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Tuning assembly structures of hard shapes in confine-
ment via interface curvature

Rachael S. Skye,a Erin G. Teich,b and Julia Dshemuchadse∗a

Assembly in confinement is a problem of great interest in colloidal structure design, plasmonics,
photonics, and industrial packaging. Along with the range of design choices provided by particle
shape and attraction or repulsion, confined systems add an additional layer of complexity through
the interactions between particles and the container holding them. The range of possible behaviors
produced by these systems remains largely unexplored, yet has profound consequences on the resultant
assembled structure. Here, we address this problem by exploring how the assembly of hard tetrahedral
particles is affected by a spherical container. We simulate particle assemblies in containers holding
4 to 10,000 particles and analyze the range of resultant structures. We find that the presence of a
curved wall causes organization into distinct concentric shells in containers holding up to thousands
of particles. In addition, we see that wall curvature affects structural motifs in systems as large as
10,000 particles, promoting local environments that maximally conform to the wall and providing a
seed for the propagation of these motifs into the interior of the container. Through this work, we
show how confining interfaces can be used to promote the assembly of structures markedly distinct
from those seen in the more commonly studied bulk systems.

1 Introduction
The dense packing of shapes is an age-old optimization prob-
lem.1–4 Given a particular shape—sphere, cube, etc.—into what
structure can it be expected to pack? In recent years, advances
in computational techniques have allowed researchers to explore
the dense packings of a myriad of shapes.5–7 In addition, experi-
mental techniques have realized a diverse array of shapes in par-
ticle synthesis, including tetrahedral silica–polystyrene core-shell
particles,8 supramolecular tetrahedral assemblies,9 and faceted
metal10 or semiconductor nanoparticles.11

The majority of these studies assume a bulk crystal of near-
infinite size. However, a less-explored question is: what happens
if the crystal is not infinite? Previous studies have focused on
the assembly of spheres in spherical containers12–15 or other ge-
ometries,16–18 and only more recently has the focus extended to
polyhedra.19–21 Researchers have developed techniques to exper-
imentally realize spherical assemblies of colloidal particles on the
mesoscale, for example through evaporating emulsion droplets
in a suspension.14,21–25 Such assemblies allow control over the
number of particles in the container. Several studies have also ex-
plored other geometries, including polyhedra confined between
flat walls,26–28 within cylinders,29 or on the surface of cylinders
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and curved interfaces.30

Thus far, only a limited sampling of anisotropic particles has
been investigated, such that we still lack a complete understand-
ing of how the diverse particle shapes that we can synthesize will
interact with a confining wall. Here, we address this gap through
studying a family of hard particle shapes in spherical confinement
via Monte Carlo simulations. By focusing our efforts on a single
family, we study how continuous gradations in particle geometry
affect assembly behavior, allowing us to work towards an under-
standing of particle assembly that does not rely on individually
simulating every possible geometry. We have chosen to focus
on an experimentally relevant class of shapes, vertex-truncated
tetrahedra,9,11,31 which exhibit a wide array of behaviors. The
hard Platonic tetrahedron assembles a dodecagonal quasicrys-
tal32—the first observation of a quasicrystal formed only from
hard interactions. Truncated tetrahedra assemble several struc-
ture types, among them diamond,33 a structure of great interest
on the mesoscale because of its potential to exhibit a full, three-
dimensional photonic band gap in the visible-light regime.34

Through studying the behavior of this shape family, we contribute
towards an understanding of how the geometry of particles inter-
acts with the geometry of the container in which those particles
are assembled.

2 Methods
Simulations were performed using the Hard-Particle Monte Carlo
(HPMC) algorithm implemented in the HOOMD-blue software
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package.35–38 Data management was supported by the signac
data management framework,39–41 analysis of the final structures
was performed using the freud package,42,43 and visualizations
were created using OVITO44,45 and Plato.46

This study focuses on hard particles; that is, particles which
only interact via volume exclusion. Hard particles crystallize with
increasing pressure and their interactions are dominated by en-
tropic effects.5,47–49 To explore the effects of confinement and
wall curvature on particle assembly and interparticle motifs, we
use a continually shrinking, hard-walled spherical container. Fol-
lowing the protocol established by Teich et al.,19 particles were
initialized on a random grid at low pressures and compressed in
an NPT ensemble, and the final quenched structures were ana-
lyzed. The pressure was increased from βP = 0.1 to βP = 100
over 107 Monte Carlo (MC) steps, where β = 1/kBT . In trial runs,
it was confirmed that changes in packing fraction are minimal
for all shapes at pressures well below this final value. One MC
step in HOOMD-blue is defined as 4 attempts to move each par-
ticle. In order to explore the effects of container size and curva-
ture at equal pressure, the number of particles in the container
is increased for consecutive simulations. This simulation protocol
uses small Monte Carlo step sizes to approximate the kinetics of
hard particle systems under increasing pressure.50 Assembly oc-
curs en route to a final, high pressure value, allowing us to study
the resultant structure. This quenched structure is usually distinct
from the densest packed structure, in particular for large systems.

