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Rotation-translation coupling of soft objects in lubri-
cated contact

Arash Kargar-Estahbanati,a, and Bhargav Rallabandi,∗a

We study the coupling between rotation and translation of a submerged cylinder in lubricated contact
with a soft elastic substrate. Using numerical solutions and asymptotic theory, we analyze the elasto-
hydrodynamic problem over the entire range of substrate deformations relative to the thickness of the
intervening fluid film. We find a strong coupling between the rotation and translation of the cylinder
when the surface deformation of the substrate is comparable to the thickness of the lubricating fluid
layer. In the limit of large deformations, we show that the bodies are in near-Hertzian contact and
cylinder rolls without slip, reminiscent of dry frictional contact. When the surface deformation is
small relative to the separation between the surfaces, the coupling persists but is weaker, and the ro-
tation rate scales with the translation speed to the one-third power. We then show how the external
application of a torque modifies these behaviors by generating different combinations of rotational
and translational motions, including back-spinning and top-spinning states. We demonstrate that
these behaviors are robust regardless of whether the elastic substrate is thick or thin relative to the
length scales of the flow.

1 Introduction
Lubricating two contacting surfaces in relative motion with an
intervening viscous fluid can reduce wear by lowering friction1.
Classical studies of lubricated contacts focused on metal surfaces,
due to their application in bearings2,3 and pistons4,5. In recent
years, however, the popularity of soft materials has drawn atten-
tion to soft lubricated contacts where at least one of the contact-
ing surfaces is deformed significantly by the contact pressure. The
basic principles of soft lubrication are also relevant in applications
such as biomechanics of synovial joints6, the motion of blood cells
in capillaries7, eggs through the oviduct8, and particles moving
in soft channels9 or near elastic membranes10, to name a few.

The tight coupling between elasticity of the contacting solids
and the intervening fluid flow allows soft lubricated systems to
support both normal and tangential applied forces. Experimen-
tal studies of soft lubricated flows have used both interferom-
etry11–13 and contactless mechanical probes14,15. Theoretical
treatments typically require numerical analysis16,17, although an-
alytical solutions are available in asymptotic limits. In the limit
of large normal loads, the geometry approaches that of classical
Hertzian contact18,19, separated only by an extremely thin film
of fluid supported by the relative motion of the surfaces20,21. In
the opposite limit of small normal loads, the surfaces slide with
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a relatively thick fluid film and the surfaces are only slightly de-
formed22–24. These ideas have been quantified experimentally
and theoretically both for soft objects and for rigid objects with
soft coatings. Previous work has studied soft substrates much
thicker than typical length scales of the flow15,20,25, very thin
compressible soft coatings on rigid substrates21,26–29, and sub-
strates of intermediate thicknesses23,30,31 in both two- and three-
dimensional settings.

A focus of previous work has been to study the relationships be-
tween sliding speeds and the resulting lift and drag forces (nor-
mal and tangential to the motion, respectively). In particular,
elastohydrodynamic lift forces have been used to infer the me-
chanical properties of soft surfaces14,32, sort particles and cells in
microfluidics33 and understand the radial migration of particles
in blood micro-circulation13. By contrast, applications such as
soft robotics34, tribo-rheometry of soft surfaces35,36 and lubrica-
tion of artificial synovial joints37,38 have focused on drag forces
in lubricated soft systems.

Recent experiments have shown that, in addition to the lift
force, lubricated sliding between soft surfaces also generates an
elastohydrodynamic torque28,29. This leads to an spontaneous
rotation of a suspended cylinder sliding past a compliant sub-
strate, at a rate that approaches its translation speed. By con-
trast, theoretical analyses for small deformations with both thin39

and thick25 elastic coatings find rotation rates that are far lower
than those measured experimentally. Rotation also plays an im-
portant part of lubricated tribometric experiments34,35 that use

Journal Name, [year], [vol.],1–10 | 1

Page 1 of 10 Soft Matter



R

d

`

h(x)
v

!

x

z

L

Fluid: ¹ 

Soft layer (G, º) 

±(x)

w

c

T

Fig. 1 Sketch of the geometry and the coordinate system for an infi-
nite cylinder submerged in a fluid and rotating parallel to a soft moving
substrate.

large normal loads, where solid deformation is large relative to
the fluid film thickness and the contact is Hertzian. However, the
coupling between rotation and translation, and their relation to
the torque on the system, remains largely investigated outside the
small-deformation (non-Hertzian) regime.

Here, by allowing for Hertzian contacts, we show that rotation
and translation are very tightly coupled in soft lubricated systems.
In particular, we find that rotation rate of a torque-free cylinder
sliding past a soft substrate approaches its translation speed as
the substrate becomes more compliant, while simultaneously re-
covering the results of Rallabandi et al. 39 for stiff substrates. We
also discuss the rotation of objects subject to an applied torque
and find several interesting phenomena including backspin be-
haviors with rotation and translation in either direction, and mul-
tiple possible states for the same torque distinguished by different
fluxes through the lubricating fluid film. We understand these re-
sults using a combination of physical arguments, scaling analysis
and asymptotic theory, and show that the qualitative features are
robust independent of the thickness of the solid layer and the pre-
cise mode of solid deformation.

