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Programming Interactions in Magnetic Handshake
Materials†

Chrisy Xiyu Du,∗a Hanyu Alice Zhang,b Tanner G. Pearson,cJakin Ng,c Paul L. McEuen,c,d

Itai Cohen,c,d and Michael P. Brennera

The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect
of programmable assembly. Recent developments in DNA nanotechnology and colloidal particle syn-
thesis have significantly advanced our ability to create particle sets with programmable interactions,
based on DNA or shape complementarity. The increasing miniaturization underlying magnetic storage
offers a new path for engineering programmable components for self assembly, by printing magnetic
dipole patterns on substrates using nanotechnology. How to efficiently design dipole patterns for pro-
grammable assembly remains an open question as the design space is combinatorially large. Here, we
present design rules for programming these magnetic interactions. By optimizing the structure of the
dipole pattern, we demonstrate that the number of independent building blocks scales super linearly
with the number of printed domains. We test these design rules using computational simulations of
self assembled blocks, and experimental realizations of the blocks at the mm scale, demonstrating
that the designed blocks give high yield assembly. In addition, our design rules indicate that with
current printing technology, micron sized magnetic panels could easily achieve hundreds of different
building blocks.

1 Introduction
A key feature of living materials is the inherent programmability
of their parts. Complex assemblies require that components with
low crosstalk bind to desired partners without binding to others1.
Such programmability is at the core of biochemical functionality,
from protein folding2,3 to self assembly of catalytic protein com-
plexes4,5 or multicomponent molecular machines6,7. Biology has
managed to create a robust interaction set from a limited set of
nucleic and amino acids. Major advances have been made in the
engineering of specific interactions that use these biological so-
lutions, by either directly programming nucleic acid assembly8,9

or by using them as specific glues coating nanoparticles10,11 or
colloids12,13. However, these interactions can be hard to pro-
gram as they are all based on hydrogen bonds, which have a
fixed binding energy strength. An alternative solution for de-
signing programmable building blocks are magnetic handshake
materials14 whose interactions are governed by magnetic dipole
patterns (Fig. 1). Importantly, there is extensive prior literature
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on the phase behaviors of magnetic spheres22–25, network struc-
ture formation by external driving forces26–29 and the influence
of particle shape on assembly30. These studies, however, focused
on building blocks with a single magnetic dipole. In the mag-
netic handshake materials studied here, multiple dipoles encode
the information for binding. Such materials can be made over
a range of size scales, extending to the nanoscale, where, boot-
strapping off Moore’s law-like advances in magnetic recording
technologies15–18, nanotechnology can be used to print magnetic
dipoles on substrates. This technology offers an information rich
substrate for programming interactions between building blocks
to create novel materials, with a potentially large number of pro-
grammable building blocks. Dipole patterns can vary in both their
strength and their spatial distribution. Over the past decade, bit
sizes have approached 30 nm, the fundamental stability limit of
magnetic domains19–21, giving us a combinatorially large space
to design interactions.

The major goal of this paper is to elucidate the basic rules for
programming building blocks from magnetic printing. For a given
building block design, we need to determine the positions and
strengths of the magnetic domains to maximize programmability.
We find these programming rules by combining information the-
ory31 with physical modeling. Magnetic interactions are simple
to describe mathematically and are easy to model, in contrast to
electrostatic and chemical interactions. The absence of magnetic
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Fig. 1 Illustration of general design principle of magnetic handshake pan-
els. We encode information of specific binding by printing dipole patterns,
specifying location and orientation of magnetic dipoles, on substrates.

monopoles eliminates the complicated screening charge config-
urations that plague quantitative modeling of electrostatic sys-
tems. This simplification makes design iteration computationally
efficient and highly predictive.

2 Model and Method

Information Capacity Formalism of Lock-Key Binding Pairs
The central design requirement for programmability is finding
building blocks with low crosstalk. For a system in thermody-
namic equilibrium, the yield of an undesired configuration decays
exponentially with its energy gap ∆ from the desired configura-
tion31. Designing for low crosstalk therefore requires calculating
the distribution of binding energies for the components, and op-
timizing the ∆ distribution to maximize the yield of the desired
configuration.

