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Multiscale nature of electric-field-induced structural formations in
non-colloidal suspensions†

Siamak Mirfendereski and Jae Sung Park∗

Non-colloidal suspensions undergoing dipolar interactions in an electric field have been extensively
studied and are also known as smart materials as they share similarities with electrorheological (ER)
fluids. Although the macroscopic responses are well-documented, the multiscale nature of such sus-
pension is still lacking. In this study, a large-scale Stokesian dynamics simulation is used to investigate
the structural formation of such suspensions in an electric field up to highly concentrated regimes
across different length scales: from particle-level (microscale) to particle cluster-level (mesoscale) and
stress response-level (macroscale). It is observed that at a volume fraction of φ ≈ 30%, the steady-
state structures are the most isotropic at the microscale, but at the macroscale, their normal stress
fields are the most anisotropic. Interestingly, these structures are also the most heterogeneous at
both microscale and mesoscale. Furthermore, the effects of confinement on the multiscale responses
are explored, revealing that there could be a strong link between the mesoscale and macroscale. This
multiscale nature can offer the potential for precisely controlling or designing ER fluids in practical
applications.

1 Introduction
Under an external electric field, the suspended particles with
a dielectric constant mismatched with a suspending fluid ex-
perience a rapid formation of dipole moment, which leads to
particle-particle interactions [1]. This so-called dipolar interac-
tion can cause a relative particle motion toward the formation of
anisotropic structures, such as chains and columnar structures,
as seeking a lower energy state [1, 2]. As these structures sig-
nificantly alter the suspension rheology, such electric-field-driven
suspensions are often termed electrorheological (ER) fluids [3].
The same driving mechanism of the ER fluid can be generated
in a suspension of dielectric particles under a uniform electric
field. As the particles disturb a local electric field around them,
a non-uniform electric field is created by which particle motion
arises along the field gradients. This nonlinear electrokinetic phe-
nomenon is termed dielectrophoresis (DEP) [4, 5].

It has been well-documented that upon the application of an
electric field to ER fluids or DEP suspensions at dilute and semi-
dilute regimes, particles rapidly form chains along the field di-
rection and then aggregate and form larger structures at long
times [6–11]. The particle motion at short times is dominated
by the formation of small clusters, while at long times by the
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interactions between the percolating clusters [10]. The short-
term chain formation can be easily explained by the minimum
dipole energy that is reached when each of the two dipoles pairs
up along the field direction. In contrast, the long-term follow-
up rearrangement of structures is still a subject of investigation.
Nevertheless, it is suggested that during the long-term structural
rearrangement, the slow approaching of the particle chains could
be attributed to the net chain-chain attraction [7, 12]. The attrac-
tive interaction between the perfectly aligned one-dimensional
chains was shown to decay exponentially with chain-chain sep-
aration distance, which is called an electrostatic screening effect
[7]. However, other longer-range interactions could be possi-
ble due to geometrical disorder induced by thermal fluctuation
[7] or inevitable intrinsic topological disorder within structures
[9], both of which lead to a slower decay rate, the inverse fourth
power of the separation distance. In the case of confined suspen-
sions with electrodes, the chains spanning the gap between the
electrodes can be repulsive in the range above the certain separa-
tion distance [12, 13]. Indeed, the balance between the near-field
attraction and far-field repulsion depends on various suspension
conditions, such as volume fraction and electrode gap, resulting
in different mesostructural features at a steady state [12, 13].

The structures and kinetics of ER fluids or DEP suspensions
strongly depend on volume fraction φ [10, 14]. Increasing vol-
ume fraction results in the progressive loss of the structural
anisotropy as body-centered tetragonal (BCT) crystal structures
are formed earlier [9]. This BCT structure is known as the ground
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state for ER fluids [6, 7, 15]. The dependence of the structural
morphology and transition behavior on volume fraction was also
experimentally observed [16]. At φ = 10%, the ground-state crys-
tal structure is formed from the one-dimensional chains. Beyond
φ = 15% up to φ = 45%, the presence of the chains starts to de-
crease, but the two-dimensional sheets or large particle columns
become dominant features, turning to the long-term labyrinthine
patterns and eventually BCT crystals. This labyrinthine pattern
formation could be related to kinetically arrested gels [17, 18].

From an application perspective, the distinctive rheological
characteristics of the ER fluids, such as reversible and control-
lable viscosity enhancement, have led to a wide range of appli-
cations. Examples are active shock absorbers, clutches, brakes,
dampers, and actuators [19–22]. In addition, the concept of the
ER fluids has been utilized in additive manufacturing of a battery
electrode to control micro or nano-structural manipulations of in-
ternal structures [23]. The potential of precisely tuning the mi-
crostructure by an electric field has also made such fluids appeal-
ing in photonic crystal applications [24] and DNA research [25].
The ER fluids are also known to have a potential for a transition
to a solid state. Thanks to such intriguing potential, their rheo-
logical response to an external flow has been extensively studied
[10, 26–29]. The elastic body-like deformation was developed at
low shear rates, while the rapid microstructural rearrangement
occurred at higher shear rates [27]. In this regard, the Bingham
plastic constitutive model was primarily used to describe the rheo-
logical behavior of the ER fluids, where their yield stress is shown
to scale as the squared electric-field strength, which is indeed the
same scale as the dipolar interactions [26, 29].