This paper is organized as follows: In Sec. 2, we set up the
model governing the lubricated flow and deformation of a thick
elastic solid. In Sec. 3, we discuss numerical solutions of the
elastohydrodynamic problem under the specified dynamical con-
straints of force and torque. We show how solutions to the prob-
lem yield a relationship between rotation and translation in Sec.
4. We investigate both torque-free rotation as well as situations in
which rotation is driven under a finite externally applied torque.
In Sec. 5, we study the analogous problem for thin compress-
ible coatings and find that the physical arguments that lead to
translation-rotation coupling remain qualitatively unchanged, be-
fore concluding in Sec. 6.

2 Formulation

2.1 Governing equations

We consider the motion of a cylinder submerged in a fluid near
a soft substrate that translates with the velocity vw as depicted
in Fig. 1. The fluid is assumed to be Newtonian with viscosity
µ, and the flow is assumed to be incompressible and at steady
state. We treat the soft substrate as a linearly elastic material
with shear modulus G and Poisson’s ratio ν . A normal force L is
applied to the cylinder and keeps it near the deformable surface.
Additionally, an external torque T (defined counterclockwise pos-
itive) may also be applied to the cylinder. Stresses of the flow
together with the applied torque drive the cylinder to rotate with
angular velocity ω, which is apriori unknown. The goal is to then
relate this rotation rate to the translation speed of the surface for
a specified load L and torque T .

Relative motion between the surfaces establishes a fluid film of
thickness h(x) between the cylinder and the elastic substrate. We
assume that the cylinder radius R is considerably greater than the
fluid film thickness and that the inertia of the flow is negligible.
Thus, lubrication theory can be employed in the entrained fluid
layer and the velocity can be written as

vx =
1

2µ

∂ p
∂x

(z+δ )(z+δ −h)+
z+δ

h
(Rω)+ vw

(
1− z+δ

h

)
, (1)

where p(x) is the pressure, δ (x) is the surface deformation of the
soft layer (defined positive when the solid is depressed) and z
and x represent the normal and horizontal coordinate axes, re-
spectively (Fig. 1). Requiring that the fluid flux remain constant
at steady state leads to the Reynolds lubrication equation

∂

∂x

(
h3 ∂ p

∂x
−6µ(vw +Rω)h

)
= 0. (2)

The Reynolds equation does not depend independently on the
translational or rotational velocities but only on their sum (vw +

Rω), which is often referred to as the entrainment velocity.
The film thickness h(x) is a function of the cylindrical geometry

as well as the surface deformation δ (x) of the elastic material. In
the vicinity of the lowest point of the cylinder (x = 0), we can
write

h(x) =−c+
x2

2R
+δ (x), (3)

where c is the cylinder penetration depth at x = 0 and is constant
at a given entrainment velocity. Positive c indicates that the cylin-
der penetrates the undeformed nominal surface of the layer, as
sketched in Fig. 1, while negative c corresponds to a finite clear-
ance between the undeformed surfaces.

The deflection of the soft layer δ in (3) is related to the pressure
p in the fluid layer via the elastic response of the soft substrate. In
this paper, we discuss this response for two limiting cases, namely
a thick elastic substrate and a thin compressible elastic coating.
We will focus primarily on thick substrates (i.e. an elastic half-
space), where the surface deformation is related to the applied
pressure by an integral equation40

δ =−1−ν

πG

∫
∞

−∞

ln |x− s| p(s) ds, (4)
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valid in the limit d�
√
|c|R. Note that (4) is only defined up to an

arbitrary datum under two-dimensional elasticity40; this detail is
absorbed into the definition of c in (3). The limit of a thin (and
compressible) coating of thickness d�

√
|c|R will turn out to be

qualitatively (and in some limits, quantitatively) similar and will
be discussed in Sec. 5.

Equations (2)–(3), subject to conditions of vanishing pressure
p(±∞) = 0, yield a coupled system for the pressure p(x). However,
two parameters of the problem, viz. the vertical location of the
cylinder c and the rotation rate ω, remain unspecified. These
are determined self-consistently so that the stresses of the flow
counteract the applied normal load L and the applied torque T ,
necessary to keep the system in equilibrium. These conditions are
written as

L =
∫

∞

−∞

pdx, (5a)

T =
∫

∞

−∞

R
∂ vx

∂ z

∣∣∣∣
z=−δ+h

dx = R
∫

∞

∞

(
h
2

∂ p
∂x
− µ

h
(vw−Rω)

)
dx, (5b)

The system (2)–(5) now simultaneously determines the pressure
p(x), the vertical location of the cylinder c and the angular veloc-
ity ω in terms of vw, the applied normal load L, the applied torque
T and the geometric and material properties of the system.

