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Abstract 

Tissue mechanical properties such as rigidity and fluidity, and changes in these properties driven by jamming- 

unjamming transitions (UJT), have come under recent highlight as mechanical markers of health and disease in various 

biological processes including cancer. However, most analysis of these mechanical properties and UJT have sidestepped 

the effect of cellular death and division in these systems. Cellular apoptosis (programmed cell death) and mitosis (cell 

division) can drive significant changes in tissue properties. The balance between the two is crucial in maintaining tissue 

function, and an imbalance between the two is seen in situations such as cancer progression, wound healing and 

necrosis. In this work we investigate the impact of cell death and division on tissue mechanical properties, by 

incorporating specific mechanosensitive triggers of cell death and division based on the size and geometry of the cell 

within in silico models of tissue dynamics. Specifically, we look at cell migration, tissue response to external stress, tissue 

extrusion propensity and self-organization of different cell types within the tissue, as a function of cell death and division 

and the rules that trigger these events. We find that not only do cell death and division events significantly alter tissue 

mechanics when compared to systems without these events, but that the choice of triggers driving these cell death and 

division events also alter the predicted tissue mechanics and overall system behavior.   

Introduction 

In dense tissue constructs, with cell packing fractions close to 1, the ability of cells to migrate and exchange neighbors 

dictates whether the tissue is classified as “Jammed” or “Unjammed”1–3. Systems with low cell mobility and none to a 

few neighbor exchanges in timescales spanning hours, are classified as jammed. On the other hand, increased cell 

mobility and neighbor exchanges within this time scale are characteristics of an unjammed tissue4. Intermediate 

scenarios where certain cells rapidly exchange neighbors, or where a small region of the tissue shows localized jamming 

and unjamming are also observed5. The state of cells being jammed or unjammed also relates to the bulk tissue being 

mechanically classified as being rigid or fluid, where jammed tissues are classified as rigid while unjammed tissues are 

classified as fluid6. However, at this point, the definitions can get a bit blurry. Tissue rigidity and fluidity might refer to 

the ability of the bulk tissue to deform and rearrange under external stresses and dissipate these stresses across the 

structure. While jamming and unjamming of individual cells will contribute to these bulk level outcomes, migration of 

cellular collectives within the tissue, with few individual neighbor exchanges, may also drive tissue reorganization and 

fluidization7. Ultimately, mechanical characterization of tissues as being rigid or fluid, and jammed or unjammed, can 

help describe and understand different mechanical states of these tissue systems in a variety of biological processes 

such as embryogenesis, tissue regeneration, wound healing, and diseases such as cancer. 

The above described mechanical properties of a dense tissue are usually known to be dictated by three individual cell 

level properties – 1) the migration ability of individual cells8, governed by intracellular force generation and transmission 

of these forces from the cell to the surrounding tissue, 2) the persistence of cell migration9, driven by the fluctuations in 

the directions of aforementioned forces, and 3) a target cell shape index7,10, dictated by the mechanical stiffness of the 

cell cytoskeletal cortex and the adhesion between neighboring cells. These factors and their effect on tissue mechanical 

states have been extensively studied and described in literature1,11–13. However, there are additional factors such as 

inter-cellular heterogeneity within the tissue5,14, formation of supra-cellular structures spanning multiple cells15,16, 

mechanical properties of the cell nucleus17, and extensile vs. contractile nature of cellular collectives18 that have also 

been shown to influence the mechanical state of these tissues. One specific factor, cellular death and division within the 
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tissues, while implicated in broader tissue level dynamics, has been largely left out of consideration when discussing 

tissue mechanics such as tissue rigidity, fluidity, jamming and unjamming. A potential reason behind this might be the 

intuitive assumption that cell death and division will create large enough changes in the local cell density that can 

instantaneously drive tissue fluidization and unjamming. However, we hypothesize that not only the inclusion of cell 

death and division, but also the choice of triggers that cause cellular death and division can have a significant impact on 

the mechanical states of tissues. Cell death and division processes are highly mechanosensitive in nature and strongly 

depend on a number of key cellular parameters such as cell size19,20, local cell density21, cell shape22,23, interface area 

between cells24, intra-cellular tension25, and paracrine biochemical signaling26. Many of these cellular parameters such as 

size, shape, interface area, and intra-cellular tension are related to the three individual cell level properties – migration 

speed, persistence and shape index, known to drive jamming-unjamming and rigidity-fluidity transitions in tissues. Thus, 

not considering cellular death and division triggered via mechanosensitive pathways while describing tissue mechanics 

during biological properties such as embryogenesis, wound healing and cancer progression limits our understanding of 

these processes.    

Self-propelled Voronoi (SPV) models are a commonly used computational tool to study how cell-level interactions 

influence tissue mechanical properties and outcomes27. We use this modeling framework to examine how cell death and 

division influences tissue mechanical properties. Our focus is specifically on how the choice of death and division triggers 

– either random, based on cell size, based on cell shape, or based on cell interface length with other cells (which 

combines both cell size and shape), influences tissue mechanics. Each of these triggers has a specific biological relevance 

and can be the dominant trigger for cell-death and division events in specific environments. For example, cell size is 

known to strongly control cell division likelihood19,28. Also, cell size is related to local cell density, which has been shown 

to govern cell proliferation rates in growing tissues systems29. Cell shape on the other hand can drive key biochemical 

signaling pathways as well as nuclear localization of key transcription factors30, driving cell fate changes. Cell interface 

length with other cells, which is quantified by the cell perimeter, considers inter-cellular signaling via cell adhesion 

junctions which are mechanosensitive triggers for cell fate decisions31. It also takes into account cellular stretch32, driven 

by both size and shape changes in the cell, which can alter intra-cellular tension. The main result of this work shows that 

while death and division events indeed alter tissue mechanics by driving unjamming transitions, the extent of 

unjamming depends on the cell death and division triggering mechanism. Additionally, we show that local unjamming 

may not directly relate to tissue fluidization as defined by the ability of a tissue system to dissipate external stresses. 