As presented so far, there have been many studies on the ER
fluids and DEP suspensions at up to semi-dilute regimes, focusing
on macroscopic measures, namely the stress or viscosity. These
measures have been correlated only with structural morphology.
Thus, it is evident that understanding the multiscale nature of
the structural formation in ER fluids or DEP suspensions is cur-
rently lacking. Furthermore, a robust connection among different
length scales is largely unexplored because it is highly challeng-
ing [30]. However, connecting the macroscopic responses to the
particle-level (microscopic) or particle cluster-level (mesoscopic)
responses is necessary to promote the fundamental understand-
ing of the underlying mechanisms behind the structural formation
of ER fluids and DEP suspensions. Access to mesoscopic scales is
also required as it can play a critical role in identifying a hidden
linkage between micro and macroscopic responses in a suspen-
sion [31, 32].

In this study, we provide for the first time a detailed description
of the structural formation across length scales at a wide range of
volume fractions up to φ = 50% using a large-scale Stokesian dy-
namics simulation. In addition, the effects of confinement on the
multiscale nature of structural formation will also be presented as
it has been widely observed that the confinement plays a crucial
role in affecting the dynamics and pattern formation in various
suspensions [33–36]. Using a detailed algorithm for large-scale
simulations presented in Sec. 2, we can probe a long range of
time scales in suspensions. Simulation results are presented in
Sec. 3, where we start by providing the particle velocity and the

mean cluster size as suspension kinetic measures. We then pro-
vide measures at three different length scales: (i) the coordina-
tion number and fabric tensor as microscopic measures, (ii) the
number density fluctuation as a mesoscopic measure, and (iii)
the particle-induced stress field as a macroscopic response. The
effects of confinement on these scale measures are also provided.
We summarize our findings in Sec. 4.

2 Governing equation and simulation method

We consider a suspension of N identical neutrally buoyant spheres
of radius a in a viscous electrolyte with the permittivity ε and vis-
cosity η . Two different simulation domains are used, a periodic
domain in all three directions for simulating an unbounded in-
finite suspension and a domain that is periodic in the x and y
directions but wall-confined along the z direction (the field direc-
tion). The unit cell dimension is denoted by Lx,Ly,Lz, where Lz

is the electrode spacing for the confined domain. The particles
are assumed to be charged and nonpolarizable, a good approxi-
mation for dielectric particles. The Debye layer thickness λD of
particles is much smaller than the particle size (λD� a) by which
the particles with their Debye layers behave like insulators so their
permittivity does not play a role. We apply an external uniform
AC electric field E0 =±E0ẑ given by the wave of frequency f . The
frequency is assumed to be high enough to satisfy both f �D/λ 2

D
and f � εζ E0/aη , which validates the assumptions that the De-
bye layer remains at equilibrium and the particle motion due to
linear electrophoresis is negligible, respectively. Note that D is
the characteristic diffusivity of the ions in the electrolyte and ζ

is the native zeta potential of the particles. In a typical exper-
imental study for an aquatic electrolyte, which is the condition
of interest for the current study, D ∼ 10−5 cm2 s−1, λD ∼ 10 nm
and particle radius of a∼ 10 µm. Such conditions can be assured
for high frequency field f ∼ 1 MHz [11, 37]. It is also assumed
that the particle size is large enough to make Brownian motion
negligible. In a typical experiment using a suspension of particles
with 10 µm radius and an external field of E0 > O(10) V/cm, the
electric Pećlet number, defined by

Pe =
εa3E2

0
kBT

, (1)

becomes large enough (Pe > 100) to ensure that the effect of
Brownian motion is negligible [12]. Note that this dimension-
less Pećlet number measures the relative magnitude of particle
convection due to dipolar interactions and Brownian diffusion.
Under these assumptions, the motion of the particles results en-
tirely from nonlinear dipolar interactions.

For the current simulation, we use the numerical algorithm de-
veloped in our previous works [38, 39]. The velocity of each
particle ẋα is computed by a pairwise model [4, 38], and thus
can be expressed as

ẋα =
εaE2

0
η

N

∑
β=1

M(Rαβ /a) ::: ẑẑ, α = 1, ...,N (2)

where Rαβ = xβ −xα is the separation vector between particle α

and particle β , and M is a third-order dimensionless tensor, which
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is a function of the relative configuration of a pair of spheres.
It is shown that tensor M is entirely determined by three scalar
functions of the dimensionless inverse separation distance, λ =

2a/|RRR| [4]. For widely separated spheres (typically when |Rαβ |>
4a), the far-field expression of tensor M is derived as follows using
the method of reflection:

MFF (R/a) =
1
12

T(R/a)+O(λ 5), (3)

where T is the Green’s functions for a potential quadrupole [40]
and given in index notation as follows:

Ti jk(R) =−
6

R5 (δi jRk +δikR j +δ jkRi)+30
RiR jRk

R7 . (4)