To formulate this optimization problem in terms of the basic
building blocks, we consider a set of lock and key pairs, de-
noted as x1,x2, . . . ,xM ∈ X for locks, and y1,y2, . . . ,yM ∈Y for keys,
with the binding energy matrix E, where Ei j ≡ E(xi,y j). Assum-
ing locks and keys have the same concentrations, the equilibrium
probability of the lock i to bind the key j is p(xi,y j) = e−βEi j/Z,
where β is the inverse thermal energy and Z is the partition func-
tion. A natural metric for quantifying cross talk is mutual infor-
mation31, given by

I(X ;Y ) = ∑
xi∈X ,y j∈Y

p(xi,y j) log
p(xi,y j)

p(xi)p(y j)
. (1)

Maximizing the mutual information I(X ;Y ) over the sets of locks
and keys X ,Y minimizes the cross talk. The set with the optimal
information capacity Ic = max(I) has effectively Mc = exp(Ic) non-
crosstalking lock-key pairs.

Using the general theoretical framework developed in Ref.31,
we lay out the information capacity computation here for the
magnetic handshake system. For a system with a well-defined
number of lock and key building blocks and binding energy ma-
trix E, we can directly calculate Mc from Eq. 1. For experi-
mental systems without a set number of locks and keys, we can
calculate Mc by first computing the energy gap distribution ∆

based on binding energy matrices of random sampled compo-
nents (see details in Supplementary Information (SI) ). We de-

Fig. 2 1D Magnetic Strand with Fixed Single Dipole-Dipole Binding En-
ergy. A: sample configuration of a magnetic strand with N = 8 dipoles.
The distance between any two nearest neighbor dipoles on the same
strand is denoted as a, while the interaction distance between two dif-
ferent strands is denoted as d. B: the largest effective number (Mc) of
strands with no crosstalk of magnetic strands of length N = 2−10 with
different d/a ratio. Beyond d/a = 0.7, we find that Mc rapidly decreases.
Here, we used ε = 6NkBT to show the maximum effect on Mc varying
d/a ratio.

fine ∆ as ∆i j = Ei j − sii, where sii is the strength of the on-target
binding of lock i and key i and Ei j is the off-target binding energy
between lock i and key j. Denoting ρ(∆) as the distribution of gap
energies between on target and off target binding, the maximal
number of non-crosstalking pairs (Mc) is given by31

Mc =
(1+ ⟨e−β∆⟩)2

⟨β∆e−β∆⟩−⟨e−β∆⟩+ ⟨e−β∆⟩2
, (2)

where ⟨·⟩ is the average with respect to ρ(∆). This formula is
intuitive: if we consider the (exponentially weighted) average of
the gap ∆ much larger than kBT so that β∆ ≫ 1, then Mc increases
exponentially with ∆ as

Mc ∼ (⟨β∆e−β∆⟩)−1. (3)

Using this framework, we can directly formulate an optimiza-
tion problem of how to encode dipole patterns for a set of mag-
netic building blocks to maximize programmability. Here, we
measure programmability by evaluating Mc of a set of magnetic
patterns, the larger the Mc, the better the programmability. Given
a potential design for a set of magnetic dipoles on a substrate, we
can compute the distribution of gap energies ρ(∆), and thus the
effective number Mc of programmable building blocks (Eq. 2).

Magnetic Interaction Model
Magnetic interactions between any two panels depend on the spa-
tial configuration of their dipoles, and in particular the ratio d/a,
where a is the center to center distance between adjacent dipoles
on the same panel, and d is the distance between the centerlines
of two panels (Fig. 2A). By summing over the interactions be-
tween every dipole pair on different panels, we can write down
the binding energy for on-target binding between two comple-
mentary magnetic panels (see SI for detailed derivation).