2.2 Non-dimensionalization

We solve a rescaled form of the governing equations. Our normal-
ization is based on the limit of small velocities wherein, under a
finite normal load L, the surfaces approach “dry” Hertzian con-
tact40. In this dry limit, the surfaces make solid to solid contact
over a horizontal contact length 2a. The contact is associated
with a pressure whose maximum we denote by pmax. Using (7),
we introduce normalized quantities (indicated by overbars) as

x̄ =
x
a
, h̄ =

h
a2/(2R)

, c̄ =
c

a2/(2R)
, p̄ =

p
pmax

. (6)

For thick elastic substrates (d � a), a and pmax are related to
the applied load L and the geometric and elastic properties of the
system by40

a =

√
2(1−ν)

πG
RL, pmax =

2L
πa

. (7)

Defining a normalized sliding velocity λ and a normalized rota-
tional velocity Ω by

λ =
6π2µGRvw

(1−ν)L2 and Ω =
6π2µGR2ω

(1−ν)L2 , (8)

and a normalized entrainment velocity

Λ = λ +Ω =
6π2µGR
(1−ν)L2 (vw +Rω), (9)

the governing equations (2)–(4) rescale as

∂

∂ x̄

(
h̄3 ∂ p̄

∂ x̄
−Λh̄

)
= 0, (10a)

h̄ =−c̄+ x̄2− 2
π

∫
∞

−∞

ln |x̄− s̄| p(s̄)ds̄ , (10b)

subject to boundary conditions p̄(±∞) = 0. The condition of nor-
mal force balance (5a) rescales as∫

∞

−∞

p̄ dx̄ =
π

2
. (11)

The entrainment velocity Λ can alternatively be interpreted as a
dimensionless compliance: small Λ correspond to soft substrates
(small shear modulus G), whereas large Λ occur for relatively stiff
substrates.

Observe that the (10a) and (10b) form a complete system in
terms of the sole parameter Λ (the normalized entrainment ve-
locity) but do not depend individually on λ and Ω. The solution
of this system thus yields p̄(x), h̄(x) and c̄ in terms of Λ, which we
detail in the forthcoming Sec. 3. The relation between Ω and λ is
determined by the torque condition (5b), which we discuss and
enforce subsequently in Sec. 4.

3 Solution of the elasto-hydrodynamic prob-
lem

We first present numerical solutions of the system of constrained
integro-differential equations (10) and (11) over the entire range
of Λ, and interpret the results with asymptotic arguments. The
limit of Λ � 1 was analyzed by Bissett and Spence 16 , Wu
et al. 19 , Snoeijer et al. 20 , Bissett 41 and the limit Λ� 1, by Zhang
et al. 15 , Skotheim and Mahadevan 23 , Bertin et al. 25 , Kargar-
Estahbanati and Rallabandi 31 , albeit using a different formula-
tion (see appendix). Our numerical results span the entire range
of Λ and are consistent with either limit. Recently, Essink et al. 21

simulated the entire range of Λ using both lubrication theory and
finite element analysis, focusing on thin elastic coatings (we re-
turn to thin coatings in Sec. 5). Below, we summarize the main
features of the flow for thick substrates, focusing on the cylinder’s
vertical location c̄, the pressure p̄ and the film thickness profiles h̄
as functions of Λ. These results are necessary for understanding
the coupling between rotation and translation, which we discuss
later.

At each Λ, we solve the system of equations by first guessing a c̄.
We cast the derivatives in (10a) and integral in (10b) as matrix-
vector products using finite-difference approximations, with an
analytic treatment of the integral in (10b) near the singularity.
We solve the resulting system of nonlinear algebraic equations
using Newton–Raphson iteration. While the obtained numerical
solution solves the flow equations (10), it does not satisfy (11)
needed to ensure the balance of normal forces. Thus, we iterate
on c̄ until the integral condition (11) is met within a small toler-
ance, yielding the solution to the problem. For Λ� 1, we use a
non-uniform mesh to resolve the problem efficiently around the
contact lines x̄ =±1 while maintaining accuracy.

Fig. 2 shows c̄ as a function of entrainment velocity Λ. As de-
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Fig. 2 Normalized indentation of bottom of cylinder c̄ as a function of Λ

(normalized entrainment velocity). The illustrations show the configura-
tion of cylinder and soft surface in the limiting cases, qualitatively. The
indentation in the limit Λ→ 0 is c̄dry =

1
2 (1+2log2). The vertical dashed

line at Λ = 4.635 is the location where c̄ crosses over from positive to
negative values.

picted in Fig. 1, c̄ is the normalized penetration depth at x = 0
and is constant for a given Λ. In the (singular) limit of van-
ishingly small speeds (Λ→ 0), the solution approaches that of
dry contact and the parameter c̄ is found analytically to equal
c̄dry = 1

2 (1+2log2) ≈ 1.1931; Fig. 2. As Λ is increased, the
thickness of entrained fluid film increases and the deformation of
soft layer decreases thus c̄ = δ̄ (0)− ¯h(0) decreases. At Λ ≈ 4.635,
c̄ = 0 which corresponds to the region where the cylinder starts
to “float” above the undeformed surface. Further increasing Λ

increases the separation between the surfaces (so c̄ becomes neg-
ative). In the limit where Λ� 1, Skotheim and Mahadevan 23

provided an analytical solution, which in our normalization yields
c̄ = −48−1/3Λ2/3 (details in the appendix). This result (dashed
line in Fig. 2) is in good agreement with numerical results in this
limit.