We use a periodic version of Eq. 3 to account for the interaction
of particle α with particle β in the computational domain, along
with the periodic images of particle β in all three directions. This
far-field tensor is asymptotically valid to order O(λ 4) for any pair
of particles. However, if particle α and β are close to each other
(typically when |Rαβ |< 4a), the far-field tensor in Eq. 3 becomes
inaccurate. To that end, MFF is replaced by the more accurate
version tensor MT M calculated by using the method of twin mul-
tiple expansions for a near-field interaction [4]. This method is
accurate down to a separation distance of |Rαβ | ≈ 2.005a. Note
that the particle velocity from Eq. 2 with MFF and MT M accounts
for both electric and hydrodynamic interactions between the par-
ticles. For the confined domain, only periodic images of particles
in the x and y directions are considered. For particle-wall interac-
tions, only short-range interactions with the boundaries are cap-
tured to focus on an effect on particle dynamics in the vicinity of
the electrodes[12], while long-range interactions could be possi-
ble [41] but will be included in future work.

Direct calculation of Eq. 2 requires the high-order computa-
tion O(N2), which makes the simulation of many particles pro-
hibitively expensive. Hence, the fast smooth particle mesh Ewald
(SPME) algorithm based on the Ewald summation formula of
Hasimoto [42] and on fast Fourier transforms is employed to ac-
celerate the computation to O(NlogN) [43]. The SPME algorithm
is another version of the accelerated Stokesian dynamics simula-
tion [44]. This algorithm has been extended to Stokes dipole and
potential quadrupole interactions [12, 38]. Here, a fixed time
step ∆t is used and chosen to ensure that particles only travel a
fraction of the mean inter-particle distance during one integra-
tion step. To prevent excessive particle overlaps, which occur due
to the use of finite time steps in simulations, we implement an ef-
fective algorithm, functionally identical to the potential-free algo-
rithm [17], where the particles are moved almost exactly within
roundoff errors (∼ 2.005a), to contact. This potential-free algo-
rithm has been added to the simulation model in our previous
works [39, 45] for simulating very concentrated suspensions. In
the remainder of the paper, all variables are made dimension-
less using the characteristic length scale lc = a and time scale
tc = η/εE2

0 .

3 Results and discussion
We consider a suspension in a domain of dimension Lx×Ly×Lz =

402×20 for a range of volume fractions φ up to φ = 50%. All sim-
ulations are initiated from the hard-sphere equilibrium configura-
tions at a given volume fraction. To check the dependence of the
initial configuration, we have run multiple simulations with dif-
ferent initial configurations for each volume fraction, confirming
that the overall structural dynamics are insensitive to the initial
configuration.

3.1 Bulk suspension

The time evolution of the particle distribution in a suspension
for volume fractions of φ = 15% and 30% is shown in Fig. 1. At
t = 0, particles are randomly distributed, and an electric field is
applied, which, in response, leads to the formation of particulate
structures over time. Shown in Fig. 1(a) for φ = 15%, the parti-
cles initially chain up along the field (z) direction on a fast time
scale of O(200). This fast process is then followed by the rear-
rangement of the chains on a longer time scale. The structural re-
arrangement coincides with the coalescence of the nearby chains,
resulting in the formation of larger structures like thick colum-
nar aggregates [12]. Fig. 1(b) shows a suspension at φ = 30%.
There is a noticeable difference in the structural evolution com-
pared with φ = 15%. The particles do not seem to form initial
chain-like structures. Instead, they tend to directly undergo the
formation of mesoscopic structures larger than thick columnar ag-
gregates. This early formation of the mesoscopic cellular pattern
is observed by the formation of particle-free voids in a suspen-
sion at up to t ≈ 400. As these voids tend to expand with time
due to the continuous rearrangement and coalescence of struc-
tures, sizable clusters are eventually formed. A suspension then
becomes nearly steady-state at t > 1400. Note that the particle
motion within structures seems to slow down at t ≈ 400 for both
volume fractions, and the structures do not evolve significantly
after t = 1400.

The kinetics of the suspension evolution is then quantified by
the ensemble-averaged root-mean-square (RMS) particle velocity
urms. Fig. 2 shows the RMS velocity at different volume fractions
as a function of time. As soon as the electric field is applied,
the particle motion instantaneously arises as a result of dipolar
interactions between particles. Since particle pairing due to the
dipolar or dielectrophoretic effects is inherently stable, the par-
ticle velocity continues to decrease over time until the particle
motion almost ceases at long times. However, there is a distinct
difference in the decreasing trend of urms for different regimes of
volume fractions. For dilute regimes, such as φ < 20%, there are
two characteristic slopes as seen for φ = 10% in Fig. 2 – an initial
gentle slope followed by a steeper slope after t ≈ 100. The initial
gentle slope represents a slow decay of the velocity, indicating
the rapid formation of particle chains along the field direction.
The following steeper slope represents a rapid decay of the veloc-
ity, corresponding to the rearrangement and coalescence process
of the chains, which results in the formation of thicker colum-
nar structures, as seen in Fig. 1(a). However, beyond semi-dilute
regimes, roughly for φ > 25%, there is no initial gentle slope, and
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Fig. 1 The temporal evolution of the particle distributions in the x− y plane in a periodic cell of dimensions Lx×Ly×Lz = 402×20. The panel (a) is
for φ = 15%, and the panel (b) for φ = 30%. The figures at the far right in each panel illustrate the three-dimensional particle distributions at t = 6000
or steady state.

the RMS velocity starts to rapidly decrease from the beginning. It
again suggests that for the semi-dilute and concentrated regimes,
the particles tend to undergo the formation of larger structures
directly without forming any initial particle chains, which is con-
sistent with the observations in snapshots in Fig. 1(b). It is worth
noting that the suspension reaches an almost steady state when
urms ≈ 0.0017 as the structures barely evolve and move, although
there are very small particle motions within the structures. Here-
inafter, we denote the steady-state when urms < 0.0017 in a sus-
pension.