V =−µ0m2

2πd3

[
N + k · d3

a3 · 2d2/a2 −1
(1+d2/a2)5/2

+F

(
d
a

)]
(4)

Here µ is vacuum permeability, m is the magnitude of the mag-
netic dipole moments, N is the number of dipoles on a single
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Fig. 3 2D Magnetic Panel with Fixed Total Binding Energy. A: three sample dipole patterns with number of dipoles N = 4,5,8. The dipoles are placed
with the constraint that all nearest neighbor distances for any two dipole pairs must be the same. B: the cumulative distribution functions of ∆ for
magnetic panels with N = 3−10 dipoles with total binding energy ε = 10kBT . C: Mc of magnetic panels and strands with N dipoles for ε = 10kBT . We
see that by allowing the placement of dipoles on a 2D plane, we increased information capacity of our system. The insert shows the scaling behavior
of Mc as a function of N dipoles for panels at ε = 10kBT . We note that at ε = 10kBT , Mc increases super linearly as a function of N.

panel, k is the number of second-nearest neighbor aligned dipole
pairs minus the anti-aligned dipole pairs, and F is the (negligi-
ble) effect of third or higher neighbor interactions. Eq. 4 implies
that the second-nearest neighbor term vanishes when 2d2/a2 = 1,
corresponding to the case where a dipole’s magnetic field is per-
pendicular to its next nearest neighbor (Fig. 2A). Even though
dipole-dipole interaction is long range32, at d/a =

√
2/2, the ma-

jority of the binding energy contributions between two magnetic
panels come from nearest neighbor interactions, while the higher
order terms mark around 2% of the binding energies (see SI for
more detail).

1D Magnetic Strands

To test whether the separation ratio of d/a =
√

2/2 gives rise to a
higher information capacity of magnetic panels, we first consider
a one dimensional chain of magnetic dipoles, where we can sys-
tematically enumerate the entire configuration space of 2N dipole
strands with N dipoles. When generating the distinct dipole
strand, we remove palindromic sequences corresponding to the
same lock-key pair, such as NNNNSSSS and SSSSNNNN. We enu-
merate the number of non-palindromic strands for L ∈ [2,10], giv-
ing [2,3,7,10,21,36,78,136,327] distinct patterns. Using Eq. 1, we
directly compute Mc as a function of d/a, by calculating the bind-
ing energy matrices of all possible magnetic strands (Fig. 2B). We
find that the information capacity Mc decreases rapidly beyond
d/a ∼ 0.7, confirming our hypothesis that the magnetic strand
system has higher information capacity by eliminating second-
nearest neighbor interactions.

Fig. 2B shows that Mc increases exponentially with the number
N of dipoles, arising due to the exponential dependence of Mc on
the energy gap ∆ (Eq. 3). Since we computed Mc values by fixing
the strength of the individual dipoles, both the on target binding
energy and the distribution of energy gap increases linearly with
N, resulting an exponential increase of Mc. This energy depen-
dence highlights a fundamental constraint for programmability.
The timescale of unbinding increases exponentially with interac-
tion strength. Practical design requires the unbinding timescale
to be much smaller than the experimental timescale, as otherwise
the system will be trapped in non-desired configurations. Given

the timescale of an experiment, we need to choose the binding
strengths to be small enough for this condition to be satisfied.
Therefore, the correct optimization problem is to maximize the
number of components for a fixed total binding energy.

2D Magnetic Panels

We now turn to the design of dipole configurations on two dimen-
sional panels. We fix the total on-target binding energy ε between
any two building blocks to be 10kBT , so a panel with 3 dipoles
has individual dipoles with a magnetic moment that is

√
10/3 the

dipole moment in a 10-dipole panel. We consider placements of
dipoles on the plane, keeping the constraint d/a=

√
2/2. We com-

pute ρ(∆) by random sampling, over configurations where every
dipole has at least one nearest neighbor of distance a, with no
nearest neighbors smaller than a (Fig. 3A). Using the library, we
calculate the equilibrium configuration and total binding energy
Ei j for each pair of panels in the library.