Dimensionless fluid pressure p̄(x̄) and thickness h̄(x̄) profiles
are plotted in Figs. 3a and 3b, respectively; the arrow shows the
direction of increase in Λ. The lubrication pressure decays away
from the cylinder as required by the boundary conditions. For
small entrainment speeds (Λ� 1), the cylinder is pushed into the
surface, squeezing out most of the fluid except for a very thin en-
trained layer. In this case, the pressure distribution approaches
that of dry contact in most of the domain, p̄ ∼

√
1− x̄2 Θ

(
1− x̄2)

up to corrections involving Λ, with Θ denoting the Heaviside func-
tion. However, near the nominal contact lines (x̄∼±1), the pres-
ence of the thin fluid layer smooths the originally sharp pressure
gradients of dry contacts. This smoothing occurs over two regions
of dimensional width ` around the contact lines (Fig. 1, Fig. 3).
Asymptotic theory20 shows that the width of the boundary layer
scales as ` ∼ aΛ2/5. As noted earlier, as Λ increases, there is a
greater flux of fluid through the gap, increasing the gap width,
leading to smaller pressures and smaller surface deformations.
For small Λ, the fluid film thickness h̄ = H∗Λ3/5 (with H∗ = 0.389)
is asymptotically constant throughout the nominal contact region
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Fig. 3 a) Normalized pressure and b) normalized fluid thickness as a
function of horizontal coordinate x̄ for different values of normalized en-
trainment velocity. Λ = 0.05, 0.5, 5, 50, 200. The arrow shows the di-
rection of increase in Λ. The dashed line corresponds to the pressure
distribution of dry contact.

(−1 < x̄ < 1), consistent with analysis of Snoeijer et al. 20 .

At the other extreme of large Λ, the cylinder floats far above
the surface (h̄� δ̄), and the pressure approaches the pure hy-
drodynamic solution for the motion of a rigid cylinder parallel to
a rigid wall in a viscous fluid, plus small corrections due to the
compliance of the substrate. In this limit, our numerical results
are consistent with the analysis of Skotheim and Mahadevan 23

(the limit η � 1 in that article).

We observe that both the pressure and film thickness profiles
depend on Λ = λ +ω, so at this stage it is not yet clear how ro-
tation and translation are coupled. In subsequent sections, we
show how the dynamical constraints on the applied torque relates
translation and rotation.

4 Coupling between translation and rotation
Having solved the lubrication equations in terms of Λ = λ +Ω, we
are now in a position to relate Ω to λ using the torque balance
(5b). Using (5) the normalized torque on the cylinder is

T̄ =
T
La

=
1

2π

(
A− 1

3
Λ−2Ω

Λ
B
)
, where (12a)

A(Λ) =
∫

∞

−∞

h̄
∂ p̄
∂ x̄

dx̄ and B(Λ) =
∫

∞

−∞

Λ
dx̄
h̄
. (12b)
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Fig. 4 a) A and B for the different values of normalized entrainment
velocity. b) Normalized rotational velocity vs normalized sliding velocity
for the torque free problem. The solid lines represent the numerical
solution and the dashed lines are asymptotic solutions.

The integrals A and B depend solely on Λ and are obtained using
the numerical solutions for h̄ and p̄ discussed in Sec. 3. In (12a),
the term involving A represents the contribution of Poiseuille flow
whereas the term involving B is due to the effect of simple shear
in the gap.

Rearranging (12a) yields Ω as a function of Λ and the integrals
A(Λ) and B(Λ) as

Ω =
Λ

2

(
1− 3A−6πT̄

B

)
. (13)

Since A(Λ) and B(Λ) in (12b) are essential in understanding the
mechanism of rotation, we will first discuss their behaviour in
detail. Once we find A and B, the relation between Λ and Ω is a
rational function (13).

Fig. 4a shows plots of A(Λ) and B(Λ) for thick elastic layers,
obtained from the numerical solutions of Sec. 3. For small Λ,
the dominant contribution to A comes from the boundary layers
around the contact lines x ∼±1, where h̄ = O(Λ3/5) and d p̄/dx̄ =
O(Λ−1/5) yielding A ∼ CHΛ4/5. The prefactor CH ≈ 2.84 is ob-
tained numerically. The primary contribution to B comes from the

contact region, where the film thickness is a constant (h∼H∗Λ3/5)

yielding B = 2Λ2/5/H∗. Similarly, for large Λ, p̄ = O(1) because
of the constraint imposed by (11), h̄ ∼ c ∼ Λ2/3 and the horizon-
tal length scale

√
|c| ∼ Λ1/3, yielding A ∼ Λ2/3 and B ∼ Λ2/3. For

both small and large Λ our numerical results approach the above
asymptotic relations (details are in the appendix). We are now in
a position to use the results for A(Λ) and B(Λ) in (13) to relate
the rotation rate Ω to the translation speed λ = Λ−Ω.

4.1 Free rotation (T̄ = 0)

We first discuss the case where no external torque is applied
(T̄ = 0), so the cylinder rotates freely. Fig. 4b shows the plot of Ω

for the different values of λ when T̄ = 0. For small sliding veloc-
ities, Ω∼ λ , or Rω ∼ vw, represented by a dashed line in Fig. 4b.
This asymptotic result follows from (13) as A� B (see Fig. (4a))
and represents “pure rolling”, which occurs in the limit of small
velocities or highly compliant substrates (at fixed normal load).
Physically, the thin layer of entrained fluid has constant thick-
ness (Λ3/5H∗), so hydrodynamic torque is generated essentially
by shear stress across the fluid film due to the relative velocity
λ −Ω. Therefore, for the system to be torque free, it is necessary
for the rotational speed of the cylinder to match its sliding speed.

