as compared to stiff tissues.

If instead, the monolayer reference area expands at a constant
rate due to a constant flux of cells from the aggregate, as reported
experimentally2?, we have

Ag = gA(0) . 14
This results in the following time-dependent solution for the
monolayer area:

A(’):A(O)(Vo+k)<kk_—2g(lfefk’)+ ! eik’+§t). (15)

Vo+k k

Under this model, we may approximate the monolayer area at
long time as A(r) = A(O)Mz. Thus, at long times the mono-
layer spread rate increases with the growth rate or crawl speed,
but decreases with tissue stiffness. Setting the cell crawl speed
and friction to increase with substrate stiffness, Vjy o< E and k
1/E, and fitting the remaining parameters to vertex model sim-
ulations, we are able to recapitulate the trends in spread rate
and traction stress as substrate stiffness is varied (Fig. -b). On
soft substrates, spreading is driven by pressure from cell influx.
Growth of newly added cells causes an increases in the rest area
of the monolayer, A, resulting in an exponential growth in mono-
layer area and positive traction stress. As substrate stiffness in-
creases, cell crawling dominates tissue spreading with monolayer
area increasing linearly, outpacing the influx of cells and gener-
ating negative traction stresses. At long times, we observe a con-
stant rate of area increase that increases with substrate stiffness,
consistent with experimental data2,

6| Journal Name, [year], [vol.], 1

4 Tissue fluidity impedes collective cell
spreading independent of substrate rigidity

The continuum model for monolayer spreading predicts a simple
relationship between spreading rate, substrate rigidity and tissue
elasticity. This is evident from Eq. (I5)), which leads to the rela-
tion A(t) ~ A(0)g(1+Vp/k)t as t > k~'. As the tissue stress relax-
ation rate k (or equivalently tissue bulk modulus K) is reduced
or if substrate rigidity E is increased, the model predicts a faster
rate of monolayer spreading (Fig. [d). However, this spreading
rate also depends on the speed of cell crawling, which in turn is
regulated by substrate rigidity. If the crawling speeds are low, as
on soft substrates, then the monolayer spreading is driven by cell
influx and spreading rate is not affected by the tissue elasticity
(Fig. E-kl). By contrast, if the tissue has a higher relaxation rate
k, then the spreading rate is less sensitive to tissue and substrate
mechanical properties, as the effect of increase in crawl speed is
counteracted by the higher tissue bulk modulus (Fig. [4).

To validate the predictions of our continuum model, we sought
to investigate how the mechanical properties of the cells influence
aggregate spreading, on soft to stiff substrates, using our active
vertex model. We vary the target shape index of the cells, py, to
control tissue material properties. When py is low, cells are under
high tension and the tissue behaves like a jammed solid. When
po is above a critical value, py > 3.81 (in the absence of activ-
ity), cells are under no tension and the tissue is in a fluid state,
in which the tissue has zero shear modulus”®. In this state, the
cells are able to flow around each other and rearrange with no en-
ergy cost. We note that the critical target shape index for rigidity
transition depends on the procedure used to generate polygonal
tiling. In recent workZ28% it has been shown that the critical p
can be larger than 3.81 in the presence of vertices with coordina-
tion number greater than or equal to four and with cells having
five or less neighbors. When we vary both the target shape index
and the substrate stiffness, we find that on soft substrates, chang-
ing po has little impact on monolayer spreading rate (Fig. ).
On soft substrates, tissue spreading is pressure-driven (Fig. ),
with the aggregate adding the same area of cells per unit time.
Thus monolayer spreading can only be slowed down by modu-
lating the friction with the substrate. Changing the fluidity or
tension of the tissue has little effect on the isotropic bulk pressure
driving monolayer spreading. However, when spreading occurs
on stiff substrates, we find that cells with a lower pg, and thus
higher tension, spread faster, with the monolayer spreading twice
as fast at pp = 0.5 compared to py = 4.5 (Fig. ). Moreover,
the mechanosensitivity of monolayer spreading reduces as py in-
creases. At high pg, changes in substrate stiffness have less effect
on the rate of spreading than for low py.

Why do fluid tissues spread slower than solid tissues (Fig. [5t)?
While it is expected that cells in a fluidized tissue move faster as
they can rearrange more easily 2, monolayer spreading is driven
by a radially outward stress arising from active cell crawling or
isotropic pressure from cell influx, where tissue shear modulus
does not play a role. Fluid tissues have a zero shear modu-
lus”8, but can still maintain a finite bulk modulus that can resist
isotropic expansion of the tissue. To determine the relationship
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between tissue fluidity and bulk modulus, we computed cell area
strain during spreading for a range of py values. We find that
cells are much more strained at low pg, with cells area increasing
by around 60% for py = 0.5, compared to cells area maintained
at po = 4.5 (Fig.[5H). When we compute the energy cost per unit
area for such bulk deformations in the vertex model with perfectly
hexagonal cells, cells with a lower py require much less energy for
deformation than cells with a higher pg, despite low py cells being
under higher tension (Fig. [Be). These data suggest a counterin-
tuitive result that tissue bulk modulus increases with increasing
po or increasing tissue fluidity. Thus, on stiff gels where we have
high forces generated by active cell crawling, decreasing tissue
fluidity also reduces the bulk modulus, allows for a faster rate of
monolayer spreading.