Additionally, simulations with periodic boundary conditions
were performed to compare confined systems to the bulk. A
slightly different compression procedure is necessary to induce
crystallization in these conditions (and to allow for efficiently
sampling larger system sizes). Bulk simulations contained 4096
particles. In addition to volume changes, we also allowed for
separate Monte Carlo moves in simulation box tilt and aspect ra-
tio. The system was compressed to the crystallization packing
fraction,33 held for 106 steps, and then compressed over a fur-
ther 106 steps to βP = 100. Two types of these simulations were
performed; one which had periodic boundary conditions in three
dimensions, and one with a wall simulating a zero-curvature con-
tainer, with periodic boundaries in two dimensions and a hard
wall in the third. In all simulations, allowable Monte Carlo moves
were particle translations, particle rotations, and box or wall ra-
dius changes, all of which were tuned to an acceptance rate of
0.2.51

In order to explore particle shape space continuously, we sim-
ulated hard tetrahedra with a range of vertex truncations. We
constructed each truncated tetrahedron as the volume bounded
by the intersection of a precise set of four planes with a Platonic
tetrahedron. These planes are normal to the vectors pointing to
each tetrahedron vertex, and are located at distance c from the
origin.6 We then resized the resultant shape to unit volume ac-
cording to a previously outlined normalization procedure.37 In
this way, a tetrahedron can be transitioned smoothly to an octa-
hedron by continually truncating the vertices. The transforma-
tions are characterized by the shape parameter c, which falls in
the range c ∈ [1,3], with c = 3 representing the tetrahedron and
c = 1 the octahedron.6

We sampled this range of c values with ten evenly spaced
points. In addition, three specific shapes were given particular
attention: c = 3, c = 2, and c = 5/3, corresponding to the Platonic
tetrahedron (PT), the space-filling truncated tetrahedron (STT;
which tiles space33), and the Archimedean truncated tetrahedron
(ATT; which has edges all equal in length), respectively. These
truncations also mark different points in the known bulk-phase
behavior: tetrahedra assemble into a dodecagonal quasicrystal,
ATTs into a diamond-type structure, and STTs lie in a region that
tends to form amorphous solids.33 Due to its differing symmetry
(point group m3̄m instead of 4̄3m) and bulk assembly behavior, the
Platonic octahedron at c = 1 was excluded from in-depth analysis
in this study.

3 Results
In our simulations, we observe that the primary feature of
spherically-confined systems is their organization into a series
of concentric shells. Representative samples of the structures
formed by tetrahedra with low and high levels of truncation are
compared in Fig. 1a. At small N, in high-curvature containers,
systems tend towards distinct structures with few variations. As
N increases, the final structure conforms to the spherical wall and
begins to form a spherical shell with a void in the center, where
the vertices cluster. Additional particles are added in the outer
shell, expanding it until the void is large enough to accommodate
a particle in the center.

The development of a core–shell structure can be detected us-
ing the fraction of the container that is filled by particles—the
spherical packing fraction φsphere. As observed in a previous
study,19 φsphere is closely linked to the exact structure of small
clusters, and changes in φsphere show the variability across repli-
cated Monte Carlo simulations. Here we concentrate on the large,
discontinuous change in packing fraction caused by the develop-
ment of a second shell within the system, which is illustrated in
Fig. 1b. The branch at higher packing fraction corresponds to the
evolution of the single-shell state, and the emerging lower branch
corresponds to the two-shell state. The fraction of replicas in each
branch indicates the accessibility of that state. At large-enough
values of N, the single-shell state becomes unfavorable and the
probability of observing it becomes vanishingly small. Fig. 1c
maps the probability of forming a one- vs. a two-shell structure
across shape space. A shape that always forms one-shell struc-
tures is indicated by dark purple, and those that only form the
two-shell structure by yellow. For each shape, we observe a tran-
sition range over a few N in which both structures are possible.
The N-values of this transition decrease with increasing vertex
truncation. For the Platonic tetrahedron, the vertices cluster to
fill the center of the container. As these vertices are truncated,
a void in the center of the container is created and grows. The
two-shell structure forms when this void is large enough that it is
favorable to place a particle in it.