Fig. 3B shows the cumulative distribution function for 2D pan-
els with N = 3 − 10 dipoles, where we fixed the total binding
energy between building blocks to be 10kBT . The energy gap
between on and off target binding increases with increasing N.
Fig. 3C compares Mc of 1D strands and 2D panels at fixed total
binding energy of ε = 10kBT , where the 2D panels contain much
more information. In addition, the insert of Fig. 3C shows that
Mc ∼ N1.5 for ε = 10kBT , namely the number of effective compo-
nents increases super linearly with N. This scaling means that
even with fixed binding energy between components, we can in-
crease the programmability of our system by printing more mag-
netic dipoles. This is important, as it suggests that increase in
magnetic storage information density can directly result in an
increase in information content of panels for assembly without
changing the timescale for unbinding. Practically, the shortest
side of a magnetic region must be bigger that ∼ 30 nm to ensure
permanence. This limit sets a natural cutoff for the minimum size
and strength of a domain.
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Fig. 4 A: the opening angle (θ) distribution for the high information 3-Dipole panels before optimization. B: the binding energy matrix of the designed
3-Dipole Panels. The binding energies are scaled with the strongest binding energy of the 12 lock-key pairs. C: the coarse grain process of converting
a magnetic panel to a sphere with an attractive patch for simulation. D: the self-assembly yield of the designed panels compare to the randomly
generated ones (not obeying fixed d/a ratio) as a function of simulation temperature. E: start and final state from shaker experiment. Dimers in blue
rectangles form the desired lock-key pairs. F: the self-assembly yield of the designed panels as a function of shaker acceleration (unit in gravitational
acceleration g).

3 Self-Assembly Results

Dimer Self-Assembly

To validate that the designed dipole patterns can accurately as-
semble, we carry out both molecular dynamics simulations and
experiments comparing the yield of dimer assembly between de-
signed and randomly generated 3-dipole patterns. In the simula-
tions the total on-target binding energy was set to 10kBT . For the
experiments, we used panels with N40 Neodymium magnets sep-
arated by a = 0.28cm and binding distance d = 0.2cm, and varied
the shaker acceleration to control the effective temperature of the
system. We find the best patterns of 3 dipoles by iterating through
randomly generated patterns, selecting those with high informa-
tion content. We then applied symmetry analysis by measuring
the opening angle θ (Fig. 4A) distribution on all the patterns and
identified the optimal symmetries for the best patterns (θ peaks
around 60, 100, 140, and 180 degrees). Lastly, we generated
patterns with said symmetries and iterated over different dipole
configurations to get the final designed patterns (Fig. 4B). The
design protocol yields 12 distinct lock-key pairs (Fig. 4B) with
Mc = 3.46 at ε = 10kBT , implying that a theoretical binding yield
of about 68%.

We instantiate these designed configurations in both simula-
tions and experiments, printing the lock-key pairs onto dimers.
We carry out the simulations in HOOMD-blue33–35, while we
used Freud36 for data analysis, and Signac37,38 for data manage-
ment (More detailed description of the simulation setup can be
found in the SI). We program the interactions between lock-key
dimers by putting a small interaction patch on a sphere with the

computed binding energy (Fig. 4C). The patch is small enough
to ensure that only dimers can form in our simulation (see SI for
simulation snapshots). We carry out an ensemble of five differ-
ent runs of the dimer simulations as a function of temperature,
measuring the yield of the desired configurations. We compare
this yield curve to that computed from 15 sets of randomly gen-
erated panels. Fig. 4D shows that the designed panels have sig-
nificantly higher yield than the random panels, with a maximum
yield nearly 80%.