An improved approximation for Ω retaining higher-order terms
(see appendix) in the behaviors of A and B. We use these terms to
construct a Padé approximant Ω= λ/(1+4.37λ 2/5) that is asymp-
totic for small λ , but has excellent accuracy up to λ ' 4 (Fig. 4b;
dotted curve). We note that the rotation speed becomes compara-
ble to the translation speed for compliant surfaces (small λ). This
result is in qualitative agreement with the experiments of Sain-
tyves et al. 29 which found rotation rates as large as RΩ/vw ≈ 0.7
and where it was observed that softer substrates led to faster ro-
tation.

For large speeds or stiff substrates (λ � 1) the pressure am-
plitude is O(1), leading to a deformation scale λ 1/3, while the
film thickness grows as λ 2/3. The ratio of deformation to film
thickness thus scales as δ/h ∝ λ−1/3� 1, as discussed in the ap-
pendix in detail. For thin compressible elastic substrates, Ralla-
bandi et al. 39 showed that Ω/λ ∝ (δ/h)2, and rationalized the
scaling behavior through symmetry arguments. We expect the
same symmetry arguments to apply for thick elastic substrates,
and thus we anticipate Ω/λ ∝ λ−2/3, or Ω ∝ λ 1/3. This scaling es-
timate is borne out by numerical solutions, which we use to make
the scaling law more precise as Ω ∼ 0.307λ 1/3 ; cf. Fig.4b. Thus,
the combination of scaling arguments, asymptotic estimates and
numerical solutions provide handy approximations to Ω over the
entire range of λ for a torque-free cylinder.

4.2 Rotation at finite torque (T̄ 6= 0)

While we have so far considered rotation of torque-free cylinders,
several applications rely on the application of a finite torque.
For example, a Mini-traction machine, a tribometric apparatus
designed to measure the frictional force in soft contacts, keeps
the probe from rotating (Ω = 0) by applying a finite external
torque T̄ 34–36. The response to applied torques is also relevant
in the study of natural or artificial lubricated joints involving soft

Journal Name, [year], [vol.],1–10 | 5

Page 5 of 10 Soft Matter



0 1 2 3 4

-0.2

0

0.2

0.4

0.6

0.8
a)

-2 0 2 4 6
-5

0

5

10

15

20

25

30

35

40
b) c)

Fig. 5 a) Normalized rotational velocity Ω vs normalized sliding velocity λ for T̄ = 0,±0.05,±0.15,±0.2,±0.3. The dashed lines represents negative
torques. b) Rescaled curves for different torques showing an approximate collapse when λ , Ω� 1. The lines represent analytical solutions (solid lines
for T > 0 and dashed lines for T < 0) and the symbols represent numerical solutions. c) large λ approximation for different applied torques. The solid
lines are numerical solutions while the dashed line is an analytic result.

tissue37,38. Therefore, we now return to (13) and discuss the
rotation-translation coupling under the application of an external
torque to the cylinder. The torque applied may either be positive
(counter clockwise) which aids rotation, or negative (clockwise)
which opposes it.

Figure 5a plots Ω vs λ for different values of the normalized ex-
ternally applied torque T̄ , obtained by substituting the numerical
values of the integrals A and B into (13). As shown in Fig. 5a, for
a given translation velocity λ , the cylinder is able to spin back-
ward (clockwise), forward (counter-clockwise) or translate with-
out any rotation, depending on the magnitude and direction of
the external torque. Unsurprisingly, positive T̄ result in larger ro-
tation rates than the torque-free cases, whereas negative T̄ yields
lower rotation rates, ultimately producing a reversal of the direc-
tion of rotation. However, it is interesting to note that positive T̄
yields solutions with where the direction of translation is reversed
(λ < 0), leading to multiple Ω at the same (negative) λ for posi-
tive T̄ (see also Fig. 5b). Similarly, the direction of rotation may
depend on the translation speed λ at some negative values of T̄
(e.g., the curve for T̄ = −0.15 in Fig. 5a crosses the Ω = 0 axis).
Similar to the torque-free case, we use the asymptotics of A and
B to quantify these behaviors.

Substituting the asymptotic relations for A and B for λ � 1 and
T � 1 into (13), the relation between rotational and sliding ve-
locity becomes Ω ∼ λ + 3πH∗T̄ (λ + Ω)3/5 − 3/2 H∗Ch(λ + Ω)7/5

(details in appendix). A dominant balance for small λ and Ω sug-
gest the rescaling Ω̂ = Ω/|T̄ |5/2, and λ̂ = λ/|T̄ |5/2, yielding

Ω̂∼ λ̂ + sgn(T̄ )3πH∗(λ̂ + Ω̂)
3
5 − 3

2
H∗Ch(λ̂ + Ω̂)

7
5 |T̄ | (14)

where sgn is the sign function. In these new rescaled coordinates,
the leading terms are independent of T , whereas the effect of
finite T occurs in a higher-order term. Indeed, numerical results
of Fig. 5a when suitably rescaled are well predicted by (14), as
illustrated for different values of external torque in Fig. 5b. The
numerical results start to deviate from this relation for large λ

or large |T̄ |. As one can observe in Fig.5b, when the external
torque is applied in the “natural” direction of rotation (T̄ > 0),
there are some conditions wherein the cylinder translates with a
backspin (λ < 0, and Ω > 0, but with Λ = λ +Ω > 0). This non-

trivial behavior can also be observed in Fig. 5a and is not limited
to small torques. The analytical solution (14) provides insight
into this “turn-over” region of the curves for positive torques: for
example, for an applied positive T̄ � 1, the maximum value of
negative translation speed that can be attained is λ ≈ 2.2 T̄ 5/2.