 φ 
 φ 
 φ 
 φ 
 φ 
 φ 

Fig. 2 (Colour online) Temporal evolution of the root-mean-squared
(RMS) velocity of particles for various volume fractions. It is found that
the suspensions become steady state when urms ≈ 0.0017.

To quantify the formation kinetics of the suspension structures,

we calculate the mean cluster size Sm as a function of time, which
was given by See and Doi [46] as follows

Sm(t) =
1
N

Nc(t)

∑
k=1

N2
k (t), (5)

where Nc(t) is the number of clusters at a certain time t and Nk

is the number of particles in the kth cluster. The cluster statistics
are computed by the connectivity matrix method based on the
algorithm developed by Sevick et al. [47]. In this method, indi-
vidual clusters are identified by directly-connected and indirectly-
connected particles within a cluster. Particle pairs are considered
as directly-connected when the separation distance is within a
criterion of |RRR|/a < 2.0075. A search for the directly-connected
and indirectly-connected particles continues until the individual
clusters are identified, given the fact that every particle within
a cluster should be connected, either directly or indirectly. The
number and size of clusters are then calculated.

Fig. 3 shows a temporal evolution of the mean cluster size com-
puted by Eq. 5 for various volume fractions. For a reference, the
dashed line for Sm = 2 was added to represent a particle pair from
which the time scale of the particle pairing can be estimated at
each volume fraction. The characteristic time scale of particle
pairing decreases with volume fraction due to the smaller av-
erage separation distances between particles in initial random
configurations as a volume fraction is increased. At φ 6 20%,
the mean cluster size appears to increase following a power-law
function after Sm > 2 before reaching a plateau. The exponent
of the power-law function slightly increases with volume fraction
in this range of volume fractions. Interestingly, the steady-state
value of Sm increases a bit larger from φ = 10% to φ = 15% and
also from φ = 20% to φ = 25% than from φ = 15% to φ = 20%.
These observations imply the probabilities of transitions in struc-
tural formation among these volume fractions. At φ > 30%, each
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curve starts with an initial small power-law exponent followed
by a much higher power-law exponent before reaching a clear
plateau of the mean cluster size. As a volume fraction is further
increased, these power-law exponents get larger, and the mean
cluster size reaches a plateau much faster.

Now, we proceed to presenting the multiscale characteristics
of the structural formation at three different scales, namely mi-
croscale, mesoscale, and macroscale.
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Fig. 3 (Colour online) Temporal evolution of the mean cluster size Sm
for various volume fractions. The dashed line indicates the time scales
of particle pairing in the field direction at each volume fraction.

3.2 Microscopic measure

To provide a microscopic (particle-level) measure or microstruc-
tural information, we first measure the coordination number Z,
which represents the average number of neighbor particles in con-
tact with a certain particle. Fig. 4(a) shows the temporal evolu-
tion of the ensemble-averaged coordination number 〈Z〉 at var-
ious volume fractions. The two different growth behaviors are
observed, where there is an initial fast growth followed by much
slower growth at longer times. The inset of Fig. 4(a) shows the
steady-state coordination number as a function of volume frac-
tion. As expected, it increases monotonically with volume frac-
tion and especially becomes an almost linear function of volume
fraction for φ > 15%.

More notably, suspensions exhibit interesting behaviors with
regard to the microscopic fluctuations. To this end, the stan-
dard deviation σZ of the ensemble-averaged coordination num-
ber Z is calculated. Fig. 4(b) shows the temporal evolution of
the normalized fluctuation magnitude σ2

Z/〈Z〉 at various volume
fractions. This normalized fluctuation magnitude could also be
indicative of microscopic heterogeneity. To be more specific, the
microscopic heterogeneity can be referred to as the variability in

〈
〉

σ
〈

〉

 φ 
 φ 
 φ 
 φ 
 φ 
 φ 

φ

φ

Fig. 4 (Colour online) Temporal evolution of (a) the ensemble-averaged
coordination number 〈Z〉 and (b) the normalized coordination number
fluctuation for various volume fractions on log-log scale. Note that σz
denotes the standard deviation of the ensemble-averaged coordination
number. The insets show the time-averaged values of these variables
over a steady state as a function of volume fraction.

