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The e�ects of surface hydration on capillary adhesion

under nanoscale con�nement.†

Sijia Huang,a Carlos E. Colosqui,∗a,b Y.-N. Young,c and Howard A. Stoned

Nanoscale phenomena such as surface hydration and the molecular layering of liquids under strong

nanoscale con�nement play a critical role in liquid-mediated surface adhesion that is not accounted

for by available models, which assume a uniform liquid density with or without considering surface

forces and associated disjoining pressure e�ects. This work introduces an alternative theoretical

description that via the potential of mean force (PMF) considers the strong spatial variation of the

liquid number density under nanoscale con�nement. This alternative description based on the PMF

predicts a dual e�ect of surface hydration by producing: (i) strong spatial oscillations of the local

liquid density and pressure and, more importantly, (ii) a con�guration-dependent liquid-solid surface

energy under nanoscale con�nement. Theoretical analysis and molecular dynamics simulations for

the case of an axisymmetric water bridge with nanoscale heights show that the latter hydration e�ect

is critical for the accurate prediction of the surface energy and adhesion forces when a small volume

of liquid is nanoscopically con�ned by two surfaces approaching contact.

Introduction

Nanoscale contact mediated by liquid wetting processes and the
adhesion forces produced by nanoscale capillary bridges are rel-
evant to numerous and diverse nanofabrication methods such as
capillary-driven self-assembly of nanomaterials,1–5 capillary force
lithography,6,7 capillary-assisted sintering and welding,8,9 and
additive manufacturing,10–12 among many others. Furthermore,
the accurate prediction of adhesion forces produced by nanoscale
water bridges is critically important for the application and inter-
pretation of nanoscale characterization methods based on atomic
force microscopy.13–17

The conventional continuum thermodynamics approach to pre-
dict equilibrium configurations and the associated capillary forces
in interfacial systems varying from macro- to nanoscale is to solve
the Young-Laplace (Y-L) equation.18–21 The conventional descrip-
tion based on the Y-L equation assumes perfectly homogeneous
phases with uniform number density and pressure. Moreover,
the equilibrium contact angle is commonly defined in terms of
the surface energies by invoking some form of the Young’s law.
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Augmented versions of the Y-L equation, while still consider-
ing a perfectly uniform liquid density, have included local vari-
ations of the disjoining/conjoining pressure that are predicted via
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.22–27 How-
ever, molecular liquids under nanoscale confinement in the sub-
10-nm range present strong spatial variations of the liquid density
that are associated with molecular layering and surface hydra-
tion forces.28–30 In particular, hydration forces for crystalline or
quasi-crystalline surfaces exhibit spatial oscillations with a period
comparable to the water molecule diameter and decay over a few
molecular layers away from the wall.30–32

In this work we adopt and extend the description based on
the Y-L equation to consider local density variations in the liq-
uid due to molecular layering and surface hydration, and ap-
ply the proposed alternative description to the particular case of
liquid water bridges with nanoscale heights and a much larger
(micro/macroscale) contact radius, which is a configuration com-
monly observed when a small volume of water is nanoscopically
confined by two surfaces approaching contact. The key element
of our alternative “augmented” description is incorporating in the
Y-L equation the potential of mean force (PMF) that under ther-
modynamic equilibrium is obtained from the local liquid density
profile, which can be determined by experimental and computa-
tional methods, or modeled by analytical expressions. By com-
paring predictions from the conventional description assuming a
uniform liquid density and the proposed augmented description
considering local density variations against results from molecu-
lar dynamics (MD) simulations, we aim to elucidate the critical
dual effect of surface hydration on the local liquid pressure and
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liquid-solid surface energy and determine the relative importance
of these effects.

Theoretical description

In the framework of sharp-interface continuum thermodynam-
ics, the equilibrium shape of an axisymmetric capillary bridge
(Fig. 1a) confined between two identical and perfectly plane walls
is governed by the axisymmetric Y-L equation

∆p = γ

[
1

r
(
1+ ṙ2

)1/2
− r̈(

1+ ṙ2
)3/2

]
, (1)

where r = r(z) is the local bridge radius, ṙ ≡ dr/dz, r̈ ≡ d2r/dz2,
γ is the surface tension of the free surface, and ∆p = p− pa is
the difference between the liquid pressure, p, and ambient pres-
sure, pa. For the bridge heights considered here the gravitational
effects are negligible. Finding a unique solution r(z) of eqn (1) re-
quires a proper set of boundary conditions corresponding to min-
imization of the system free energy, and satisfying the additional
constraint 2π

∫ h/2
0 r2dz =V where V is the bridge volume.