Furthermore, for a prescribed external torque, there are two
equilibrium Ω for each (negative) value of λ in the backspin re-
gion. As a case in point, solving (14) for zero linear velocity and
T̄ � 1 yields: Ω = 0 and Ω ≈ (3πH∗)5/2 T 5/2. The first solution
represents the static condition where the objects move at vanish-
ingly small speeds. The second solution, however, corresponds to
rotation in place without translation.

Whether one solution or another is selected depends on other
constraints of the system. In particular, the external horizontal
force D̄ on the cylinder must also be supported by fluid stresses,
so that

D̄ =
D
L
=

1
2π

(
E +

1
4

A− 1
12

Λ−2Ω

Λ
B
)
, (15a)

where E(Λ) =
∫

∞

−∞

x̄ p̄ dx̄ . (15b)

While the multiplicity of solutions pointed out earlier have the
same normal load and torque, they correspond to different values
of Λ and thus are require different horizontal forces to sustain.

Similarly, for external torques that are applied clockwise in Fig.
1 (T̄ < 0), we again find situations in which the cylinder trans-
lates with a backspin, but this time with Ω < 0 while maintaining
λ > 0 (still with Λ = λ +Ω > 0). In analogy to the case of T̄ > 0,
there are two possible λ corresponding to the same (negative) Ω

within this backspin region. For small T̄ < 0, this region of neg-
ative Ω ultimately yields to positive Ω for large enough λ due to
the translation-rotation coupling overwhelming the counteracting
negative torque. However, for sufficiently negative T , this behav-
ior disappears and the applied torque is able to support a backspin
at equilibrium for all λ .

For large translation speeds λ � 1, we find from (13), using
the asymptotic behaviors of A and B (Fig. 4a) that (see appendix)

Ω = 0.307λ
1
3 +

3

48
1
6

T̄ λ
1
3 . (16)
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Figure 5c shows that the above relation is in excellent agreement
with the numerical results for different values of external torque
for large λ . The result (16) also identifies the smallest negative
torque required to produce backspin (Ω < 0) for all λ > 0, viz.
T̄ back

min ≈−0.195. This estimate is borne out by our numerical solu-
tions, though we do not display this in Fig. 5.

5 Thin elastic coating

Many applications utilize thin elastic coatings on rigid sub-
strates28,29. We show that our discussion for thick elastic susb-
trates remains qualitatively unchanged when the thickness of the
soft coating is much smaller than the horizontal length scale of
the problem (d� a). We will reuse notation from our analysis of
thick substrates for convenience. Assuming that the solid is not
strictly incompressible (ν 6= 1/2), the relation between pressure
and deformation in this limit is local (the Winkler approximation)
and given by δ = pd(1−2ν)/(2G(1−ν)). Analogously to Sec. 2.2
we define the dry contact length and the maximum dry contact
pressure for thin elastic layers as21

a =

(
3
4

LdR(1−2ν)

G(1−ν)

) 1
3

, pmax =
3L
4a

. (17a)

The governing equation in the fluid film is still (10a). For thin
substrates, the normalized rotational and translational velocities
are

λ = 32
vwµR2

La2 and Ω = 32
ωµR3

La2 . (18)

In dimensionless variables, the relation between deformation and
pressure is simplified to p̄ = δ̄ and therefore, we write the nor-
malized film thickness h̄ as

h̄ = x̄2− c̄+ p̄ . (19)

Additionally, the equilibrium of normal forces (5a) and external
torques (5b) for thin layers rescale as∫

∞

−∞

p̄ dx̄ =
4
3
, (20a)

T̄ =
T
La

=
3

16

(
A− Λ−2Ω

3Λ
B
)
. (20b)

We use a similar approach as that for thick layers to find the
pressure p̄(x;Λ) and film thickness h̄(x;Λ) for different values of
entrainment velocity. Here, we use solve the governing equation
using a shooting method instead of Newton–Raphson iteration.
Once the solution is obtained, rearranging (20b) yields Ω as

Ω =
Λ

2

(
1− 3A−16T̄

B

)
(21)

Equations (20b) and (21) differ from their thick-layer counter-
parts (12a) and (13) only by a numerical factor.