the coordination number. Initially, the fluctuation decreases as
the particles start to form particle chains or bonds, which means
that the degree of the microscopic heterogeneity decreases. It
then reaches the minimum at about the same time when the av-
erage coordination number 〈Z〉 becomes almost plateau, as seen
in Fig. 4(a). Typically, the time at which the fluctuation reaches
the minimum decreases with volume fraction. Once the mini-
mum reaches, the microscopic fluctuation exhibits an interesting
behavior for different volume fractions. At φ = 10%, the fluctu-
ation shows a relatively strong variation but stays near its mini-
mum value. For 10% < φ < 40%, the fluctuation starts to increase
until reaching the steady plateau with less variations compared
to one for φ = 10%. This fluctuation growth appears to result
from the rearrangement and coalescence of structures during the
coarsening process after the particle pairing process. At much
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higher volume fractions (φ > 40%), this growth trend depreciates
due to the strong particle loading effects. The inset of Fig. 4(b)
shows the time-averaged coordination number fluctuations over
a steady-state. Interestingly, the steady-state coordination num-
ber fluctuation (i.e., microscopic heterogeneity) exhibits a non-
monotonic variation with volume fraction. The microscopic het-
erogeneity is enhanced with volume fraction and reaches a max-
imum at φ = 20% followed by a subsequent decrease. It suggests
that there is a microstructural transition arising at φ ≈ 20% at
which the suspension reaches the most heterogeneous state at
the microscale.

To further characterize the microstructure of a suspension, we
employ the fabric tensor concept, which was originally introduced
for the contact network of granular materials [48, 49]. The fabric
tensor Ap can be computed at the particle level using the follow-
ing expression [31, 50, 51],

Ap =
Nb

∑
i=1

nnni⊗nnni, (6)

where Nb is the number of the particles in contact, nnni is the
unit vector connecting the center of a particle to the center of
its ith bond neighbors, and ⊗ denotes the dyadic product. The
system-sized fabric tensor A can be then derived by averaging the
particle-level fabric tensors over the particle ensemble,

A =
1
N

N

∑
p=1

Ap. (7)

The isotropic scalar of the fabric tensor, defined by the trace
of A or trA, indeed represents the average coordination num-
ber. Subtracting this isotropic part from the fabric tensor (i.e.,
ζ = A− (trA/3)I) yields the deviatoric tensor ζ [31], which is il-
lustrative to quantify the microstructural anisotropy. When the
diagonal entities of the deviatoric tensor get smaller and close
to zero, particle bonds inside the structure exhibit less prefer-
ence of orientation in all directions, suggesting an isotropic state.
Fig. 5(a) shows the temporal evolution of the diagonal entities of
the deviatoric tenor ζ in three (x,y,z) directions at various vol-
ume fractions. Shortly after applying the electric field to the most
isotropic state at t = 0, a suspension starts to deviate from its
isotropic state at t ≈ 10, where ζzz increases and becomes positive,
while ζxx and ζyy decrease and become negative. The positive sign
suggests that the orientation of particle arrangements is preferred
in the field direction for t > 10. At a specific time (which varies
with volume fraction within the range of t = 110− 300), ζxx and
ζyy become minimum, while ζzz becomes maximum. The suspen-
sions at that specific time are the most microscopically anisotropic
at each volume fraction.

Interestingly, after reaching the most anisotropic state, the
long-term behavior of ζxx, ζyy and ζzz appears to depend on vol-
ume fraction. At a volume fraction of 10%, the long-term vari-
ation of the deviatoric components is almost negligible, mean-
ing that the most anisotropic state continues to maintain. That
can be explained by the weak interactions between the highly-
anisotropic chain-like structures that are largely separated and
hence do not tend to coalesce and rearrange. This explanation

is also consistent with the cluster size in Fig. 3, where the mean
cluster size for φ = 10% remains around 10 at steady state, which
is the size of Lz, as most structures are one-dimensional chains
spanned in the field direction due to very weak chain-chain inter-
actions. For 15% 6 φ 6 30%, however, the magnitude of ζxx, ζyy

and ζzz exhibits a noticeable decrease before reaching a plateau.
This decreasing period indicates that the rearrangement and co-
alescence of the structures arise during this period, leading to
the microstructure being more isotropic. For φ > 40%, the mi-
croscopic anisotropy does not change over time once the most
anisotropic state reaches. In this highly concentrated regime,
once the suspension reaches its most anisotropic state by form-
ing a cellular network with larger cells of particle clusters, struc-
tural evolution tends to arrest without any further microstructural
changes.

Fig. 5(b) shows the time-averaged deviatoric components over
a steady-state. In this figure, we observe a non-monotonic behav-
ior with volume fraction, which is also seen in the coordination
number fluctuation (microscopic heterogeneity) as shown in the
inset of Fig. 4(b). However, the deviatoric components show the
opposite characteristics to the microscopic heterogeneity. While
microscopic heterogeneity increases with volume fraction up to
φ = 20%, the degree of microscopic anisotropy decreases with
volume fraction and becomes minimum at φ = 30% followed by
a subsequent increase. It suggests that there is a microstructural
transition arising at φ = 30% at which the suspension reaches the
most isotropic state at the microscopic level. The most isotropic
state results from the fact that the structure becomes much thicker
in the x and y directions at φ = 30%. This makes the particles
bond with almost the same number of neighbor particles in all
directions. Increasing the volume fraction beyond φ = 30% then
results in microstructure to be more anisotropic, while becoming
more homogeneous.