We will consider the case of sufficiently large bridge volumes
V ≫ πhσ2, where σ is the characteristic molecular diameter, so
that the local bridge radius is r(z) ≫ σ and we can thus neglect
radial variations of the liquid number density. Mechanical equilib-
rium for a perfectly homogeneous liquid phase with a sharp solid-
liquid interface at z=±zw corresponds to p(n̄,T ) = p̄= const. and
the equilibrium density profile n̄(z)= {nb for |z|< zw;0 for |z|= zw},
where nb(T, p) is the bulk number density determined by an equa-
tion of state. For an inhomogeneous liquid in thermodynamic
equilibrium with a local number density profile n(z), we have the
PMF w =−kBT ln(n/n̄) (kB is the Boltzmann constant) and hydro-
static equilibrium ∇p+n∇w = 0 dictates that

∆p(z) = ∆ p̄+ kBT (n− n̄), (2)

where ∆ p̄= p̄− pa is the pressure difference for the uniform liquid
phase, assuming that pa = const. Additionally, we consider that
for two identical parallel surfaces separated at a nanoscale height
h, the solid-liquid surface energy is γSL(h) = γS +

∫ h/2
0 nwdz, where

γS is the solid surface energy (i.e., the solid-vacuum interfacial
surface energy). Further assuming constant liquid-vapor surface
tension and a much less dense ambient phase, for which the solid-
vapor surface energy is γSV ≃ γS, we define the height-dependent
Young contact angle

cosθY (h) =
kBT

γ

∫ h/2

0
n ln(n/nb)dz. (3)

We note here that eqn (3) stresses that liquid molecular structure
with spatial variation of the local number density over a finite
length near the solid-liquid interface is necessary to observe non-
neutral wetting conditions for which γSL ̸= γSV and θY ̸= 90 deg.

For the studied nanoscale bridges, the height-dependent Young
contact angle in eqn (3) will be employed to prescribe the equi-
librium contact angle θ(h) = π/2− arctan[ṙ(zw)] = θY by virtue of
Young’s law. It is worth noting that the variation of the Young
contact angle predicted by eqn (3) is insensitive to the contact ra-

dius variation and thus is fundamentally different from a line ten-
sion effect. Considering the equilibrium contact angle θ = θY (h)
as a function of only the bridge height h is a valid approxima-
tion for sufficiently large volumes V ≫ πhσ2 for which r(z)≫ σ .
For such conditions line tension effects can be neglected since
τrc ≪ γ cosθY r2

c , and the line tension τ ∼ ε/σ and surface ten-
sion γ ∼ ε/σ2 scale with the characteristic cohesive energy per
molecule ε.

For the studied static conditions, the static adhesion force is

F(h) =−∆pcπr2
c +2γπrc sinθY (h), (4)

where rc = r(±h/2) and ∆pc = ∆p(±h/2) are determined via so-
lution of eqns (1)-(2), and the equilibrium contact angle θY (h) is
given by eqn (3). We remark that eqn (4) can be used to deter-
mine the contact angle from the adhesion force, rather than from
the radius slope ṙ(zw) at the wall.

Molecular dynamics

To verify the assumptions in the augmented Y-L model given by
eqns (1)-(4), we perform fully atomistic non-equilibrium MD sim-
ulations of nanoscale capillary bridges of liquid water between
two plane surfaces as shown in Fig. 1b. The MD simulations
are performed in the NVT ensemble using the open-source code
LAMMPS;33 full technical details are described in the Supporting
Information.34 The MD simulations use conventional Lennard-
Jones and Coulombic potentials34 that model (i) hard core repul-
sion, van der Waals, and electrostatic interactions between the
water molecules and (ii) hard core repulsion and van der Waals
interactions between the solid material and water molecules. The
solid is modeled as a “frozen” face-centered cubic lattice (fcc) of
non-polar and neutrally charged atoms.

The water molecules are modeled by the TIP4P/Ew model,35

which at the simulated system temperature T = 300 K reproduces
the p-n-T phase diagram and structural properties of liquid wa-
ter,36,37 with a slightly lower mass density ρ = 964 kg/m3 that
corresponds to a bulk number density nb = 0.0322 Å−3, and sur-
face tension γ = 65.4 mN/m.38 The modeled water molecules
have an effective diameter σ = 0.355 nm and the solid wall atoms
are arranged in a fcc lattice with constant spacing ∆x= 0.35 nm.34

The solid atoms are uncharged and nonpolar, and the pairwise in-
teraction energy due to van der Waals and hard-core interactions
between the solid and liquid water (εSL ≃ 0.83kBT ) is set to pro-
duce hydrophilic surfaces.