For the experiments, we followed a similar protocol. We super
glued magnets into laser cut holders and made them into cylin-
drical panels following the theoretical designs. We placed these
4 copies of each lock-key pair into a shaker, and measured dimer
assembly as a function of shaking amplitude. The lock-key pairs
are fabricated with specific dimensions so that the binding energy
is only substantial when they bind face to face (see more detail
in SI). The shaking is analogous to the temperature of a thermal
bath, providing uncorrelated noise to the individual panels (more
details for the shaker system setup can be found in SI). The num-
ber of pairs of each dipole pattern is determined to match the
simulation area fraction of 0.2 comfined by an acrylic cylindri-
cal boundary. To carry out the experiment, we start the shaker
at high shaking acceleration to thermalize the panels, and slowly
decrease the shaking acceleration to a target amplitude where we
count the number of correctly and incorrectly assembled dimers
(Fig. 4E,F). For each shaking amplitude, we carry out five replicas
of the experiment. In Fig. 4F, we see the yield of dimer assembly
from the shaker experiment. The highest yield is around 80%,
which agrees with simulation (Fig. 4D).
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We note a decrease in yield at lower temperature and shak-
ing acceleration for simulation and experiments respectively. This
arises from the non-equilibrium nature of the dimer self-assembly
process at low temperature, where the monomers do not have
the chance to freely explore space to find the optimal binding
pair, but would bind with anything nearby39. Our dipole-pattern
design strategy assumes equilibrium self-assembly process, so in
order to achieve better yield at low temperatures, other strategies
can be deployed.

Finite Square Self-Assembly

To demonstrate the power of our designed interactions, we show
how the magnetic panels can enable finite heterogeneous self-
assembly. We aim to self-assemble a finite 3×3 square (Fig. 5A),
using 12 different lock key pairs to encode each of the required
binding sites. We instantiate this both using the 12 patterns from
the 3-dipole system discussed above, and compare this to a se-
lection of 12 10-dipole patterns (see SI for Panel patterns) gener-
ated following the d/a =

√
2/2 design rule. We selected these 12

10-dipole patterns by identifying the top 12 highest information
content patterns from 150 different ones. For the simulations, we
encode the required binding strengths as binding sites on spheres
with attractive patches, with each square building block modeled
with a rigid assembly of spheres (Fig. 5B). We first find the opti-
mal temperature for the highest correct binding lock-key pairs by
sweeping through a range of different temperatures, and ran 100
independent replica runs at the optimal temperature to measure
the yield. Fig. 5C shows the measured percentage of complete
square assembly (blue solid line) and correct bonds (yellow solid
line) in our simulation. The correct bond yield is approximately
83%, consistent with our dimer self-assembly. The yield of per-
fectly assembled squares is closer to 40%, with the majority of the
errors arising from assemblies with 7 correctly assembled squares,
one square having an incorrect bond and one free square. The
10-dipole panels are significantly more accurate, with the success
rate of complete square assembly increasing from 40% to 80%,
and nearly 100% rate of correct bonds.

We also carried out experiments for assembling this configu-
ration using panels with three dipole patterns and the shaker.
Similar to simulation, we first performed the shaker experiment
at different shaking acceleration to identify the optimal ampli-
tude for square assembly (see experimental details in SI), and we
repeated the experiment 100 times at the optimal shaking am-
plitude. These experiments yielded a correct bond rate of 80%,
whereas 25 out of 100 runs led to perfectly assembled configura-
tions. The correct bond rate is similar to that seen in the dimer
experiment and the simulations, while the experimental yield is
slightly lower.

4 Discussion

We demonstrate in this paper a simple design rule for maximiz-
ing the mutual information between lock and key pairs. By fix-
ing d/a =

√
2/2, we maximize the dipole density while minimiz-

ing both the cross talk between off-target binding pairs and the
distribution width for on-target binding energy over the entire

set of dipole patterns. Strikingly, our calculations demonstrate
that for two dimensional panels, we increase the programmabil-
ity by printing more magnetic dipoles, each of which has weaker
binding strength. Magnetic handshake materials allow us to take
full advantage of this design rule, as we can precisely control
the strength and the location of the single dipole domains be-
ing printed. Moreover, by printing the dipole patterns on two di-
mensional surfaces – in contrast to one dimensional chains of e.g.
DNA – we can increase the amount of information that can be en-
coded in a given building block (Fig. 3C). Finally, implementation
of our theoretical designs for self-assembly in mm-sized magnetic
panels, highlights their applicability to real experimental systems.

