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Force-Driven Active Dynamics of Thin Nanorods in Unentangled
Polymer Melts

Siteng Zhang,a Jiuling Wang,a and Ting Gea†

Recent advances in the functional material and biomedical applications of nanorods call for a fun-
damental understanding of the active motion of nanorods in a viscoelastic medium. Molecular
dynamics simulations are performed to investigate a model system consisting of force-driven active
thin nanorods in a melt of unentangled polymers. The activeness of a thin nanorod arises from a
constant external force applied uniformly along the rod. The simulations demonstrate that the active
force overcomes the randomness of the diffusive motion and results in a ballistic motion along the
direction of the applied force at long timescales. The constant speed of the force-driven ballistic
motion is determined by the balance of the active force and the friction from the coupling of the
nanorod with the polymer viscosity. The friction coefficient, which is computed as the ratio of the
active force and the speed, decreases as the active force increases. The origin of the reduction in the
friction coefficient is the high speed that allows the nanorod to renew its local environment faster
than the relaxation time of melt chains. A scaling theory is developed to quantify the dependence
of the friction coefficient on the strength of the active force. The simulations also demonstrate
that the force-driven ballistic motion suppresses the rotational diffusion of the rod and cuts off the
de-correlation of the rod axis with time. On the scaling level, the long-time trajectory of a force-
driven active nanorod piercing through unentangled polymers may be described as a stretched array
of "active blobs", where the short-time random-walk trajectory within an active blob is unperturbed
by the active force.

1 Introduction

The dynamics of nanorods in a viscoelastic medium are critical to
many applications of nanorods. The fabrication and processing
of nanorod-containing polymer composites, which possess tun-
able mechanical1–4, optical5–7, and electrical8–12 properties, are
affected by the dynamics of nanorods. The uses of nanorods as di-
agnostic probes in bio-imaging13–16 and as drug delivery vehicles
in bio-medicine17–26 rely on the dynamics of nanorods in a com-
plex environment of biological molecules27. With thermal agita-
tion, the dynamics of nanorods are passive and coupled with the
viscoelasticity of surrounding molecules, exhibiting the random
nature of Brownian motion28–32. Going beyond the randomness
of passive dynamics, the active dynamics of nanorods may be in-
duced either by an external field such as a magnetic field18,33, an
electric field34, near-infrared light18 and ultra sound20,23 or by
a chemistry-based mechanism of self-propulsion17,35–39. A fun-
damental understanding of the active motion of nanorods in a
viscoelastic medium will benefit further advances in the material
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and biomedical applications of nanorods.
The passive dynamics of thin nanorods in viscoelastic poly-

mers are characterized by a length-scale- and shape-dependent
breakdown of the Stokes-Einstein relation in the continuum the-
ory40. The diffusion coefficients for different modes of the
nanorod dynamics, including the translational motion along and
normal to the rod axis, the overall translational motion, and the
rotational motion of the rod axis, are all related to the bulk
viscosity of surrounding molecules in the Stokes-Einstein rela-
tion41,42. Nevertheless, recent experiments28,29 and computer
simulations30,31,43 have revealed the coupling of a nanorod only
to a fraction of the bulk viscosity, indicating the breakdown of
the Stokes-Einstein relation. Molecular dynamics simulations of
monomerically thin nanorods in unentangled polymer melts43

have shown the anisotropy in the translational diffusion along
and normal to the rod axis. The parallel diffusion in the body
frame of the thin nanorod is coupled to the local viscosity on the
monomer length scale, which is independent of the rod length
l. The coupling to the local monomeric viscosity reflects a full
screening of the hydrodynamic interactions. By contrast, the nor-
mal diffusion is coupled with an effective viscosity that depends
on l with respect to the polymer chain size, corresponding to un-
screened hydrodynamic interactions. The same effective viscos-
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Table 1 Parameters for the simulations of force-driven active thin nanorods in unentangled polymer melts

Chain length N Num. of chains Nc Box size L(σ) Nanorod length l (σ) Num. of rods Nr Vol. fraction φr Excluded vol. fraction φexl
16 73818 110.5 4 27 0.008% 0.032%
16 73818 110.5 8 27 0.016% 0.128%
16 73818 110.5 16 27 0.032% 0.512%
16 73818 110.5 32 27 0.064% 2.048%
32 36909 110.2 4 27 0.032% 0.516%
32 36909 110.2 8 27 0.065% 2.065%

ity for the normal diffusion also dictates the rotational diffusion
of the rod axis. For the overall translational diffusion in the lab
frame, the effective viscosity corresponds to a partial screening of
the hydrodynamic interactions, as both the parallel and normal
components contribute to the overall diffusion.