Studying packing fraction is most useful for small numbers of
particles N, where minute differences in structure can have a
large effect on packing fraction. As N increases, different par-
ticle arrangements cannot be distinguished via packing fraction
φsphere, and other methods of structural analysis must be em-
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Fig. 1 Small-N systems of spherically confined truncated tetrahedra. (a) Comparison of example replicas for a range of system sizes, at low truncation
(c = 2.6) and high truncation (c = 1.667). (b) Packing fractions of 50 replicas at small system sizes N = 4 to 40, for c = 2.0. Each replica is represented
by a partially translucent marker, such that stronger color saturation indicates that a structure is more common. The discontinuity around N = 20
indicates the split between one- and two-shell structures. (c) Occurrence of one- vs. two-shell structures across truncations. Purple indicates a system
where all 50 replicas exhibit one-shell structures, and yellow indicates systems that always exhibit two-shell structures. As the tetrahedra become more
truncated (decreasing c), the system size N at which the transition occurs decreases.
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Fig. 2 Container-centered radial distribution functions for hard polyhedra
in spherical confinement (with N = 4 to 200 particles per simulation): (a)
Platonic tetrahedra (PT), (b) space-filling truncated tetrahedra (STT),
and (c) Archimedean truncated tetrahedra (ATT). Color intensity cor-
responds to the number density of particles on a logarithmic scale, dis-
cretized to spherical shells of width 0.08. High-density bands conforming
to the surface of the container dominate the outer shells, and inner shells
grow with them. In each shape, the development of 3 separate shells can
be seen.

ployed. To study the development of layered structures, we use a
variation of the radial distribution function (RDF) that is adapted
to the confined geometries investigated: in this modified RDF,
the center of the spherical container is defined as r = 0, and a his-
togram is calculated which shows the number density of particles
within a spherical shell a distance r from the origin. We average
these histograms over all replicas, which allows us to study the
overall changes in the system with N (and, by proxy, container
radius). In Fig. 2, we show the development of this container-
centered RDF across system sizes N = 4 to 200 for three key
shapes: Platonic tetrahedra (PT), space-filling truncated tetra-
hedra (STT), and Archimedean truncated tetrahedra (ATT). The
development of pronounced shell structures with increasing N is
clear: initially, a second shell develops around N = 20 for each
shape. The two shells then grow outward as N increases, with
high-density shells separated by low-density regions. The devel-
opment of a third shell can also be identified, at around N = 87
for ATTs, N = 112 for STTs, and N = 155 for PTs.

The radial distribution function describes global structural
changes as the container grows. To investigate the behavior of in-
dividual particles in their local environments, different tools are
needed. In systems of anisotropic particles, local motifs can be

quantified via particle–particle misorientation angles—the min-
imum angle that a particle must be rotated in order to match
the orientation of a second, reference particle.52 Different crys-
tal structures exhibit characteristic distributions of misorientation
angles; thus, these distributions can be used to quantify the as-
sembled structures by their local motifs. Systems of tetrahedral
particles can be characterized by two predominant motifs: misori-
entation angles of 90◦ and approximately 70.5◦.53 As is shown
in Fig. 3a, both of these angles correspond to particles that are
aligned facet-to-facet. A 90◦ misorientation features the vertices
of one particle aligned with the edge midpoints of the other, while
a ca. 70.5◦ misorientation corresponds to the vertices of both par-
ticles in alignment with one another. The “anti-aligned” 90◦ mis-
orientation angle is characteristic of the diamond-type structure
formed by highly truncated tetrahedra (e.g., ATT), whereas Pla-
tonic tetrahedra favor the vertex-to-vertex “aligned” motif, which
is characteristic of the dodecagonal quasicrystal that they assem-
ble.

The development of local motifs in spherically-confined assem-
blies with increasing numbers of particles N is mapped in Fig. 3
via three sets of stacked histograms for the three shapes: PTs,
STTs, and ATTs. Here, for each particle we consider the set of
all misorientations with respect to its nearest neighbors, as deter-
mined by a cutoff radius from the particle-to-particle radial distri-
bution function. At small N in high-curvature containers, all trun-
cations favor the aligned motif: the vertices cluster in the center
of the spherical container, maximizing packing density. Tetrahe-
dra, which also favor this motif in the bulk, only show intermit-
tent deviations from this dominant motif as the second shell is
developed around N = 23. As N increases, the decreasing curva-
ture of the container allows tetrahedral particles to assemble into
their locally preferred aligned motif.

STTs exhibit a broader distribution of angles, consistent with
their position in the disordered region of the self-assembly phase
diagram:54 the bulk phase is characterized by a competition
between aligned and anti-aligned local motifs.53 Although the
aligned motif is always dominant in confinement, there is an in-
crease in prevalence of the anti-aligned motif at high numbers of
particles, i.e., in large containers; this motif is less prevalent in
the quenched bulk structure, where the aligned motif dominates.
Even in system sizes of N = 10,000, the container walls influence
the structural behavior of this shape throughout essentially the
entire system (see Fig. 4).