To quantify the relationship between tissue bulk modulus and
target shape index, we calculate the bulk modulus K as the sec-
ond derivative of energy density with respect to the area strain ¢,
K =(1/a*)9*E/d€*, where a* is the area of the cell at equilibrium,
and E is given by Eq. ([B). We find that the bulk modulus increases
monotonically with pg for pg < phex = 3.722, where pjey is the
perimeter of a hexagon of unit area (Fig. 5f). Interestingly, there
is a discontinuity in bulk modulus for py > ppey, beyond which
the bulk modulus stays constant. To gain a mechanistic under-
standing of these results, we note that the cell area and perimeter
can be written as a = a*(1+¢) and p = p*(1+¢)'/2. As previously
shown by Staple et alse, taking the second derivative of Eech

with respect to € and evaluating the energy at € = 0 one obtains
K =a"+Tp*py/da*. For py < ppex, a* < po and p* o< a*'/?. The
second term in K thus scales like a*'/2, resulting in an increase in
bulk modulus with increasing cell area, which in turn increases
with py (Fig. . Since low pg cells are under higher tension
they are also smaller in size, resulting in a lower bulk modulus
(Fig. 5f). Having a low pyg, high tension cell is much like how two
springs in series are softer than a single spring: while the energy
cost per unit area is similar, the deformation is spread between
more cells and so we have a lower overall energy cost. However,
for pg > ppex, cells adapt their perimeters to the target perime-
ter. As a result, the perimeter term doesn’t contribute to energy
in Eq. (@), resulting in a discontinuity in the bulk modulus. Taken
together, our theory and simulations reveal the interdependence
between cell shape, tissue elasticity and substrate rigidity in the
spreading of cell monolayers on compliant substrates.

5 Discussion

In this study, we investigated how tissue mechanics and substrate
stiffness, and their interplay, regulate the dynamics of a spreading
cellular aggregate, using a combination of computational simula-
tions and mathematical modeling. In particular, we developed an
active vertex model to simulate the spreading of a cellular mono-
layer emanating from a three-dimensional aggregate, which is un-
dergoing active growth as well as driven forward by cell crawl-
ing. Our simulations reveal two distinct modes of cell mono-
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layer spreading depending on substrate rigidity. On soft sub-
strates, cell monolayer spreading is pressure-driven, exhibiting
radially outward traction stresses that originate from the influx
of cells into the monolayer from the aggregate. By contrast, on
stiff substrates, cell crawling forces drive monolayer expansion,
generating inward traction forces localized to the periphery of
the cell monolayer. Despite the different mechanisms for spread-
ing, our simulation reveals comparable spreading rates on sub-
strates of varying rigidity, consistent with experimental data2?,
The rigidity-dependent transition from pressure-based to traction-
based spreading arises in the model because of the cell-substrate
coupling that increases cell polarisation, crawl speed, and traction
forces with increased substrate rigidity23/22/62167

The modes of collective cell motion and the rate of spread-
ing is not only dependent on substrate rigidity but can also be
tuned by varying the rate of cell influx from the aggregate and
the speed of cell crawling. When the cell crawling speed is high
relative to the cell influx rate, crawling-driven spreading domi-
nates, with inward traction forces localized to the tissue periph-
ery. By contrast, when crawling speeds are lower compared to
cell influx rate, pressure-driven spreading drives monolayer ex-
pansion with outward traction forces distributed throughout the
monolayer. However, we find that the cell addition rate is the
main regulator of spreading rates, with crawling speeds only able
to increase spread rates by 50%, suggesting that the influx of new
cells is the limiting factor for spreading.

To further understand the cellular mechanisms controlling
spreading rates, we develop a simple continuum model of the
spreading tissue as an elastic medium with active growth and cell
crawling. We identify the tissue bulk modulus as another impor-
tant mechanical property governing the dynamics of spreading.
When the cells are very stiff with a high bulk elastic modulus, our
model predicts little variation of spread rates with a change in
substrate stiffness or crawl speed, with the rate of cell addition
governing the spreading rates. However, when the cells are soft,
traction forces generated by crawling cells may produce larger
strains on cells. This results in spreading rates that are very sen-
sitive to the mechanical stiffness of the underlying substrate. To
tests this prediction, we used our active vertex model to simulate
monolayer spreading by varying cell stiffness through changes in
the target shape index py. When the target shape index is low,
cells are under high tension but have a reduced bulk modulus. By
contrast, cells with a higher target shape index result in a fluid
tissue that has a high bulk modulus. As a result, cell monolay-
ers with a lower target shape index (and consequently lower bulk
modulus) spread faster on stiff substrates than on soft substrates.

Overall, these results capture previously reported data on the
spreading of cellular aggregates with increased spreading rates
on stiff substrates, and also explain the spatiotemporal patterns
in traction stresses on soft substrates driven by active pressure,
and on stiff substrates driven by active cell crawling. Moreover,
our theory and simulations provide new predictions on the role
of tissue mechanics on cell spreading, with fluid tissues being less
sensitive to substrate rigidity and spread slower than solid tissues.
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