It is interesting to speculate about the number of potential lock-
key pairs that can be created using state of the art nanofabri-
cation technology. Fig. 3C shows that the number of effective
non-crosstalk patterns scale super linearly with the number of
dipole domains. In scaling magnetic handshake materials down
to micron-scale panels, it is important to consider the maximum
achievable density of non-crosstalking lock-key pairs (Mc) given
state-of-the-art magnetic recording technology. The current areal
bit density of perpendicular magnetic recording media, where one
bit represents a magnetic moment oriented into or out of the
plane of the disk, is on the order of 1Tb/in2 40. At this density,
one bit comprises an area of 645nm2, with typical recording layer
thicknesses of 10-30nm41. Setting the interaction distance d be-
tween two panels as the bit thickness, our d/a design rule dictates
a nearest neighbor distance a = 14-32nm. With these constraints,
we determine current recording technology could easily achieve
a density on the order of hundreds of non-crosstalking lock-key
interactions, Mc, per 1um2 panels. Thus, magnetic handshake
materials offer a new powerful pathway towards the rapid design
and creation of programmable interactions for self-assembly of
increasingly complex structures.

Author Contributions
C.X.D., HA.Z., T.P., P.L.M., I.C. and M.P.B. designed research;
C.X.D.,HA.Z. and J.N. performed research; C.X.D. and M.P.B. con-
tributed new reagents/analytic tools; C.X.D. and HA.Z. analyzed
data; and C.X.D., HA.Z., T.P. and M.P.B. wrote the paper.

Conflicts of Interest
There are no conflicts of interest to declare.

Acknowledgements
This work was supported by NSF Grants DMR-1921567 and DMR-
1921619, Office of Naval Research through ONR N00014-17-
1-3029, the Simons Foundation and partially supported by the
Cornell Center for Materials Research Grant DMR-1719875. The
computations in this paper were run on the FASRC Cannon clus-
ter supported by the FAS Division of Science Research Computing
Group at Harvard University.

Notes and references
1 M. E. Johnson and G. Hummer, Proceedings of the National

Academy of Sciences, 2011, 108, 603–608.
2 C. M. Dobson, Nature, 2003, 426, 884–890.

Journal Name, [year], [vol.],1–7 | 5

Page 5 of 7 Soft Matter



Fig. 5 A: model of the 3×3 finite square assembly design. B: how the fourth building block is represented in an experimental setting and how it is
being coarse grained into simulation. C: the yield of the square assembly using the designed 3-Dipole panels and the 12 chosen 10-Dipole panels.

3 K. A. Dill and J. L. MacCallum, science, 2012, 338, 1042–
1046.

4 T. Kirchhausen, Annual review of biochemistry, 2000, 69, 699–
727.

5 Q. Luo, C. Hou, Y. Bai, R. Wang and J. Liu, Chemical reviews,
2016, 116, 13571–13632.

6 E. R. Kay and D. A. Leigh, Angewandte Chemie International
Edition, 2015, 54, 10080–10088.

7 S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L. Nuss-
baumer, Chemical reviews, 2015, 115, 10081–10206.

8 S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and
W. M. Shih, Nature, 2009, 459, 414–418.

9 K. F. Wagenbauer, C. Sigl and H. Dietz, Nature, 2017, 552,
78–83.

10 M. A. Boles, M. Engel and D. V. Talapin, Chemical reviews,
2016, 116, 11220–11289.

11 M. R. Jones, N. C. Seeman and C. A. Mirkin, Science, 2015,
347, year.

12 Y. Wang, Y. Wang, X. Zheng, É. Ducrot, J. S. Yodh, M. Weck
and D. J. Pine, Nature communications, 2015, 6, 1–8.

13 W. B. Rogers, W. M. Shih and V. N. Manoharan, Nature Re-
views Materials, 2016, 1, 1–14.

14 R. Niu, C. X. Du, E. Esposito, J. Ng, M. P. Brenner, P. L.
McEuen and I. Cohen, Proceedings of the National Academy
of Sciences, 2019, 116, 24402–24407.

15 A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe,
Y. Ikeda, S. Sun and E. E. Fullerton, Journal of Physics D: Ap-
plied Physics, 2002, 35, R157.