In contrast, spherically confined assemblies of ATTs show a
monotonic transition, from aligned motif dominance in small con-
tainers to anti-aligned dominance in large containers. As for the
STT, the transition is gradual (see Fig. 3), with the prevalence
of the anti-aligned motif increasing and the occurrence of the
aligned motif decreasing as the number of particles—and there-
fore the container size—grows. The evolution from confined to
bulk behavior is a continuous change in the frequency of local
particle environments, rather than an abrupt transition of the en-
tire system, and the transition is not complete at system sizes of
N = 10,000. Each shape displays a signature noticeably distinct
from the bulk. We propose that heterogeneous nucleation is part
of the cause: the presence of walls appears to lower the energy
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Fig. 3 Distribution of misorientation angles for systems in spherical confinement (N = 10 to 10,000) vs. in the bulk. The key misorientations for
assemblies of tetrahedra are (a) the aligned motif at ≈ 70.5◦, and (b) the anti-aligned motif at 90◦. Darker colors represent an increased frequency
of specific misorientations at each N, normalized so that the maximum for each system size is 1. For small numbers N, particles of all three shapes
favored the aligned motif at 70.5◦ with the overall behavior varying strongly with N. (c) For PTs, this motif persists up to large containers. (d)
For STTs, the prevalence of the anti-aligned motif near 90◦ increases with system size, but vanishes in the bulk. (e) For ATTs, the frequency of the
anti-aligned motif increases monotonically with N.
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barrier to assembly. This effect causes the growth of larger and
more ordered crystal grains in systems of ATTs, explaining a nar-
rowing of the misorientation angle peak. However, STTs exhibit
a distinctly different motif in the confined case, which is not ob-
served in the bulk, and whose nucleation seems to be catalyzed
by the container walls.

When observing the split between motifs in the ATTs and STTs,
a natural question occurs: are these motifs segregated into differ-
ent regions of the assembly, or are they evenly distributed across
the container? By visual inspection of a representative sample of a
large system, we can examine the partitioning of motifs. Platonic
tetrahedra exhibit uniformly distributed aligned motifs, and by
N = 10,000 (Fig. 4a,d) the concentric-shell structure is no longer
apparent and the motif distribution is similar to the bulk, with the
wall only influencing the outermost layer of particles.

For STTs and ATTs, a very different pattern emerges: the anti-
aligned motif dominates in distinct layers near the wall, while
the predominance of other motifs grows near the core, and the
concentric shells lose coherency. Each surface layer corresponds
approximately to a section of the {111}-oriented layer of the
diamond-type structure assembled by ATTs in the bulk, but with
the motifs curved slightly to accommodate the wall. The layers
are incommensurate with each other, due to the decreasing cur-
vature towards the center of the container, preventing the de-
velopment of a robust diamond-type structure throughout. Near
the center, each shape adopts its bulk structure, with ATTs form-
ing small grains of diamond-type structure that grow into larger
wedge-shaped grains. This assembly is approximately icosahe-
drally twinned, as has been reported previously in assemblies of
confined spheres.24 This similarity is due to the fact that the di-
amond crystal structure preferred by ATTs corresponds to ABC
stackings of dense-packed layers (two-dimensional dense pack-
ings of spheres on a triangular tiling vs. layers of alternately ori-
ented ATTs, each on a triangular tiling), equivalent to the local
environments of particles arranged in a Laves phase-type struc-
ture.55 These layers can form twinned stacking faults (e.g., ABA
instead of ABC) without disrupting the dense packing. STTs ap-
pear to form a similar structure near the surface for ca. three lay-
ers, but near the center of the container the diamond-like layering
is disrupted and the aligned motif dominates instead.

From these observations, we can hypothesize that the presence
of a wall that is nearly flat—compared with the particle size—
promotes the anti-aligned motif. To investigate this, we simulated
the theoretical zero-curvature case: if the container were to be ex-
panded to infinite size, the walls would become completely flat.
We therefore performed simulations in a cubic box with parallel
flat walls on two opposite boundaries, with the other two spa-
tial directions simulated with periodic boundary conditions (see
Fig. 5). Here, STTs form strong, distinct layers of a diamond-type
structure, which is not observed in the bulk on the time scale of
our simulations. While a crystal related to diamond is the most
densely packed structure for STTs at high pressures,33 it is all
but inaccessible at moderate pressures,53 where the assembly be-
comes frustrated prior to reaching the densest-packed structure.
Through these simulations, we see that the presence of walls en-
courages a structure that is markedly different from that seen in

the bulk. The diamond-type crystals formed in contact with flat
walls have their {111} plane aligned with that wall, just as the
{111} plane aligns with the surface of spherical containers. Here,
the presence of a zero-curvature wall allows the structure to co-
herently propagate throughout the container. Intriguingly, simi-
lar behavior has been observed experimentally in spherically con-
fined cubic particles.21 For these particles, as in the simulations
here, a confining spherical wall causes the structure to separate
into a bulk-like core and a surface layer curved such that a flat
polyhedral facet stays aligned with the wall. Here, we extend that
observation to propose that under certain conditions, this surface
layer may actually be able to stimulate the formation of a new
structure, distinct from the unconfined bulk.