Activeness is anticipated to alter the interplay between the
nanorods and the viscoelasticity of the surrounding medium, as
the ballistic motion induced by the activeness has been shown
to enhance the mobility of nanoscale objects in experiments27

and computer simulations44,45. To investigate the active dynam-
ics of nanorods in a viscoelastic medium, we perform molecu-
lar dynamics simulations and scaling analysis of a model system
consisting of force-driven active thin nanorods in a melt of un-
entangled polymers. The thickness of the nanorod is compara-
ble to the monomer size, and the aspect ratio of the nanorod
is ≥ 4. The unentangled polymer chains represent a viscoelastic
medium with internal chain relaxation dynamics. The activeness
of a thin nanorod is introduced by applying an active force uni-
formly along the initial rod axis, which facilitates the arrival of
the steady state in the simulations. We find that the active force
overcomes the randomness of the diffusive motion and results in
a ballistic motion of the thin nanorod along the force direction
at long timescales. The constant speed of the force-driven ballis-
tic motion is determined by the balance of the active force and
the friction from the coupling of the nanorod with the polymer
melt. The friction coefficient decreases as the strength of the ac-
tive force increases. We determine the origin of the reduction
in the friction coefficient is the fact that the high speed renews
the local environment of the nanorod faster than the relaxation
time of polymer chains. We develop a scaling theory that success-
fully describes the dependence of the friction coefficient on the
strength of the active force as well as the onset of the reduction
in the friction coefficient in the simulations. We also find that the
active force suppresses the rotational diffusion of the rod and cuts
off the de-correlation of the rod axis with time.

2 Models and Methods

We simulate the polymers using the canonical bead-spring
model46–48. Monomers of size σ and mass m interact via the
Lennard-Jones (LJ) potential with an interaction strength ε, cut-
off distance rc = 2.5σ , and unit time τ = σ

√
m/ε. Polymer chains

of N monomers each are connected by the finitely extensible non-
linear elastic (FENE) bonds. We simulate the thin nanorods as
rigid bodies made of beads identical to the monomers. To create a
thin nanorod of length l, l/σ beads are placed along a straight line
with regular spacing σ and grouped into a rigid body. The interac-
tion between a bead of a nanorod and a surrounding monomer is

the weakly attractive LJ potential with rc = 2.5σ , which promotes
the dispersion of nanorods in the melt. The interaction between
two beads from two different nanorods is the purely repulsive LJ
potential with rc = 21/6σ , which prevents the aggregation of the
nanorods.

𝐟𝟎𝐚 𝐮(𝟎)
𝐮(𝐭)

𝒍

𝑹

𝒃

Fig. 1 Schematic illustration of a force-driven active thin nanorod (a rigid
body of blue spheres) in a melt of unentangled polymers (yellow spheres
connected by black lines). The monomer size b, rod length l, and melt
chain size R are indicated. The active force is applied uniformly along
the rod with a magnitude of f a

0 per monomer length. The active force is
along the initial rod axis with unit vector ~u(0), while the orientation of
the rod axis changes over time with a time-dependent unit vector ~u(t).

Nanorods and polymers were placed in a cubic box with side
length L and periodic boundary conditions in all three direc-
tions. Each sample was equilibrated at temperature T = 1.0ε/kB

and pressure P = 0. The equilibration was performed with a
Nosé–Hoover thermostat/barostat applied to the polymer chains.
A Nosé–Hoover thermostat was applied to both the translational
and rotational degrees of freedom of the rigid nanorods. The
characteristic damping time of the thermostat was 10τ, and that
of the barostat was 100τ. The equilibration run lasted for a
time that is much longer than the diffusion time of the poly-
mer chains. There are two sets of simulation samples. In one
set, the polymer chain length N = 16, and the rod length l = 4σ ,
8σ , 16σ , and 32σ . In the other set, N = 64, while l = 4σ , and
8σ . The first set corresponds to l comparable to and larger
than the root-mean-squared end-to-end size of the polymer chain,
R = 4.7σ . The second set corresponds to l < R = 10.1σ . In all
samples, the number of nanorods is Nr = 27, while the number
of polymer chains Nc varies. Multiple nanorods are simulated
simultaneously for a better statistical average of the dynamics
data. As shown in Table 1, the volume fraction of the nanorods
φr = Nrlσ2/L3 is less than 0.07%, and the volume fraction of the
excluded volume φexl = Nrl2σ/L3 is less than 2.1% in all samples.
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Fig. 2 (a) Molecular dynamics trajectories of force-driven active thin nanorods of length l = 32σ in polymer melts of chain length N = 16 at indicated
magnitudes of active force. Three trajectories in (a) are enlarged and shown in (b). For the trajectory at the strongest active force f a

0 = 2ε/σ , only
the part comparable to the rod length is shown.