16 K. J. Dorsey, T. G. Pearson, E. Esposito, S. Russell, B. Bircan,
Y. Han, M. Z. Miskin, D. A. Muller, I. Cohen and P. L. McEuen,
Advanced Materials, 2019, 31, 1901944.

17 J. Cui, T.-Y. Huang, Z. Luo, P. Testa, H. Gu, X.-Z. Chen, B. J.
Nelson and L. J. Heyderman, Nature, 2019, 575, 164–168.

18 W.-H. Hsu, PhD thesis, University of Minnesota, 2021.
19 D. Weller and A. Moser, IEEE Transactions on magnetics, 1999,

35, 4423–4439.
20 H. Richter, IEEE transactions on magnetics, 1999, 35, 2790–

2795.

21 H. Richter, A. Lyberatos, U. Nowak, R. F. L. Evans and R. W.
Chantrell, Journal of Applied Physics, 2012, 111, 033909.

22 W. Wen, F. Kun, K. F. Pál, D. Zheng and K.-N. Tu, Physical
Review E, 1999, 59, R4758.

23 J. Stambaugh, D. P. Lathrop, E. Ott and W. Losert, Physical
Review E, 2003, 68, 026207.

24 J. Stambaugh, Z. Smith, E. Ott and W. Losert, Physical Review
E, 2004, 70, 031304.

25 A. Snezhko, I. Aranson and W.-K. Kwok, Physical review let-
ters, 2005, 94, 108002.

26 D. L. Blair and A. Kudrolli, Physical Review E, 2003, 67,
021302.

27 S. Kantorovich, J. J. Cerda and C. Holm, Physical Chemistry
Chemical Physics, 2008, 10, 1883–1895.

28 A. Kögel, P. A. Sánchez, R. Maretzki, T. Dumont, E. S. Pyanz-
ina, S. S. Kantorovich and R. Richter, Soft Matter, 2018, 14,
1001–1015.

29 P. A. Sánchez, J. Miller, S. S. Kantorovich and R. Richter, Jour-
nal of Magnetism and Magnetic Materials, 2020, 499, 166182.

30 S. Kantorovich, E. Pyanzina and F. Sciortino, Soft Matter,
2013, 9, 6594–6603.

31 M. H. Huntley, A. Murugan and M. P. Brenner, Proceedings of
the National Academy of Sciences, 2016, 113, 5841–5846.

32 V. Danilov, T. Prokopyeva and S. Kantorovich, Physical Review
E, 2012, 86, 061408.

33 J. A. Anderson, J. Glaser and S. C. Glotzer, Computational
Materials Science, 2020, 173, 109363.

34 T. D. Nguyen, C. L. Phillips, J. A. Anderson and S. C. Glotzer,
Computer Physics Communications, 2011, 182, 2307–2313.

35 J. Glaser, X. Zha, J. A. Anderson, S. C. Glotzer and A. Traves-
set, Computational Materials Science, 2020, 173, 109430.

36 V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings,
J. A. Anderson and S. C. Glotzer, Computer Physics Communi-
cations, 2020, 254, 107275.

37 C. S. Adorf, P. M. Dodd, V. Ramasubramani and S. C. Glotzer,
Comput. Mater. Sci., 2018, 146, 220–229.

38 V. Ramasubramani, C. S. Adorf, P. M. Dodd, B. D. Dice and
S. C. Glotzer, Proceedings of the 17th Python in Science Con-

6 | 1–7Journal Name, [year], [vol.],

Page 6 of 7Soft Matter



ference, 2018, pp. 152–159.
39 M. Williams, Physical Review E, 2019, 99, 042133.
40 B. Marchon, T. Pitchford, Y.-T. Hsia and S. Gangopadhyay,

Advances in Tribology, 2013, 2013, year.
41 W.-H. Hsu and R. Victora, Applied Physics Letters, 2021, 118,

072406.

Journal Name, [year], [vol.],1–7 | 7

Page 7 of 7 Soft Matter