By calculating the fraction of different particle neighborhoods
across different system sizes and confinement geometries, as well
as different particle shapes, these observations can be quantified.
Figure 6 illustrates the fractions of particle neighborhoods that
are of the anti-aligned type (see Fig. 6a) and aligned type (see
Fig. 6b) for a range of truncations. Note that here truncations
of c < 1.4 are excluded, as they assemble a different phase with
local motifs that are distinct from those contrasted here.54 For
spherical confinement, the prevalence of anti-aligned motifs in-
creases with container size for c ≤ 2.0, and correspondingly the
prevalence of aligned motifs decreases. The anti-aligned motif is
most common in the flat-walled case for these shapes, with the
quenched bulk showing a decreased prevalence. The change is
most pronounced for STTs at c = 2.0, for which the bulk system
is dominated by the aligned motif, but in the presence of a hard,
flat wall is dominated by the anti-aligned motif. For all shapes
that assemble a diamond-type structure, the flat wall increases
the degree of crystalline order and therefore the prevalence of
anti-aligned motifs. Correspondingly, aligned motif prevalence
for these shapes is suppressed and reaches a minimum between
flat walls. By contrast, the frequency of the aligned motif in-
creases slightly with system size in large containers for c > 2.0,
but does not peak in the flat-walled case; instead, these shapes
behave nearly identically to the unconfined bulk and in very large
spherical containers.

4 Discussion
The primary distinguishing feature of spherically-confined hard-
particle systems of truncated tetrahedra is the number of layers of
particles that fit between the center of the container and its outer
boundary. The distinct organization into concentric shells drives
the structure towards local motifs that conform to the container
wall.

While Platonic tetrahedra do not exhibit a transition between
small-N and bulk behavior, owing to the fact that the same lo-
cal motif dominates both types of systems, the other investigated
shapes exhibit a gradual transition between different structural
behaviors as the curvature of the container changes. At small
numbers of particles—and therefore small containers with large
curvatures—the aligned motif is favored, while at large parti-
cle numbers—with larger containers and smaller curvatures—the
developing shell structures increasingly exhibit anti-aligned local
motifs in highly-truncated particles.
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sections ((a,d) PTs, (b,e) STTs, and (c,f) ATTs). Coloration corresponds to the local particle environments: shades of blue represent predominantly
aligned environments (70.5◦) and shades of orange correspond to predominantly anti-aligned environments (90◦). Deeper colors indicate that an
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this motif continues towards the interior (f), but for STTs the layering breaks down, and near the center of the container the aligned motif dominates
(e).
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This phenomenon can be understood through the relationship
between the curvature of the container and the particle arrange-
ments. The aligned motif assembles into pentagonal bipyramids
in which the large facet of each particle is at an angle to its neigh-
bors (approximately 39◦ in the ideal motif for ATTs). The anti-
aligned motif, conversely, has each large facet of the particles
meeting its neighbor to form a flat plane; this forms the {111}
plane in the diamond-type structure. We propose that the aligned
motif is thus better suited to conforming to a curved surface, caus-
ing it to be favored near high-curvature walls. In small containers,
clustered vertices fill the interior, maximizing packing density. On
the other hand, in containers with a small curvature relative to
the particle size, the flat plane of the anti-aligned motif can more
easily pack along the surface. The motif imposed by the wall then
seeds the growth of the assembled structure toward the center of
the container.

Assembly in a container with flat walls promotes the growth
of large, well-ordered crystals for ATTs (see Fig. 5). Additionally,
for shapes such as STTs, which do not normally assemble ordered
structures, we see that the presence of a flat wall induces the
formation of a diamond-type crystal. This crystal spans the sim-
ulation box, significantly larger than any type of order we have
observed in the bulk for this particle shape. Additionally, this
method induces a reproducible texture in the crystal grain orien-
tation. It is interesting to note that a previous study was simi-
larly able to induce crystallization via “doping” the system with
particles constrained in anti-aligned dimers that seed the corre-
sponding structure locally.53 Here, we show that there exists a
different mechanism of affecting assembly with a global change,
rather than a local one, and which provides an additional level
of control over particle and grain orientations. This observation
provides a potential pathway for structural selection in colloidal
particles. By choosing an appropriate container, it appears to be
possible to promote the growth of large, well-ordered crystals,
even in systems of particles that do not typically assemble or-
dered structures. Conversely, if a disordered system is preferred
for functional reasons, we suggest that container walls incom-
patible with the structure can frustrate crystallization, and can
potentially propagate disorder throughout the system if the con-
tainer size is chosen appropriately.