3.3 Mesoscopic measure

Moving towards the next scale measure at the mesoscale (parti-
cle clusters-level), we consider the number density fluctuation as
it could provide a measure for the mesoscopic structural infor-
mation of suspensions, especially mesoscopic heterogeneity [32].
The number density fluctuation can be readily calculated at arbi-
trary cluster sizes [32, 38, 39]. In this calculation, a probe cell
of a fixed volume V is positioned arbitrarily in a simulation do-
main, where the fixed volume V is chosen a priori. In practice,
the number of particles Np inside the probe cell may differ from
the expected value 〈Np〉 = φV/Vp, where Vp = 4πa3/3 is the vol-
ume of a particle. Note that 〈Np〉 represents the expected number
of particles inside the cell or the mean cluster size. Quantifying a
local variation in the number density of particles, the variance of
Np (i.e., σ2

Np
) normalized by the expected value 〈Np〉 can give the

number density fluctuation.

Fig. 6 shows the time-averaged number density fluctuation over
steady state as a function of volume fraction for five different
expected cluster sizes 〈Np〉. For all these five cases, the meso-
scopic fluctuations display a non-monotonic behavior as a func-
tion of volume fraction. As increased with volume fraction at
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Fig. 5 (Colour online) (a) The diagonal components of the deviatoric tensor, ζxx, ζyy, ζzz, as a function of time for various volume fractions. Due to
symmetry with respect to the field direction, ζxx ≈ ζyy. Note that the dashed line, dotted line, and solid line represent x, y, and z directions, respectively.
(b) The time-averaged diagonal components of the deviatoric tensor over a steady state as a function of volume fraction. A non-monotonic behavior
is observed for all three components as a function of volume fraction.
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Fig. 6 (Colour online) The number density fluctuation averaged over
a steady state as a function of volume fraction. Five different expected
values of 〈Np〉 are considered, and all cases show the same non-monotonic
trend with volume fraction.

φ = 10%, the maximum values are reached at φ ≈ 30%, suggest-
ing that the suspension becomes the most heterogeneous state at
the mesoscale at this volume fraction. As seen in the steady-state
particle distribution in Fig. 1, the suspension exhibits a unique
particle distribution at steady state at this volume fraction, where
there are well-separated large clusters or aggregates that are
densely packed with particles. For φ > 30%, the mesoscopic fluc-
tuation decreases with volume fraction as the particles assemble
into a cellular network pattern with smaller particle-free voids. It
should be noted that the highly heterogeneous mesoscopic state
could tie closely to the highly heterogeneous microscopic state
due to large variability in the coordination number.

3.4 Macroscopic measure

To provide a measure for the macroscopic response during the
structural evolution, we calculate the particle stress tensor ΣΣΣ

p in
a suspension. To leading order, the particle stress mainly results
from the dielectrophoretic force FFFDEP, which to leading order is
O(R−4). The resulting stress xxxFFFDEP then becomes the leading or-
der of O(R−3). Note that the hydrodynamic contribution to the
stress is of O(R−5), which corresponds to the leading order of the
gradient of Eq. 4. The particle stress due to the dielectrophoretic
force FFFDEP is calculated by

ΣΣΣ
p =−n〈xxxFFFDEP〉, (8)

where n is the number density of particles and xxx is the position
vector of a particle. The dielectrophoretic force between a pair
of particles can be expressed as FFFDEP = 4πεa2F : EEE0EEE0 [4, 38],
where the dimensionless third-order tensor F can be written in
indicial notation by

Fi jk = f (λ )(δi jR̂k +δikR̂ j)+g(λ )R̂iδ jk +h(λ )R̂iR̂ jR̂k, (9)

where R̂RR = RRR/|RRR| and λ = 2a/|RRR|. The scalar functions f , g, and h
can be calculated using the methods of reflection for the asymp-
totic results and corrected using the twin multipole expansion
when the particles are very close to each other [4, 38]. To leading
order for the particle stress, the scalar functions are given by

f (λ ) =− 3
64

λ
4, g(λ ) =− 3

64
λ

4, h(λ ) =
15
64

λ
4. (10)

Figs. 7(a) and (b) show the temporal evolution of the normal
components of the particle stress tensor ΣΣΣ

p in the transverse (x)
direction and the field (z) direction, respectively. For all volume
fractions, the transverse normal stress Σ

p
xx remains negative and

becomes more negative after early plateau periods. The time at
which the magnitude of Σ

p
xx starts to decrease gets earlier with

increasing volume fraction as a result of the reconfiguration and
coalescence of initially formed structures. For the field normal
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Fig. 7 (Colour online) Time evolution of the diagonal components of
the particle stress tensor ΣΣΣ

p. (a) Σ
p
xx and (b) Σ

p
zz as a function of volume

fraction. Note that Σ
p
yy ≈ Σ

p
xx. (c) The time-averaged Σ

p
xx, Σ

p
yy, and Σ

p
zz

over steady state as a function of volume fraction. (d) The particle
pressure Π and the normal stress difference Σ

p
xx−Σ

p
zz over a steady state

as a function of volume fraction.