Recently, it has been shown that the organization of nanorods in
polymer nanocomposites depends on the details of the nanorod
model49,50. For the specific models of nanorods and polymers
used here and the low volume fraction of nanorods in the simu-
lations, we have confirmed that the nanorods are well dispersed
without any aggregation in all samples43. Additionally, because
of the low volume fraction of nanorods in the simulations and
the lack of a theory for the long-range correlation of nanorod
pairs, we do not attempt to quantify and correct for the effects
of any long-range pair correlation on the dynamics of individual
nanorods.

The dynamics of nanorods in polymer melts were simulated at
a fixed volume and a constant temperature T = 1.0ε/kB. The tem-
perature of polymer chains was controlled using a Nosé–Hoover
thermostat with a characteristic damping time of 10τ. The ac-
tiveness of a nanorod was modeled by applying a constant active
force along the initial rod axis such that the driven motion of the
nanorod along the active force direction is commensurate with
the preferential thermal diffusion of the nanorod along the rod
axis,43 facilitating the arrival of the steady state in the simula-
tions. The active force is uniformly distributed along the rod with
each bead subjecting to an active force f a

0 u(0), where u(0) is the
unit vector along the initial rod axis. Figure 1 illustrates a force-
driven active thin nanorod in an unentangled polymer melt. f a

0
varied from 0 to 2.0ε/σ . To enable the activeness, no thermostat
was applied to the thin nanorods. The time step for integrating
the equations of motion was 0.01τ. The net linear momentum
and net angular momentum of the polymer melt were zeroed af-
ter each step of integration, so there was no drift or rotation of
the melt. All simulations were performed using the LAMMPS sim-
ulation package51,52.

3 Results and Discussion
Representative trajectories for the dynamics of active nanorods
in the simulations are shown in Figure 2. The dynamics of an
active nanorod is quantified by the mean-square displacement
(MSD)

〈
∆r2(t)

〉
=
〈
[~rcom(t)−~rcom(0)]2

〉
of the center of mass of

Fig. 3 MSD
〈
∆r2(t)

〉
of the force-driven active thin nanorods with length

l = 32σ and indicated active force per monomer f a
0 in a melt of polymer

chains with N = 16 monomers per chain. f a
0 = 0 corresponds to the passive

dynamics of thin nanorods with no activeness. Dashed line indicates
t = 10τ that separates two independent computations of MSDs for t < 10τ

and 10≤ t ≤ 104τ.

the nanorod as a function of time t in the polymer melts. Figure
3 shows

〈
∆r2(t)

〉
for the nanorods of l = 32σ in the polymers of

N = 16 with increasing f a
0 .
〈
∆r2(t)

〉
for t < 10τ and 10τ ≤ t ≤ 104τ

are computed separately. Depending on the strength of the ac-
tive force, the production run for MSD in the time window
10τ < t < 104τ lasted from 4×104τ to 6×105τ. Coordinates were
dumped every 10τ. For the earlier time window 0.01τ < t < 10τ,
the production run lasted for 100τ, and coordinates were dumped
every 0.01τ in all cases. In the calculations of MSD, the average
was taken over different nanorods and different time periods of
the same length in the steady state.

The scenario with f a
0 = 0 corresponds to the passive dynamics

of nanorods. The corresponding MSD exhibits a crossover from
the initial thermal ballistic motion with α = d log

〈
∆r2(t)

〉
/d log t =

2 to the sub-diffusive motion with α < 1 at intermediate
timescales and eventually to the terminal diffusion with α = 1,
in agreement with the previous simulation result43. For f a

0 > 0,
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the MSD is characterized by the new force-driven ballistic regime
with α = 2 at long timescales. The overlap of the MSD for the
active nanorods prior to the force-driven ballistic regime with the
MSD for the passive dynamics of nanorods indicates that the ac-
tive force is not sufficiently strong such that the nanorod dynam-
ics are dictated by the thermal motion at short timescales. With
increasing f a

0 , the force-driven ballistic regime begins at a shorter
time. Eventually, for the largest f a

0 = 2ε/σ , the force-driven bal-
listic regime covers the entire range of timescales explored in the
simulations.