5 Conclusions
The properties of a material—in particular optical properties—
can be very sensitive to the arrangement of particles with respect
to their local environment, disorder, and filling fraction.56–58 We
show that the effect of container curvature on the local particle
motifs in confined assemblies of hard tetrahedral shapes provides
a mechanism for tuning the assembled structure relative to bulk
materials.

The same particle can exhibit different local environments de-
pending on the container in which it is confined during assembly,
providing opportunities for controlling the assembled structure
and function. In large systems, a container can “pattern” particle
assemblies, causing the surface structure to be notably different
from the interior, as well as from an unconfined bulk system. In-
terestingly, this observation that the system tends to order from

the surface inwards is corroborated in some experimental studies
of hard particles,16,21,24 but reversed in others.25 While this phe-
nomenon is not explored in detail here, the potential difference
in assembly pathways provokes a need for future study.

In this study the containers fluctuate, allowing them to adapt
to the structure being assembled. In contrast, other studies fix
the container size and study how the structure changes as the
container size is varied—as opposed to varying the particle num-
ber.26 In the fixed case, the structures observed depend on the
mismatch between the periodicity of the target structure and the
container, and can enforce new structures to fill that container.
Here, we see a similar result—the assembly of structures not seen
in an infinite system—but with slightly different boundary condi-
tions and system parameters.

Our findings have implications for assembly mechanisms for
core–shell-type particles, which have different properties on the
surface and in the interior. In addition, precise control of colloidal
particle size and geometry is a difficult task; here we show that
particles with a shape that does not typically self-assemble into
ordered crystals can be induced to do so through contact with an
appropriate confining wall, potentially providing a route for the
directed assembly of crystals from non-ideal constituents.

Future work will explore confinement geometries beyond those
investigated in this study, as well as the interactions of this geom-
etry with a wider selection of particle shapes. We have shown that
the influence of the container holding a dense assembly cannot be
discounted. It is critical to study the influence of container cur-
vature on the wide array of common particle shapes that feature
varying interparticle facet arrangements and local environments
to make the most use of our toolkit in directed structure assembly.

Citation Diversity Statement
Recent work in several fields of science has identified a bias in ci-
tation practices such that papers from women and other minority
scholars are under-cited relative to the number of such papers in
the field (e.g.,59–61). In order to begin to provide transparency
and accountability for citation gender imbalance,62 we used an
open-source code that predicts the gender of the first and last
author of each reference by using databases that store the prob-
ability of a first name being carried by a woman.60,63 Much to
our regret, this method cannot account for intersex, non-binary,
or transgender people. Excluding self-citations, our references
contain 9.43% woman(first)/woman(last), 27.85% man/woman,
5.66% woman/man, and 57.05% man/man by this measure.
(This method is limited in that names, pronouns, and social media
profiles used to construct the databases may not, in every case, be
indicative of gender identity.)

Author Contributions
R. S. S. and J. D. designed and performed the research. R. S. S.,
E. G. T., and J. D. conducted the analyses. R. S. S., E. G. T., and
J. D. wrote the manuscript.

Conflicts of interest
There are no conflicts to declare.

Journal Name, [year], [vol.],1–11 | 9

Page 9 of 11 Soft Matter



Acknowledgements
R. S. S. acknowledges support from the National Science Foun-
dation Graduate Research Fellowship under Grant No. DGE
2139899 (2021–2022) and DGE 1650441 (2020–2021). The
authors would like to thank Professor Richard D. Robinson and
Naomi R. Nelson for helpful discussions, and Professor Chrisy
Xiyu Du for assistance with defining the particle geometry. This
work was performed in part at the Cornell NanoScale Facility, a
member of the National Nanotechnology Coordinated Infrastruc-
ture (NNCI), which is supported by the National Science Founda-
tion (Grant No. ECCS-2025233). This work used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE)64, which
is supported by National Science Foundation grant number ACI-
1548562; XSEDE award DMR 190048.

Notes and references
1 J. Kepler, De Nive Sexangula, Godefridum Tambach, 1611.
2 T. C. Hales, Annals of Mathematics, 2005, 162, 1065–1185.
3 P. Bartlett, R. H. Ottewill and P. N. Pusey, Phys. Rev. Lett.,

1992, 68, 3801–3804.
4 J. K. Kummerfeld, T. S. Hudson and P. Harrowell, The Journal

of Physical Chemistry B, 2008, 112, 10773–10776.
5 P. F. Damasceno, M. Engel and S. C. Glotzer, Science, 2012,

337, 453–457.
6 E. R. Chen, D. Klotsa, M. Engel, P. F. Damasceno and S. C.