stress Σ
p
zz, the different temporal behaviors are observed between

φ < 30% and φ > 30%. For semi-dilute and concentrated suspen-
sions at φ > 30%, Σ

p
zz exhibits almost the same trend as Σ

p
xx, while

at φ = 30%, there is a slight go-up before becoming more nega-
tive. However, for φ < 30%, Σ

p
zz exhibits a notable non-monotonic

variation with time. It goes up after the early short plateau peri-
ods. Especially, at φ = 10% and 20%, Σ

p
zz becomes positive, while

it becomes negative again at long times for φ = 20%.
Fig. 7(c) shows the time-averaged Σ

p
xx and Σ

p
zz over a steady

state as a function of volume fraction. Both normal stresses ex-
hibit a monotonic decreasing trend with volume fraction. As ex-
pected, Σ

p
xx ≈ Σ

p
yy due to symmetry with respect to the field di-

rection. As in the case of hard-sphere suspensions [52], all nor-
mal stresses are negative, but interestingly except for positive Σ

p
zz

at φ 6 15%. This positive normal stress might result from rela-
tively strong compression in the field direction. For the magni-
tude of the normal stresses, the transverse stresses Σ

p
xx and Σ

p
yy

are larger than the field stress Σ
p
zz due to limited particle mo-

tions in the field direction at steady state. To further examine the
macroscopic measure at steady state, Fig. 7(d) shows the particle
pressure Π = −1/3Σ

p
ii and the normal stress difference Σ

p
xx−Σ

p
zz.

Similar to the hard-sphere suspensions in a shear flow [52, 53],
the particle pressure Π is positive and monotonically increases
with volume fraction. The normal stress difference becomes more
negative with volume fraction and then remains almost constant
for φ > 25%. In other words, the normal stresses become more
anisotropic with volume fraction until its most anisotropic state is
reached at φ ≈ 25%. As the volume fraction is further increased,
however, the degree of macroscopic anisotropy remains the same

 φ
 φ
 φ 
 φ
 φ
 φ 

Fig. 8 (Colour online) Temporal evolution of the root-mean-squared
(RMS) velocity of particles at three different volume fractions for periodic
and confined suspensions.

even though the particle pressure keeps increasing. Interestingly,
the highly anisotropic macroscopic state arises when the structure
becomes less anisotropic at the microscale.

Fig. 9 The steady-state particle distributions at three different volume
fractions: the panel (a) for periodic suspensions and the panel (b) for
confined suspensions. Movies of periodic and confined suspensions at
each volume fraction are included in the ESI.†

3.5 Effect of confinement
Lastly, we evaluate the effects of confinement on the multiscale re-
sponses embedded in the suspension. Flat boundaries are present
at z = 0 and z = Lz = 20a, where the periodic interactions are pro-
hibited in the field direction. The simulation method is similar
to our previous works [12, 45]. Fig. 8 shows the temporal evolu-
tion of the suspension kinetics urms for both periodic and confined
domains. The RMS particle velocity in the confined suspensions
tends to decrease faster than for the periodic ones. Similar to
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the kinetics in the periodic suspensions, the steady-state seems
to arise for the confined suspensions when urms ≈ 0.0017 as the
structures barely evolve. Figs. 9(a) and (b) show the particle
distributions at steady state in the x− y plane for the periodic
and confined suspensions, respectively. At φ = 15%, the confine-
ment makes the suspension form more sheet-like thin aggregates,
which are also observed in the previous studies [12, 16]. Simi-
larly, at φ = 30%, the steady-state pattern of the confined suspen-
sion is far different from that of the periodic one. Sizable clusters
that are densely packed with particles are well-separated for the
periodic case, while a more labyrinthine-like pattern is formed for
the confined case. At φ = 45%, the confinement is likely to make
the particle-free voids in a cellular network pattern much smaller
than for the periodic case. Movies of periodic and confined sus-
pensions at each volume fraction are included in the ESI.†

The effects of confinement on the multiscale responses in the
suspension are investigated across length scales. For the mi-
croscale, we again consider the coordination number fluctuation
and the deviatoric tensor at a steady state. As seen in Figs. 10(a)
and (b), no significant changes are observed in the microscopic
responses at least for the current degree of confinement, al-
though the coordination number fluctuation is slightly reduced
by confinement. However, for the mesoscale, there is a noticeable
change due to confinement. Fig. 10(c) shows the number density
fluctuations at steady state for the periodic and confined suspen-
sions. The confinement seems to primarily alter the mesoscopic
response, specifically affecting the mesoscopic heterogeneity. Un-
like the periodic suspension, where there is a non-monotonic be-
havior of the fluctuation with volume fraction, the confined sus-
pension shows an almost monotonic decay of the fluctuation with
volume fraction. Indeed, the confinement tends to diminish the
mesoscopic heterogeneity and eventually removes the most meso-
scopically heterogeneous state at φ ≈ 30%. For the macroscale,
no significant changes are again made by confinement, as can be
seen in the particle pressure and the normal stress difference in
Fig. 10(d). It should be noted, however, that the normal stress
difference seems to continue to decrease even after φ = 25% for
the confined suspension, while that of the periodic suspension
stays almost constant after φ = 25%. These confinement effects
could suggest that the macroscopic response seems to link more
to the mesoscopic features than the microscopic ones, for which
detailed investigations will be a subject of interesting future work.