For the simulation samples in Figure 3, we further decomposed
the overall MSD into two components that are parallel and nor-
mal to the direction of the applied force, respectively. Note that
the direction of the force, which is aligned with the initial rod
axis, is fixed in the lab frame. The results from the decomposition
are presented as Supplementary Information (SI). The parallel
component is almost identical to the overall MSD in the force-
driven ballistic regime, indicating the force-driven ballistic mo-
tion is along the force direction. The normal component exhibits
rich time-dependent features that need further study, but its con-
tribution to the overall MSD in the force-driven ballistic regime is
very minor. See SI for a more detailed discussion.

In all cases, the force-driven ballistic motion is quantified by a
constant speed va, which is computed from the long-time value of√〈

∆r2(t)
〉
/t2. The increase of va with increasing f a

0 for the sam-
ples in Figure 3 is shown in Figure 4. va for f a

0 = 2ε/σ is slightly
above the thermal speed of the nanorod with 32 beads of mass
m, which is vthermal =

√
3kBT/32m = 0.31σ/τ. va > vthermal indi-

cates that the ballistic motion dominates the thermal motion at
all timescales, as the displacement vat from the active motion is
sufficiently large that it surpasses the displacement vthermalt from
the undamped thermal ballistic motion. The increase of va with
increasing f a

0 can also be observed in the representative trajecto-
ries of active nanorods in Figure 2, where the displacement over
the same time of 200τ increases with increasing f a

0 .

As the speed va increases with the strength of the active
force, the friction coefficient for the force-driven ballistic mo-
tion of an active nanorod decreases. In the force-driven ballis-
tic regime, there is a balance between the active force f a

0 (l/σ)

and the frictional force ζ ava, where ζ a is the friction coeffi-
cient. From f a

0 (l/σ) = ζ ava, the monomeric friction coefficient
ζ a

0 = ζ a/(l/σ) = f a
0 /va. The dependence of ζ a

0 on f a
0 for the sim-

ulation samples in Figure 3 is shown in Figure 4. In the limit
of vanishing f a

0 , ζ a
0 approaches a plateau that corresponds to the

passive dynamics of the nanorod, for which the monomeric fric-
tion coefficient is ζ0 = 22.5ετ/σ2 43. As f a

0 increases, ζ a
0 deviates

from ζ0 and decreases as the force-driven ballistic motion domi-
nates over the thermal motion at decreasing timescale.

To understand the dynamics of an active nanorod in unentan-
gled polymers, we develop a scaling theory. Consider a nanorod
of length l and thickness comparable to the Kuhn monomer size b
in a polymer melt. Each polymer consists of N monomers, and the
polymer chains are unentangled. The active force along the ini-
tial rod axis is f a

0 per monomer. Refer to Figure 1 for a schematic
illustration of the force-driven nanorod in polymer chains.

Fig. 4 The speed va for the force-driven ballistic motion (right axis) and
the monomeric friction coefficient ζ a

0 = f a
0 /va (left axis) as functions of

the active force per monomer f a
0 for the same systems in Figure 3.

We first review the scaling description of the passive dynam-
ics of the nanorods with f a

0 = 0 in unentangled polymers. The
nanorod in diffusion experiences an effective viscosity ηe f f that
is comparable to the geometric mean of the viscosity η0 on the
monomer length scale and the maximum viscosity ηmax that the
rod can experience. The scaling relation ηe f f ≈ (η0ηmax)

1/2 cor-
responds to a partial screening of the hydrodynamic interactions
in the coupling between the nanorod and the melt. Note that
if ηe f f ≈ η0 and ηe f f ≈ ηmax, there is a full screening and no
screening of the hydrodynamic interactions beyond the monomer
length scale, respectively. When l is larger than the average size
R ≈ N1/2b of the melt chain in the random-walk conformation,
ηmax for unscreened hydrodynamic interactions is comparable to
the melt viscosity ηmelt ≈ η0N. However, when l < R, ηmax is in-
stead only comparable to the viscosity ηg ≈ η0g≈ η0(l2/b2) of lo-
cal chain segments, which contain g monomers in each segment
and have an average chain size g1/2b≈ l.