Glotzer, Phys. Rev. X, 2014, 4, 011024.
7 D. Chen, Y. Jiao and S. Torquato, The Journal of Physical

Chemistry B, 2014, 118, 7981–7992.
8 Y.-J. Kim, J.-H. Kim, I.-S. Jo, D. J. Pine, S. Sacanna and G.-

R. Yi, Journal of the American Chemical Society, 2021, 143,
13175–13183.

9 M. Schweiger, T. Yamamoto, P. J. Stang, D. Bläser and
R. Boese, The Journal of Organic Chemistry, 2005, 70, 4861–
4864.

10 C.-Y. Chiu, C.-K. Chen, C.-W. Chang, U.-S. Jeng, C.-S. Tan, C.-
W. Yang, L.-J. Chen, T.-J. Yen and M. H. Huang, Journal of the
American Chemical Society, 2015, 137, 2265–2275.

11 M. A. Boles and D. V. Talapin, Journal of the American Chemi-
cal Society, 2014, 136, 5868–5871.

12 I. Kacem, M. Hifi and R. M’Hallah, Advances in Operations
Research, 2009, 2009, 150624.

13 R. M’Hallah, A. Alkandari and N. Mladenovic, Computers &
Operations Research, 2013, 40, 603–615.

14 J. Wang, C. F. Mbah, T. Przybilla, B. Apeleo Zubiri,
E. Spiecker, M. Engel and N. Vogel, Nature Communications,
2018, 9, 5259.

15 V. N. Manoharan, M. T. Elsesser and D. J. Pine, Science, 2003,
301, 483–487.

16 G. Zhu, L. Gao, Z. Xu, X. Dai, X. Zhang and L.-T. Yan, Nano
Letters, 2021, 21, 8439–8446.

17 C. Wensrich, Powder Technology, 2012, 219, 118–127.
18 A. Mughal, H. K. Chan, D. Weaire and S. Hutzler, Phys. Rev. E,

2012, 85, 051305.
19 E. G. Teich, G. van Anders, D. Klotsa, J. Dshemuchadse and

S. C. Glotzer, Proceedings of the National Academy of Sciences,
2016, 113, E669–E678.

20 V. Thapar, T. Hanrath and F. A. Escobedo, Soft Matter, 2015,
11, 1481–1491.

21 D. Wang, M. Hermes, R. Kotni, Y. Wu, N. Tasios, Y. Liu,
B. de Nijs, E. B. van der Wee, C. B. Murray, M. Dijkstra and
A. van Blaaderen, Nature Communications, 2018, 9, 2228.

22 O. D. Velev, K. Furusawa and K. Nagayama, Langmuir, 1996,
12, 2374–2384.

23 E. Lauga and M. P. Brenner, Phys. Rev. Lett., 2004, 93, 238301.
24 B. de Nijs, S. Dussi, F. Smallenburg, J. D. Meeldijk, D. J. Groe-

nendijk, L. Filion, A. Imhof, A. van Blaaderen and M. Dijkstra,
Nature Materials, 2015, 14, 56–60.

25 D. Wang, T. Dasgupta, E. B. van der Wee, D. Zanaga, T. Al-
tantzis, Y. Wu, G. M. Coli, C. B. Murray, S. Bals, M. Dijkstra
and A. van Blaaderen, Nature Physics, 2021, 17, 128–134.

26 M. R. Khadilkar and F. A. Escobedo, Soft Matter, 2016, 12,
1506–1516.

27 J. Mittal, J. R. Errington and T. M. Truskett, The Journal of
Physical Chemistry B, 2007, 111, 10054–10063.

28 J. Mittal, J. R. Errington and T. M. Truskett, The Journal of
Chemical Physics, 2007, 126, 244708.

29 A. Jaoshvili, A. Esakia, M. Porrati and P. M. Chaikin, Phys. Rev.
Lett., 2010, 104, 185501.

30 I. B. Liu, N. Sharifi-Mood and K. J. Stebe, Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, 2016, 374, 20150133.

31 M. Huang, C.-H. Hsu, J. Wang, S. Mei, X. Dong, Y. Li, M. Li,
H. Liu, W. Zhang, T. Aida, W.-B. Zhang, K. Yue and S. Z. D.
Cheng, Science, 2015, 348, 424–428.

32 A. Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G. Petschek,
P. Palffy-Muhoray and S. C. Glotzer, Nature, 2009, 462, 773–
777.

33 P. F. Damasceno, M. Engel and S. C. Glotzer, ACS Nano, 2012,
6, 609–614.

34 K. M. Ho, C. T. Chan and C. M. Soukoulis, Phys. Rev. Lett.,
1990, 65, 3152–3155.

35 http://glotzerlab.engin.umich.edu/hoomd-blue/, http:
//glotzerlab.engin.umich.edu/hoomd-blue/.