For the modeled system the solid atoms conforming the top and
bottom walls are separated by an integer number j of lattice spac-
ings and we thus define zw = ( j/2)∆x−∆x/2 as the approximate
position of contact between water molecules and the solid wall,
given that σ ≃ ∆x. The height of the nanoscale water bridge in
the MD simulations thus is h = 2zw (cf. Fig. 1b), considering that
the top and bottom surfaces lie at the estimated position of con-
tact between the water molecules and solid atoms where |z|= zw.
We performed MD simulations using sufficiently large numbers
of water molecules (N = 12,000-36,000) so that for the modeled
bridge heights h = 4-19 ∆x and water volumes V ≃ N/nb = 0.37-
1.11 zL,34 the characteristic bridge radius R =

√
V/πh > 10∆x is
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Fig. 1 Axisymmetric capillary bridge between two plane walls. (a) Conventional continuum description: All phases are perfectly uniform with a
constant number density. A sharp liquid-vapor interface determines the local bridge radius r(z) and the contact angle θ = π/2− arctan[ṙ(zw)] where
zw = h/2. (b) Molecular dynamics: the water molecules (TIP4P/Ew model) form di�use interfaces between the liquid, vapor, and solid phases. The
top/bottom wall position z =±zw is de�ned at the position of contact between the water molecules and solid wall atoms. The local number density
(averaged over the angular coordinate) shows signi�cant spatial oscillations along the z-coordinate due to the formation of hydration layers, and a
di�use water-vapor interface with a thickness much smaller than the local bridge radius.

always larger than ten molecule diameters. The local number
density n(z) and bridge radius r(z) in MD simulations correspond
to spatial averages over uniformly spaced slabs of thickness ∆x/2,
with additional time averaging over the final 2 ns of the simu-
lation, which produced relative standard deviations smaller than
5% in all cases. The bridge radius is determined from the po-
lar moment of area for the oxygen atoms, assuming a constant
number density within each slab.34

Results and discussion

To assess the dual effect of hydration, we compare the local
radius r(z), slope ṙ(z), and adhesion force F(h) obtained from
the MD simulations with: (YLA) The augmented Y-L equation
with local pressure variation (eqns (1)-(2)) and the boundary
conditions ṙ(0) = 0 and ṙ(h/2) = cot[θY (h)], given by eqn (3);
and (YL) the conventional Y-L equation (eqn (1)) with a uni-
form liquid pressure and the boundary conditions ṙ(0) = 0, and
ṙ(h/2) = cot[θY (h)], where θY is either given by eqn (3) or the con-
stant value θY = 27.5◦ observed in MD simulations for h ≳ 20∆x.
The numerical solution of the Y-L equation (eqn (1)) is performed
by a collocation method in MATLAB.

The number density profle

A knowledge of the local number density in the liquid phase is re-
quired to determine the local pressure (eqn (2)) and equilibrium
contact angle (eqn (3)). Here, to model the effect of molecular
layering and surface hydration we employ the approximate ex-
pression

n(z) = nb +(n1 −nb)

×
(

e−
d+
∆x cos

2πd+
∆x

+ e−
d−
∆x cos

2πd−
∆x

)
(5)

for |z| ≤ h/2− δ , where d± = h/2− δ ∓ |z|, and n1 and δ are the
number density and thickness, respectively, of the first hydration
layer adjacent to the top/bottom wall located at z = ±zw (see
Fig. 1b). The sharp decay of the number density between the
first hydration layer and the solid surface, where hard-core repul-

sion dominates, is defined by a heuristic expression n(z) = n1(1+
tanhκd) for h/2−δ > |z|> h/2, with d = h/2−δ +(n1/nw)∆x−|z|
and κ = (∆x/20)−1, which enforces that

∫ h/2
0 n(z)dz = nb×(h/2) to

satisfy mass conservation.

h/∆x n1/nb δ/∆x θY [deg]
4 1.83 0.715 52.7
6 1.86 0.725 47.3
9 1.88 0.8 37.6
14 1.91 0.84 32.8
19 1.92 0.87 27.5

Table 1 Model parameters: Number density n1 and thickness δ of the
�rst hydration layer employed for analytical estimates for di�erent bridge
heights h (nb = 0.0322 Å−3, ∆x= 0.35 nm). The height-dependent contact
angle θY (h) is given by eqn (3) using eqn (5) for the number density.