A length-scale dependent ηe f f has been used to describe
the diffusion of spherical nanoparticles in various polymer sys-
tems40,53–57, and it is consistent with the length-scale dependent
nanoparticle dynamics in alternative theoretical approach58–60.
For nanorods, the rule of geometric mean reflects the additional
effects of the anisotropic particle shape on ηe f f . While the diffu-
sion along the rod axis is determined by the monomeric viscosity
η0, the diffusion normal to the rod axis is determined by ηmax.
Such a difference between the parallel and normal components
with respect to the rod axis, i.e., in the body frame, has been
shown by the recent simulations on the diffusion of nanorods.43

The rule of geometric mean composites the viscosity for the diffu-
sion parallel and normal to the rod axis to obtain ηe f f for the dif-
fusion in the lab frame. The rule was first used by Aponte-Rivera
and Rubinstein61 in the scaling theory for the dynamical coupling
in oppositely charged polyelectrolytes, where ηe f f for the polyan-
ion correlation segments is the geometric mean of the values for
the full screening and no screening of the hydrodynamic inter-
actions. Note that in the theoretical description throughout the
paper, ≈ indicates the equation is on the scaling level with an
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order-of-unity coefficient dropped.
The friction coefficient for the passive dynamics of a nanorod

ζ ≈ ηe f f l, and the diffusion coefficient D = kBT/ζ , according to
the Stokes law and Einstein relation, respectively. As a result,
the MSD is

〈
∆r2(t)

〉
≈Dt ≈

(
kBT/ηe f f l

)
t in the terminal diffusive

regime. If l ≥ R, the time scale τd at which the terminal diffusion
begins is comparable to the relaxation time of the melt τmelt . Us-
ing the N-dependence of the relaxation time in the Rouse dynam-
ics model41, τmelt ≈ τ0N2, where τ0 is the monomeric time scale.
If l < R, τd is comparable to the Rouse time of the g-monomer
segments, τg ≈ τ0g2 < τmelt .

For a force-driven active nanorod, the friction coefficient ζ a is
comparable to ζ in the limit of vanishing f a

0 , as shown by the
simulation result in Figure 4. The force-driven ballistic motion of
an active nanorod with a small speed va begins at a time scale
τa

ballistic > τd , where the motion of a passive nanorod with f a
0 = 0

is already in the terminal diffusive regime. The ballistic motion
with τa

ballistic > τd renews the local environment of the nanorod
sufficiently slow such that the relaxation dynamics that determine
the thermal diffusion of the passive nanorod is complete. As a re-
sult, the same friction that affects the thermal diffusion resists the
force-driven ballistic motion, i.e., ζ a ≈ ζ . An example of this sce-
nario in the simulations is the active dynamics with the smallest
f a
0 = 0.05ε/σ in Figure 3.

The reduction of ζ a with respect to ζ results from the strong
activeness that makes the force-driven ballistic motion begins at
τa

ballistic < τd . The ballistic motion with τa
ballistic < τd renews the

local environment of the nanorod at a rate that only allows the
relaxation dynamics of chain segments with ga monomers each to
be complete, i.e.

τ
a
ballistic ≈ τ

a
g ≈ τ0 (ga)2 (1)

where the monomeric time scale

τ0 ≈
η0b3

kBT
(2)

The MSD of a force-driven active nanorod at τa
ballistic is compara-

ble to the MSD of a passive nanorod at τa
g . For t > τa

ballistic≈ τa
g , the

MSD due to the force-driven ballistic motion is above the MSD for
the passive thermal motion, allowing the active nanorod to escape
the effects of the relaxation dynamics of chain segments longer
than ga. As a result, for the force-driven active nanorod, the
maximum viscosity corresponding to unscreened hydrodynamic
interactions is

η
a
max ≈ η0ga (3)

The effective viscosity using the rule of geometric mean is

η
a
e f f ≈ (η0η

a
max)

1/2 ≈ η0 (ga)1/2 (4)

The friction coefficient is

ζ
a ≈ η

a
e f f l (5)

which is smaller than ζ for the passive dynamics. A typical ex-
ample of this scenario is the active dynamics with f a

0 = 0.3ε/σ in
Figure 3.

For a large f a
0 that makes τa

ballistic ≈ τa
g < τd , we calculate the

friction coefficient ζ a of a force-driven active nanorod by match-
ing the MSDs for the active and passive motion at τa

ballistic ≈ τa
g .

The constant speed of the force-driven ballistic motion

va =
f a

ζ a (6)

where

f a = f a
0

(
l
b

)
(7)

The MSD for the ballistic motion at t ≈ τa
ballistic ≈ τa

g is〈
∆r2(τa

g )
〉a

ballistic
≈
(
va

τ
a
g
)2 (8)

The MSD for the passive thermal motion at t ≈ τa
g is〈

∆r2(τa
g )
〉thermal

≈
(

kBT
ζ a

)
τ

a
g (9)

where kBT/ζ a is the diffusion coefficient. From
〈
∆r2(τa

g )
〉a

ballistic≈〈
∆r2(τa

g )
〉thermal , we obtain the number of monomers per segment

for the chain segments that affect the force-driven ballistic motion
of the nanorod is

ga ≈
(

f a

F a

)−4/3
(10)

where

F a ≈
(

kBT η0l
τ0

)1/2
≈
(

kBT
b

)(
l
b

)1/2
(11)