As depicted in Fig. 6 a, for Λ� 1, both A and B decay like
Λ1/2. This is due to the feature that the fluid film is not uniform
in this limit for thin elastic layers21, contrary to the case of thick
layers20. Both A and B are therefore involved in the calculation
of Ω at leading order. As a result, in the limit of soft coatings, the

10-6 10-4 10-2 100 102 104
10-6

10-4

10-2

100

102

A
 a

n
d

 B

a)

10-6 10-4 10-2 100 102 104
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10-4

10-2

100

102b)

T=0

Fig. 6 a) A and B as a function of normalized mean velocity Λ, and b)
Ω as a function of normalized linear velocity λ , for thin elastic layers and
zero applied torque. Dashed lines represent the asymptotic solutions.

ratio of rotational to linear velocity Ω/λ does not approach unity
as Λ→ 0. Nonetheless, if we substitute the asymptotic values for
A and B in (21), we find Ω ∼ 0.95λ , which remains very close to
pure rolling. This asymptotic result is illustrated in Fig. 6b. All in-
dicated asymptotes in Fig. 6a and Fig. 6b are derived analytically
including the prefactors (see appendix). As noted above, the fluid
film thickness for a thin elastic coating is not uniform for Λ� 1.
The hydrodynamic torque thus has two contributions, one scaling
as λ −Ω, and the other depending on the pressure gradient; both
are involved in the zero-torque condition.

At the other extreme, where Λ � 1, analytical solutions are
found using the asymptotic analysis of Skotheim and Mahade-
van 26 . The quantities A and B are qualitatively similar to their
counterparts for thick substrates. Additionally, as depicted in Fig.
6 b, Ω = 7/

(
3π10/7

)
λ 1/7, in agreement with the analytical result

of Rallabandi et al. 39 (see appendix).
By comparing Fig. 4b and 6b, we see that behaviour of the

Ω versus λ curve is qualitatively the same for the limiting cases
of thick (d � a) and thin (compressible) elastic layers (d � a,
ν 6= 1/2). Some important asymptotic behaviors for the rotation-
translation coupling with thick and thin elastic substrates are
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Table 1 Relation between normalized linear velocity λ and normalized rotational velocity Ω for the extreme conditions. λ = 24kcvwµR2/(La2) and
Ω = 24kcΩµR3/(La2) where kc = π/2 for thick layers and kc = 4/3 for thin layers.

horizontal length scale large deformation Λ� 1 small deformation Λ� 1

thick layers d� a a =

√
2(1−ν)

πG
RL Ω−λ −3πH∗ (λ +Ω)3/5 T̄ −3/2H∗Ch (λ +Ω)7/5 = 0 Ω = λ

1/3
(

0.307+
3T̄

481/6

)
thin layers d� a a =

(
3
4

LdR(1−2ν)

G(1−ν)

)1/3
Ω−0.95λ −2.15(λ +Ω)1/2 T̄ = 0 Ω =

7
3π10/7

λ
1/7 +

4T̄
π6/7

λ
2/7

summarized in Table 1. We note that the thin-layer theory used
here assumes that the elastic layer is thinner than all lateral length
scales, in particular also that of the boundary layer, whose width
scales as ` ∼ aΛ1/2. This condition can no longer be met at suf-
ficiently small speeds Λ . (d/a)2, where it becomes necessary to
account for the full (finite-thickness) response of the layer, lead-
ing to new asymptotics as Λ→ 0 (see Essink et al. 21). We do
not anticipate these effects to significantly affect our results for
rotation in this limit, since the bulk of the rotation is caused by
stresses in the thin film (and not the boundary layers) which re-
mains well approximated by the local elastic model used here as
long as d� a. More generally, the finite-thickness elastic response
is necessary everywhere if d is comparable to a. However, due
the observed similarities for the limiting cases of thick and thin
elastic layers, we anticipate that the rotation behaviors discussed
here are qualitatively robust even for soft layers of intermediate
thickness.

6 Conclusions

In this paper, we investigated the coupling of rotation and trans-
lation in the lubricated motion of soft objects. For compliant
substrates, there is a strong coupling between the rotation and
translation, approaching the limit of classical frictional rolling
for highly compliant materials (Rω ' vw). This coupling is sig-
nificantly stronger than was predicted by previous approaches,
which focused on relatively stiff substrates. When the surfaces
are relatively stiff, translation and rotation remain coupled but
to a lesser extent (Rω ∝ v1/3

w ). The behavior of soft contacts are
found to be quantitatively similar for thin and thick soft layers;
some key quantitative results are summarized in Table 1. Finally,
we showed that applying an external torque in either direction
modifies this coupling, yielding various combinations of transla-
tion and rotation depending on the magnitude and direction of
the applied torque. In particular, this includes back-spinning be-
havior with translation and rotation in either direction, as well
as multiple possible states for the same applied torque but with
differing fluxes. These behaviors could have implications for the
tribology of soft surfaces and may lead to new ways to control
motion in systems such as artificial joints that involve lubricated
soft materials.
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A Asymptotic analysis for compliant and
stiff substrates

A.1 Analysis for Λ� 1

In this section, we establish a relation between the normalization
of previous works in the limit of large sliding velocity (23,24,26,39)
and the normalization we use here. We employ the results of this
section to compare our numerical results with asymptotic solu-
tions.

In Skotheim and Mahadevan 23 the normalized relation for the
fluid thickness and the lubrication equation are written as

G = 1+Z2 +η

∫
Q(r) ln |Z− r|dr , (22a)

dQ
dZ

= 6
G−G∗

G3 , (22b)

where G and Q are the normalized thickness and pressure, re-
spectively, Z is the rescaled horizontal coordinate and η is a de-
formation parameter.