The heuristic expression for the number density in eqn (5) is
analogous to those previously proposed30,39 to model the dis-
joining pressure and oscillatory structural forces associated with
surface hydration and molecular layering. While our MD simula-
tions model both van der Waals, as well as structural and entropic
forces, the expression in eqn (5) considers that hydration forces
due to molecular layering are dominant. This assumption is jus-
tified for the modeled system for which relatively weak van der
Waals interactions between the solid and liquid decay with d−3

±
(here, d± is the distance from either wall).

The number density n1 and thickness δ are here treated as ad-
justable model parameters to approximately fit the results from
MD simulations. The values of n1 and δ employed for analyti-
cal estimates via eqns (2)-(5) are reported in Table 1, and are
consistent with values reported for water on hydrophilic sur-
faces.17,29,40,41 For the studied conditions, for which r(z) ≫ σ ,
the number density profiles and equilibrium contact angles ob-
tained from MD simulations show no significant variation with
respect to the bridge volume, while they are markedly influenced
by the variation of the bridge height.34
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Fig. 2 Continuum descriptions and MD simulations of nanoscale water bridges: (a) h = 19∆x ≃ 6.65 nm (V/V0 = 0.97), (b) h = 9∆x ≃ 3.15 nm
(V/V0 = 0.93), and (c) h = 4∆x ≃ 1.4 nm (V/V0 = 0.9). The MD simulations are performed with N = 12,000 water molecules, which corresponds to the
reference volume V0 = N/nb = 0.37 zL with nb = 0.0322 Å−3. Top panels are time snapshots from MD simulations, the graphs report the number density
n(z), bridge radius r(z), and interface angle arccot(ṙ). Analytical estimates from eqn (5) are obtained using the model parameters reported in Table 1.
Continuum model predictions (see legend) correspond to numerical solutions of eqns (1)-(2): the augmented model (YLA) and the conventional Y-L
equation (YL) using a variable and �xed Young contact angle.

The radius profile and contact angle
In Fig. 2 we compare the number density profile n(z) mod-
eled by eqn (5), and the local radius r(z) and slope ṙ(z) pre-
dicted by the YL and YLA models with their counterparts ob-
tained from MD simulations for the case of three different bridge
heights (h/∆x = 4, 9, and 19) and the smallest simulated vol-
ume (V ≃ 0.37 zL). The MD simulations report two main effects
associated to surface hydration: (a) strong spatial oscillations in
the local number density that notably influence the local bridge
radius and slope profiles near the walls, and (b) a significant
increase of about ∼ 25◦ in the equilibrium contact angle as the
water bridge height decreases below 20 molecular diameters (cf.
Fig. 2). These two effects are accounted for by the YLA model
(eqns (1)-(5)) using the number density n1 and thickness δ in
Table 1. As reported previously,42 the conventional YL model as-
suming a uniform number density and a fixed equilibrium contact
angle given by the Young contact angle θY = 27.5◦ for large wall
separations can account within a 10% error for the local radius
obtained from MD simulations even for bridge heights as small
as 10 water molecules (cf. Fig. 2b-c). However, we find that
the YL model fails to describe the local slope ṙ(z) and free sur-
face curvature when the bridge height becomes comparable to
10 molecular layers (cf. Fig. 2c). When supplemented with the

height-dependent equilibrium contact angle θY (h) predicted by
eqn (3) as a boundary condition, the classical Y-L equation as-
suming ∆p = const. can describe both the local radius and slope
reported by MD simulations (cf. Fig. 2c).

The capillary force

To fully evaluate the effects of surface hydration, we report in
Fig. 3 the adhesion forces F(h) computed from MD simulations
and predicted via eqn (4) by the YL and YLA models, i.e., the Y-
L equation assuming uniform or spatially varying liquid pressure,
when using the fixed contact angle θY = 27.5◦ for h≳ 20∆x and the
height-dependent contact angle θY (h) predicted by eqn (3). The
analytical estimates via eqns (1)-(4) that are reported in Figs. 3a-
b use a constant bridge volume V = 0.37 zL, and smooth functions
n1(h) and δ (h) determined by piecewise cubic interpolation of the
values reported in Table 1. Similar adhesion forces that show os-
cillations of small amplitude for h ≲ 10∆x, are predicted by the
YL and YLA models (Fig. 3a) when using the height-dependent
contact angle θY (h) reported in Fig. 3b. By comparing the forces
predicted of the YL and YLA models (cf. Fig. 3a), we find that
the spatial variation of the liquid pressure induced by the local
density has a relatively small effect on the adhesion force. Fur-
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thermore, the YL and YLA models with the fixed contact angle
observed for large heights predict a monotonic increase in the
adhesion force with magnitudes that are up to 30% higher than
reported by MD simulations (cf. Fig. 3a).
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N
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(b)