As a result, the effective viscosity for the force-driven active
nanorod is

η
a
e f f ≈ η0 (ga)1/2 ≈ η0

(
f a

F a

)−2/3
(12)

The corresponding friction coefficient is

ζ
a ≈ η

a
e f f l ≈ ζ0

(
l
b

)(
f a

F a

)−2/3
(13)

where the monomeric friction coefficient for the passive dynamics

ζ0 ≈ η0b (14)

Finally, the friction coefficient per monomer for the force-driven
active nanorod is

ζ
a
0 ≈ ζ

a
/( l

b

)
≈ ζ0

(
f a

F a

)−2/3
≈ ζ0

(
f a
0

F a
0

)−2/3
(15)

where

F a
0 = F a

/( l
b

)
(16)

Matching the two MSDs at τa
g corresponds to the work per-

formed by the active force f a at a speed va over a time of τa
g is

comparable to the thermal energy kBT , i.e.,

wa ≈ f ava
τ

a
g ≈ kBT (17)

which one can verify using Eqs. (1), (6), (10), (11), (13), and
(14). Therefore, τa

g is the time scale above which the energy from
the active force outcompetes the thermal energy kBT . Recall that
Einstein relation D= kBT/ζ shows the diffusion coefficient for the
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Fig. 5 (a) The monomeric friction coefficient ζ a
0 for the force-driven ballistic motion of an active thin nanorod in an unentangled polymer melt as a

function of the active force per monomer f a
0 . The rod length l and the polymer melt chain length N are indicated in the format l-N. (b) Rescaling

of ζ a
0 by the plateau value ζ0 and f a

0 by f̃ a
0 , which is threshold active force for the reduction in ζ a

0 , results in the collapse of the data points in (a) to
a master curve. The thick dashed line indicates the master curve (Eq.(22)). The inset shows f̃ a

0 as a function of l for the nanorods in the melts of
N = 16 and N = 64. The dashed lines in the inset indicate two scaling regimes in the theory.

passive dynamics is dictated by the thermal energy kBT . There-
fore, wa > kBT for t > τa

g is consistent with the fact that the long-
time ballistic motion of the force-driven nanorod is not affected
by the thermal agitation. Likewise, the force F a satisfies

W a ≈F aV a
τ0 ≈F a

(
F a

η0l

)
τ0 ≈ kBT (18)

Eq. 18 means that Fa is a strong force at which the rod is cou-
pled only to the monomer viscosity η0 with friction coefficient
Z ≈ η0l, and the work W a performed by Fa at the constant
speed V a ≈ F a/Z over the monomer time scale τ0 is already
comparable to the thermal energy kBT .

The regime with the reduced friction coefficient ζ a
0 in Eq. (15)

occurs only when f a
0 is above the threshold f̃ a

0 , at which the num-
ber of monomers per segment for the chain segments that affect
the nanorod dynamics is

g̃a ≈

{
(l/b)2, if l < R

N, if l ≥ R
(19)

where R≈ N1/2b is the average size of melt chains. Using Eq.(10)
for ga, Eq.(11) for F a, we obtain the active force at the threshold

f̃ a ≈

{
F a(l/b)−3/2 ∼ (l/b)−1, if l < R

F aN−3/4 ∼ (l/b)1/2N−3/4, if l ≥ R
(20)

As a result, the active force per monomer at the threshold

f̃ a
0 ≈

{
F a

0 (l/b)−3/2 ∼ (l/b)−2, if l < R

F a
0 N−3/4 ∼ (l/b)−1/2N−3/4, if l ≥ R

(21)

where Eq.(16) for F a
0 is used. Eq. (21) shows that as the rod

length increases, there is a crossover from f̃ a
0 ∼ l−2 to f̃ a

0 ∼ l−1/2.