36 J. A. Anderson, C. D. Lorenz and A. Travesset, J. Comput.
Phys., 2008, 227, 5342–5359.

37 J. A. Anderson, M. E. Irrgang and S. C. Glotzer, Computer
Physics Communications, 2016, 204, 21–30.

38 J. A. Anderson, J. Glaser and S. C. Glotzer, Computational
Materials Science, 2020, 173, 109363.

39 C. S. Adorf, P. M. Dodd, V. Ramasubramani and S. C. Glotzer,
Computational Materials Science, 2018, 146, 220–229.

40 Vyas Ramasubramani, Carl S. Adorf, Paul M. Dodd, Bradley
D. Dice and Sharon C. Glotzer, Proceedings of the 17th Python
in Science Conference, 2018, pp. 152 – 159.

41 C. S. Adorf, V. Ramasubramani, B. D. Dice, M. M. Henry,
P. M. Dodd and S. C. Glotzer, glotzerlab/signac, 2019, https:
//doi.org/10.5281/zenodo.2581327.

42 https://freud.readthedocs.io/.

10 | 1–11Journal Name, [year], [vol.],

Page 10 of 11Soft Matter

http://glotzerlab.engin.umich.edu/hoomd-blue/
http://glotzerlab.engin.umich.edu/hoomd-blue/
https://doi.org/10.5281/zenodo.2581327
https://doi.org/10.5281/zenodo.2581327


43 V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings,
J. A. Anderson and S. C. Glotzer, Computer Physics Communi-
cations, 2020, 254, 107275.

44 A. Stukowski, Modelling and Simulation in Materials Science
and Engineering, 2010, 18, 015012.

45 A. Stukowski, OVITO, https://www.ovito.org.
46 https://github.com/glotzerlab/plato.git/.
47 G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel and S. C.

Glotzer, Proceedings of the National Academy of Sciences, 2014,
111, E4812–E4821.

48 G. van Anders, N. K. Ahmed, R. Smith, M. Engel and S. C.
Glotzer, ACS Nano, 2014, 8, 931–940.

49 E. S. Harper, G. van Anders and S. C. Glotzer, Proceedings of
the National Academy of Sciences, 2019, 116, 16703–16710.

50 P. Meakin, H. Metiu, R. G. Petschek and D. J. Scalapino, The
Journal of Chemical Physics, 1983, 79, 1948–1954.

51 D. Frenkel and B. Smit, Understanding molecular simulation:
from algorithms to applications, Academic Press, 2002.

52 A. S. Karas, J. Dshemuchadse, G. van Anders and S. C. Glotzer,
Soft Matter, 2019, 15, 5380–5389.

53 E. G. Teich, G. van Anders and S. C. Glotzer, Nature Commu-
nications, 2019, 10, 64.

54 D. Klotsa, E. R. Chen, M. Engel and S. C. Glotzer, Soft Matter,
2018, 14, 8692–8697.

55 W. Steurer and J. Dshemuchadse, in Intermetallics – Struc-
tures, Properties, and Statistics, Oxford University Press, 2016,
ch. 7.4.3 Laves phases and related polytypes, pp. 252–258.

56 C. Noguez, The Journal of Physical Chemistry C, 2007, 111,
3806–3819.

57 B. Gao, G. Arya and A. R. Tao, Nature Nanotechnology, 2012,
7, 433–437.

58 S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz
and O. Rabin, ACS Nano, 2010, 4, 5763–5772.

59 N. Caplar, S. Tacchella and S. Birrer, Nature Astronomy, 2017,
1, 0141.

60 J. D. Dworkin, K. A. Linn, E. G. Teich, P. Zurn, R. T. Shinohara
and D. S. Bassett, Nature Neuroscience, 2020, 23, 918–926.

61 P. Chatterjee and R. M. Werner, JAMA Netw Open, 2021, 4,
e2114509.

62 J. Dworkin, P. Zurn and D. S. Bassett, Neuron, 2020, 106,
890–894.

63 D. Zhou, E. J. Cornblath, J. Stiso, E. G. Teich, J. D. Dworkin,
A. S. Blevins and D. S. Bassett, Gender Diversity Statement and
Code Notebook v1.0, 2020, https://zenodo.org/record/
3672110#.XrcgaS-z2nc.

64 J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peter-
son, R. Roskies, J. R. Scott and N. Wilkins-Diehr, Computing
in Science & Engineering, 2014, 16, 63–74.

Journal Name, [year], [vol.],1–11 | 11

Page 11 of 11 Soft Matter

https://zenodo.org/record/3672110#.XrcgaS-z2nc
https://zenodo.org/record/3672110#.XrcgaS-z2nc