Comparing (22a) and (22b) with (10b) and (10a), we find that
x̄ =

√
|c|Z, p̄ = Λ/(6|c|3/2)Q and h̄ = |c|G; recall that c < 0 for

Λ� 1. Substituting back these values in (22a), we find η ∼ Λ

3|c|2 .
Additionally, we know from the literature that for a very thick
soft layer

∫
QdZ ∼ η

3π

16
23. On the other hand, (11) requires that∫

p̄dx̄ = π/2. By substituting p̄ and x̄ into the latter integral, we
find c as a function of Λ

c∼−48−1/3
Λ

2
3 . (23)

Now, we can substitute (23) and the values of x̄ and p̄ into the
integral relations for A and B (12b) and find these two inte-
grals using the analytical solutions for the pressure (Q) and film
thickness thickness (G). Skotheim and Mahadevan 23 show that
Q = 2Z

(1+Z2)2 +O(η) and G = 1+Z2 +O(η), using which we find
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that

A∼ 481/6

3
πΛ

2/3 , (24a)

B∼ 481/6
πΛ

2/3 . (24b)

We used these values in Fig.4a in the main text to verify our nu-
merical results in the extreme limit of Λ� 1. To estimate Ω using
(13), higher order terms in A and B are required. However, based
on the analysis in Rallabandi et al. 39 , we expect Ω/Λ∼ η2 when
no external torque is exerted on the cylinder due to symmetry
arguments. Substituting (23) in the definition of η noted earlier
yields η ∼ Λ−1/3. Combining these two equation, we find that Ω

scales as
Ω ∝ Λ

2/3
∝ λ

2/3 . (25)

In the main text, we use our numerical solution to fit a prefactor
to the scaling law above. For finite torque, we use the torque-free
result for Ω and the solutions for A and B from (24) to obtain (16)
of the main text.

For thin layers22, instead of (22a), the thickness is related to
the pressure by G = 1 + Z2 + ηQ(r). However, the lubrication
equation (22b) is still valid and one can use similar approach as
the one discussed above for thick layers to find asymptotic rela-
tions for the two integrals A and B. These results are depicted in
Fig. 6. For thin layers, the analytical relation between Ω and λ for
λ � 1 is known39 to be Ω/λ = 21η2/256 (η is defined differently
for thin and thick layers but we reuse notation). Our analysis
finds η = 16Λ3/7/(3π5/7), which use to relate Ω and λ as

Ω =
7

3π10/7
λ

1/7 . (26)

This relation is compared with the numerical results for large slid-
ing velocities in Fig. 6 b. Similarly, the finite torque relations in
this limit can be found using the approach we adopted for (16).

A.2 Analysis for Λ� 1

For Λ � 1, the contact region is divided into a central region
which resembles Hertzian contact, and boundary layer regions
where the thin film adjusts to the flow far from contact (See
details in20,21). In this section, we use the analytical results
found in Snoeijer et al. 20 to approximate the scaling of integrals
A and B when the entrainment velocity Λ is small. In the cen-
tral region, we can approximate pressure by that of dry contact:
p̄=
√

1− x̄2Θ(1−x2) where Θ is the Heaviside function. Addition-
ally, (10) yields h̄ = Λ3/5H∗+Λ4/5 H∗3 dp̄/dx̄ where H∗ = 0.389 is
a constant. Substituting h̄ and p̄ back into (12b), one finds the
values of A and B in central region (Ac and Bc, respectively) to be
equal to

Bc =
2

H∗
Λ

2/5 , (27a)

Ac = Λ
4/5H∗3

∫ 1

−1

(
d p̄
dx̄

)2
dx̄∼ O(Λ4/5) , (27b)

In the boundary layers around x̄ ± 1, p̄ = Λ1/5P(ξ ) and h̄ =

Λ3/5H(ξ ) where ξ = Λ−2/5(x̄∓ 1) is a rescaled horizontal coor-
dinate. The contributions of the boundary layers to A and B are
therefore

Bbl = Λ
4/5
∫

∞

0

dξ

H
∼ O(Λ4/5) , (28a)

Abl = Λ
4
5

∫
∞

0
H

dP
dξ

dξ ∼ O(Λ4/5) . (28b)

Now, the integrals A and B over the entire domain are simply the
sums of contributions from the central region (27) and the two
boundary layers (28), so

B∼ 2
H∗

Λ
2/5 +BhΛ

4/5 , (29a)

A∼ChΛ
4/5 , (29b)

We used our numerical results to find the prefactors Bh = 3.30
and Ch = 2.84. The analytical results (29) are plotted along with
the numerical results in Fig. 4a. Substituting A and B from (29)
back into (13), we find Ω = λ at the leading order when Λ� 1.
Retaining the higher order terms gives us even a more precise
expression Ω = λ − 4.37λ 7/5. We use a Padé approximation to
rewrite this relation as (see, e.g., Bender and Orszag 42)

Ω =
λ

1+4.37λ 2/5
, (30)

which is an excellent approximation up to λ ≈ 4; Fig. 4b.

When a nonzero torque is applied to the cylinder, we use (29)
to rewrite the rotation rate equation (13) as

Ω =
Λ

2
+

3π

2
H∗T̄ Λ

3/5− 3
4

H∗ChΛ
7/5 . (31)

Substituting Λ = λ +Ω yields (14).
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