The scaling theory is compared with the simulation data for the
systems with varying l and N. As shown in Figure 5a, the plateau
of ζ a

0 and the decrease of ζ a
0 with increasing f a

0 are observed in

different simulation samples. The results for different l and N can
be collapsed to a master curve

ζ a
0

ζ0
=

1+

(
f a
0

f̃ a
0

)2β/3
−1/β

(22)

that goes from the plateau regime ζ a
0 /ζ0 = 1 for f a

0 < f̃ a
0 to the

power-law regime ζ a
0 /ζ0 =

(
f a
0 / f̃ a

0

)−2/3
for f a

0 > f̃ a
0 with β quan-

tifying the shape of the curve at f a
0 ≈ f̃ a

0 . The exponent −2/3 in
the power-law regime is the result of the scaling theory (Eq.(15)).
Figure 5b shows the collapse of all simulation data points to the
master curve. To obtain the master curve, ζ a

0 /ζ0 for different sys-
tems are simultaneously fit to Eq.(22). The fitting result of β is
2.9± 0.6, and the best fit is used to construct the master curve
(thick dashed line in Figure 5b). The best-fit results of f̃ a

0 for dif-
ferent samples are shown in the inset to Figure 5b and used to
rescale the corresponding f a

0 to the master curve. The success-
ful collapse of the data points in Figure 5b validates the scaling
theory for the power-law reduction of the friction coefficient with
increasing strength of activeness (Eq. (15)).

As shown in the inset to Figure 5b, the l-dependence of f̃ a
0 for

the force-driven active nanorods in the polymer melt of N = 16
exhibits a crossover from f̃ a

0 ∼ l−2 to f̃ a
0 ∼ l−1/2 as l increases from

l = 4σ slightly below R ≈ 4.7σ to l = 32σ > R. For the nanorods
in the other polymer melt of N = 64, l = 4σ and l = 8σ are both
smaller than R ≈ 10.1σ , and the l-dependence of f̃ a

0 is close to
the scaling relation f̃ a

0 ∼ l−2. These results agree with the scaling
theory for the onset of the reduction in the friction coefficient
(Eq.(21)), further validating the theory.

Along with the decrease of ζ a
0 , there is a suppression of the rota-

tion of the rod. We track the unit vector u(t) along the rod axis as
a function of time, as visualized in Figure 6. The range spanned
by the tip of u(t) on the unit sphere decreases with increasing
strength of the active force. The time-correlation function of the
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Fig. 6 Rotational trajectories of the unit vector ~u(t) along the rod axis for the force-driven active nanorods of l = 32σ in polymer melts of N = 16.

Fig. 7 Time-correlation function of the unit vector ~u(t) along the rod
axis for the same systems in Figure 6.

unit vector along the rod axis 〈u(t) ·u(0)〉 is computed. The re-
sults for the simulation samples in Figure 6 are shown in Figure
7. Here, as in the calculation of MSD (Figure 3), the average is
taken over different rods as well as different time periods of the
same length in the steady state. For vanishing f a

0 , the correla-
tion function approaches 0 over a time scale comparable to the
rotational relaxation time τrot ≈ 7.4×104τ for the passive thermal
motion, which was obtained by fitting the decay of 〈u(t) ·u(0)〉
to exp(−t/τrot)

43. This indicates that the strength of the active
force is weak and cannot keep the rod axis around its initial ori-
entation or equivalently the force direction. As f a

0 increases, the
correlation function levels off at a finite value up to the longest
time scale in the simulations, indicating a stronger active force
that suppresses the rotational diffusion of the rod axis. For the
largest active force with f a

0 = 2ε/σ , the correlation function lev-
els off at 0.93, indicating a much reduced rotational diffusion of
the nanorod. The suppression of the rotational diffusion and the
cutting off of the de-correlation of rod axis with time are consis-
tent with the force-driven nanorod being coupled to local chain
segments rather than entire polymer chains.

The reduction in rotational diffusion originates from the active
force being in a fixed direction. If a self-propelled active force
f a
0 u(t) were applied instead, the force would change its direc-

tion at timescales above the rotational relaxation time of the rod
axis τrot . As a result, one would expect the terminal dynamics of

the self-propelled active nanorod to be different from that with a
constant driving force f a

0 u(0). Recent Brownian dynamics simu-
lations of self-propelled active filaments44 showed that the force-
driven ballistic motion only persists to the timescale of τrot , after
which the rotational diffusion of the filament randomizes the di-
rection of self-propulsion, leading to a diffusive translational mo-
tion again.