4 Conclusions
We studied the multiscale characteristics of the structural forma-
tion in a suspension of dielectric spheres in an electric field from
dilute to concentrated regimes using large-scale particle simula-
tions. For the current simulation model, we used the fast smooth
particle mesh Ewald algorithm to account for dipolar interactions
and hydrodynamic interactions (capturing both near-field and
far-field electric and hydrodynamic interactions) for large systems
over a long time [12, 39].

The kinetics of structural evolution is studied by the RMS par-
ticle velocities and mean cluster size. There is a distinctive dif-
ference in temporal behavior of structural kinetics between the
regimes of volume fraction. Unlike the dilute regime (φ < 25%),

ζ

ζ
ζ
ζ
ζ
ζ
ζ

σ
〈

〉

φ

Σ

Π
Σ Σ
Π
Σ Σ

φ

σ
〈

〉

Fig. 10 (Colour online) Effects of confinement on multiscale responses.
Microscale: (a) the time-averaged coordination number fluctuation and
(b) the time-averaged diagonal components of the deviatoric tensor
at steady state. Mesoscale: (c) the number density fluctuation at
steady state averaged over five expected values of 〈Np〉= 20,30,40,50,60.
Macroscale: (d) the particle pressure Π and the normal stress difference
Σ

p
xx−Σ

p
zz.

beyond the semi-dilute regime (φ > 25%), the particles tend to
undergo the formation of larger structures directly without the
initial formation of particle chains, eventually forming a large cel-
lular network pattern.

At the microscopic level, the degree of structural anisotropy is
evaluated by the deviatoric tensor based on the fabric tensor. The
temporal behavior of these parameters is shown to depend on vol-
ume fraction. Although the initial increasing trend of anisotropy
before reaching the most anisotropic state occurs for all volume
fractions, their long-time behavior after this most anisotropic
state varies with volume fraction. For a volume fraction as small
as φ = 10%, the long-time variation of this state is negligible due
to very weak interactions between highly anisotropic chains that
are largely separated. For 15% 6 φ 6 30%, the rearrangement
and coalescence arise within structures to recover microscopic
isotropy. In concentrated regimes (φ > 40%), the long-term struc-
tural evolution tends to arrest without any further changes in
the microstructural features. At steady-state, the degree of mi-
croscopic anisotropy decreases up to φ = 30% and then slightly
increases as a volume fraction is further increased. The degree
of microscopic heterogeneity is also evaluated by the coordina-
tion number fluctuation. Interestingly, it also exhibits a non-
monotonic φ -dependence but follows the opposite trend to micro-
scopic anisotropy. The degree of heterogeneity sharply increases
up to φ ≈ 20% followed by a gentle decrease.

For a mesoscale measure, the degree of structural heterogene-
ity was measured by the number density fluctuation, which also
displays a non-monotonic variation with volume fraction. Sim-
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ilar to the microscopic heterogeneity, the degree of mesoscopic
heterogeneity increases up to φ = 20% or φ = 30% and then de-
creases as a larger cellular-like network pattern is formed.

For a macroscopic measure, the particle-induced stress field
was computed. Most of the normal stresses are negative and be-
come more negative as approaching a steady state. However, the
field normal stress initially becomes less negative for φ < 30%
and even becomes positive for φ = 10%. For semi-dilute and
concentrated suspensions (φ > 30%), it still exhibits a decreasing
trend as approaching a steady state. At steady-state, the normal
stresses become more anisotropic with volume fraction and reach
the most anisotropic state at φ ≈ 25%. However, it remains almost
at that state for φ > 30%, while particle pressure keeps increasing.

The present multiscale observations suggest that there is a tran-
sition in the multiscale responses at φ ≈ 30%. At this volume
fraction, the steady-state suspension structure is shown to be the
most isotropic at the microscale, while its stress field is the most
anisotropic at the macroscale. In addition, the heterogeneity of
suspension structures becomes maximum at this volume fraction
at both microscale and mesoscale. Although there clearly seems
a mutual physical consequence that influences each other among
three length scales at φ = 30%, such investigation will be included
in future work.

Lastly, we explore the effects of confinement on structural for-
mation. It should be noted that we excluded the DEP interac-
tions between the particles and the boundaries. The confine-
ment seems to effectively screen the mesoscopic response, while
there are slight changes at the microscale. This screening effect
is clearly observed at the transitional volume fraction, φ ≈ 30%,
where the strong mesoscopic heterogeneity disappears. This
mesoscopic response via confinement appears to strongly affect
the macroscopic stress anisotropy that keeps increasing with vol-
ume fraction, unlike the periodic suspension where it increases
only until φ ≈ 25%. The confinement effect on the mesoscopic
and macroscopic features could suggest that the suspension has
a more direct link between the mesoscale and macroscale, but
detailed investigations will be included in future work. Nonethe-
less, the current multiscale understanding of structural formation
can lead to control strategies for practical applications of electric-
driven suspensions, such as for ER fluids.
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