Fig. 3 Adhesion forces and surface hydration e�ects. (a) Adhesion forces
reported by MD simulations and analytical estimates (see legend) via
eqn (4) for: (YL) The Y-L equation with ∆p = const. and the �xed
contact angle θY = 27.5◦ or θY (h) predicted by eqn (3); (YLA) The aug-
mented Y-L equation (eqns (1)-(2)) with θY = 27.5◦ or θY (h) predicted by
eqn (3). (b) Height-dependent contact angle computed from MD simu-
lations and predicted by eqn (3) using eqn (5) for the number density.

The adhesion forces predicted by the YL and YLA models show
again that the most significant effect of the surface hydration phe-
nomenon is the non-monotonic increase of the equilibrium con-
tact angle (Fig. 3b) as the bridge height decreases. In the small
height limit h/V 1/3 → 0, eqn (4) gives F(h) = 2γ(V/h2)cosθY (h)
and one can readily estimate the dimensionless adhesion force
F̄ = F(h)/F(h → ∞) = cosθY (h)/cosθY (h → ∞) and its relative de-
crease due to the effect of surface hydration on the contact an-
gle. Contact angles θY ≃ 20-80◦ and F̄ ≃ 0.3-1 are predicted
by eqn (3) when the number density and thickness of the first
hydration layer vary within a physically meaningful range (i.e.,
n1 = 1.7-2 nb and δ = 0.7-1 ∆x) for water confined by hydrophilic
surfaces.29,40,41 The relative decrease of the adhesion force F̄ < 1
is more pronounced as the surface hydrophilicity decreases.

Conclusions

In conclusion, we have proposed an alternative sharp-interface
continuum description for nanoscopically confined molecular liq-
uids that is based on the Y-L equation by considering spatial vari-
ations of the number density and configuration-dependent liquid-
solid surface energy due to surface hydration. We verified the
model assumptions by comparing with MD simulation results for
nanoscale water bridges with contact radii much larger than the
molecular diameter. The proposed augmented description re-
quires a knowledge of the local number density, which was here
approximated by a simple heuristic expression considering the
molecular layering of water molecules. The modeled surface hy-
dration phenomenon produces (i) spatial variations of the local
pressure and the curvature of a nanoscale capillary bridge and,
more significantly, (ii) an equilibrium contact angle that varies
with the distance between the confining surfaces. This dual ef-
fect of surface hydration is reported by MD simulations of water
bridges with nanoscale heights and a sufficiently large volumes
so that the bridge radius r(z) > 10σ is larger than 10 molecular

diameters. The dependence of the equilibrium contact angle with
the bridge height is confirmed by both the changes in the radius
slope ṙ(z) and the adhesion forces reported by MD simulations
when the height is smaller than 20 water molecules (i.e., h ≲ 7
nm) for the case of water bridges between neutrally charged and
hydrophilic surfaces. By considering the variation of the equilib-
rium contact angle predicted by the proposed analytical expres-
sions, the conventional Y-L equation assuming a perfectly homo-
geneous liquid phase at constant pressure was able to account for
MD simulation results of capillary bridges with heights smaller
than 10 water molecules and a sufficiently large volume so that
the local bridge radius is larger than 10 molecular diameters. Our
analysis showed that adhesion forces produced by nanoscale cap-
illary bridges can be significantly overestimated by not consider-
ing the reported height-dependent and non-monotonic increase
in the equilibrium contact angle as two surfaces approach con-
tact.

The proposed augmented model can be readily employed with
more accurate expressions for the local number density in the liq-
uid that can be obtained by different theoretical or experimental
methods. Accurate expressions for the local number density can
thus model the combined effects of DLVO interactions and surface
forces on the local pressure and the variation of the equilibrium
contact angle for more complex systems than the case of water
on neutrally charged hydrophilic surfaces studied in this work.
The critical length below which the proposed augmented descrip-
tion considering the liquid structure near the confining surface is
necessary can be generally much larger than a few molecular di-
ameters. This critical length corresponds to the length over which
the local liquid structure and number density present substantial
spatial variations, and it is thus prescribed by the characteristic
length of action of the dominant molecular and surface forces
(i.e., DLVO and non-DLVO interaction) between the liquid and
confining solid. It is therefore worth noting that both the chemi-
cal physics and geometry of the system will determine the scales
for which it is useful to employ the augmented description pro-
posed in this work.
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