4 Concluding Remarks

By combining molecular dynamics simulations and scaling the-
ory analysis, we demonstrate the competition between the active-
ness induced by an active force along the initial axis of a thin
nanorod and the passive thermal motion of the nanorod that is
coupled to the viscosity of an unentangled polymer melt. The ac-
tiveness outcompetes the thermal motion and results in a force-
driven ballistic motion with a constant speed va for the timescales
above τballistic (see Figure 3). On the scaling level, τballistic is
the timescale where the work performed by the active force wa

is comparable to the thermal energy kBT (Eq. (17)). With in-
creasing strength of the active force, τballistic decreases below the
terminal relaxation time τmelt of entire polymer chains, allowing
only the local viscosity of the chain segments with ga monomers
each and relaxation time τa

g ≈ τballisitc < τmelt to affect the force-
driven active dynamics. As a result, the friction coefficient for the
friction that balances the active force decreases with increasing
strength of the active force (see Figure 4). For sufficiently strong
active force, the terminal speed va is above the thermal speed of
the nanorod, and therefore the force-driven ballistic motion dom-
inates all relevant time scales. Accompanying the reduction in
the friction coefficient, the increase of the active force also leads
to the suppression of the rotational diffusion of the rod and the
persistence of a strong correlation of the rod axis with its initial
orientation (see Figures 6 and 7).

Regarding the connections to experiments28,29,62, the model
of thin nanorods in the present work captures the effects of the
anisotropic particle shape. Nevertheless, the model has yet to
be extended to cover more aspects such as the rod thickness,
which may be larger than the monomer length scale b, as well
as the boundary conditions at the nanorod and polymer inter-
face, which may involve attractive interactions between the rod
and surrounding polymers and a grafted polymer brush layer that
prevents the aggregation of nanorods. The steady-state motion of
an active nanorod under constant external force as in the simu-
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Passive

Active

u(0)

Fig. 8 Schematic illustration of the center-of-mass trajectories of thin
nanorods (black lines) in unentangled polymer melts. The trajectory
under an active force is a stretched array of active blobs (circles), which
are segments of the trajectory over the time scale τa

ballistic. Colors of
increasing wavelength (from violet to red) are used to indicate the time
order of the active blobs. The blobs of different colors overlap along
the trajectory for the passive dynamics, indicating the randomness of the
thermal diffusive motion. The arrow indicates the unit vector ~u(0) along
the initial rod axis or equivalently the direction of the applied force.

lated model may be realized by the implementation of a nanorod
with a uniformly distributed charge under an external electric
field. Another way to extend the present computational and the-
oretical work to connect to a broader range of experiments is to
include more disparate polymer matrices, such as entangled poly-
mer melts, polymer solutions, and hydrogels.

Conceptually, the effect of the active force on the center-of-
mass trajectory of a thin nanorod in an unentangled polymer melt
may be compared with the effect of an external force on the con-
formation of a polymer chain. For a polymer chain with force of
magnitude f applying at both chain ends, the random-walk con-
formation of an unperturbed chain is replaced by an extended
array of tension blobs63. Each tension blob contains g monomers
and the blob size ξ ≈ bg1/2 is the threshold length scale that chain
segments are able to adopt the random-walk conformation with-
out being perturbed by the external tensile force. The tension
blob size is determined by f ξ ≈ kT , reflecting the competition
between the external perturbation and the thermal energy. Simi-
larly, for a thin nanorod under the active force of magnitude f a,
the center-of-mass random-walk trajectory in the time domain for
the passive dynamics of the nanorod is replaced by an extended
array of "active blobs", as illustrated in Figure 8. Each active blob
corresponds to a time scale τa

ballistic ≈ τa
g (Eq.(1)) and a length

scale that is comparable to the MSD
〈
∆r2(τa

g )
〉a

ballistic ≈ (vaτa
g )

2

(Eq. (8)). The random-walk trajectory at time scales below τa
g

is not perturbed by the active force and follows the MSD for the
thermal motion of the nanorod. τa

g and hence
〈
∆r2(τa

g )
〉a

ballistic are
determined by wa ≈ f avaτa

g ≈ kBT (Eq.(17)), which is a balance
between the external perturbation and the thermal energy. Note
that the random-walk trajectories for the passive dynamics and
for the force-driven active dynamics at timescales below τa

ballistic
are not ideal 3-dimensional random walks, as the translational
diffusion along the rod axis is faster than that normal to the rod
axis43. The description of the active dynamics trajectories using
the language of blobs in polymer physics, as illustrated in Figure
8, may provide a new perspective on the theory of active particles
and active polymers64.

The microscopic insights provided by the molecular simulations
and scaling theory may aid in the control of nanorods in func-
tional nanorod-polymer composites using external force fields65

and the manipulation of the trajectories of one-dimensional
nanomotors in the applications of bio-imaging and drug deliv-
ery27. Additionally, the microscopic insights may also help un-
derstand the active filaments propelled by motor proteins in the
cytoskeleton, RNA and DNA molecules in the transcription pro-
cess within a cell, and also rod-like bacteria and viruses in biolog-
ical settings64,66,67.
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