Overall, this work highlights the importance of properly considering the rules governing cellular death and division while 

making predictions on tissue mechanical properties and their role in governing outcomes of key biological properties. 

Methods 

Simulation Setup 

We simulated the cells as Voronoi polygons7,33 (Figure 1 A) using MATLAB. In all configurations we start with an initial 

number of cells equal to 900 in a square shaped region with an area of 9x10-8 𝑚2 such that the cells have an average 

area of 100 𝜇𝑚2. The energy of the tissue is calculated as a function of the cell cortex stiffness, inter-cellular adhesion, 

and the internal pressure of the cell10,34,35. This energy is given by36 – 

𝐸𝑖 =  
1

2
𝑘(𝑃𝑖 − 𝑃0)2 −  

1

2
∑ 𝛾𝑗𝑙𝑖𝑗 − 𝜆 log

𝐴𝑖

𝐴0
                                                                 (1) 

where 𝑘 is the cell cortex stiffness and 𝑃𝑖 and 𝑃0 are the perimeters of the cell as a polygon and of a circle with the same 

area as the cell. 𝛾𝑗  is the lower of the two adhesion coefficients at the interface of contact between the cells and 𝑙𝑖 is the 

length of the interface. 𝜆 is the internal pressure parameter and 𝐴𝑖  and 𝐴𝑜 are areas of the cell and the mean area 

available to each cell (total area available to all cells divided by the number of cells) respectively. 

The simulation progresses through cellular rearrangements, where ~1% of the cells are chosen to be moved 

stochastically from an exponential distribution based on the local energy density of the cells, causing higher energy cells 

to be picked more often. These chosen cells are moved a random distance which is exponentially distributed with a 

mean of 0.5 𝜇𝑚, corresponding to ~5% of the length of the cell, in a random direction. If this interim configuration has a 
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lower energy, the configuration is always accepted and configurations which increase the energy of the tissue are 

accepted with a probability based on the Metropolis algorithm expressed as 𝑒

𝐸−𝐸𝑖
(𝑘𝐵𝑇)𝑒𝑓𝑓  where 𝐸 and 𝐸𝑖  are the current 

and interim energies of the tissue respectively, and (𝑘𝐵𝑇)𝑒𝑓𝑓 which has a value of 105 𝑘𝐵𝑇 at room temperature which 

is the effective temperature37–39 that corresponds to internal energy the cells can generate for migration40,41. We refer to 

this process of accepting intermediate configurations as number of “iterations” or “configuration acceptances”. 

In all our simulations, we have an arbitrary unit of time which is the number of configuration acceptances. We convert 

that into units of time so we get a better sense of the variation of the properties. The average distance a cell can move 

in any iteration is 0.5 𝜇𝑚. Using an average cell speed of 20 𝜇𝑚/ℎ from previous studies42, we approximate that one 

configuration acceptance corresponds to approximately 1.5 minutes. 

Initial Setup 

Prior to running our simulations with cell death and division, we must arrive at an initial tissue configuration upon which 

further analysis can be done. Additionally, we require some properties of the cells in the tissue such as the mean area, 

perimeter, and shape. These mean values - 𝐴𝑚, 𝑃𝑚 and 𝑆𝑚 describe the properties which the cells are energetically 

favorable to acquire in the absence of death and division and will play a significant role in the dynamics of the tissue. 

This is done by starting our simulation with cells randomly distributed in the available space, followed by running the 

Monte Carlo algorithm described above. The cells rearrange to minimize the energy in the absence of death and 

division. Once the energy of the tissue has stabilized, we consider it to be optimized and proceed to extract the mean 

values of the properties described above and the final coordinates of the centers of the cell which is used as the starting 

configuration for the simulations to follow. 

Death and Division 

We check all the cells for death and division every 250 configuration acceptances. At these points in time, cells are 

stochastically marked for death or division using probabilities defined by one of the cell death and division rules under 

consideration (table 1). Based on these probabilities, some cells are marked for death or division and we subsequently 

change the mechanical properties of these cells for a duration of 50 configuration acceptances in order to mimic the 

forces which dying or dividing cells apply on their adjacent cells. Dying cells are given a negative internal pressure 

coefficient so that it is energetically favorable for them to shrink in size before death43, and dividing cells have a much 

higher stiffness and lower adhesion so that they round up before division44,45. At the end of these 50 configuration 

acceptances, cell death is simulated for dying cells by deleting the point corresponding to the center of the cell and cell 

division for dividing cells is simulated by replacing the cell by two daughter cells placed equidistantly along the longest 

diagonal of the mother cell. We assume that the daughter cells inherit the mechanical phenotype of the mother cells. 

The cells are then free to change their geometrical parameters through the minimization of tissue energy given by 

Equation 1 for the next 200 configuration acceptances, denoting the end of the death and division cycle when a fresh 

batch of cells are marked for death or division.  

For the random rule all the cells have equal probabilities for death or division, whereas for the area, perimeter and 

shape rule the probabilities are defined to be cell morphology specific - more elongated cells are assigned a higher 

likelihood of dividing and a lower chance of dying, while more rounded, compact cells are assigned higher likelihood of 

death and a low chance of division. We propose two different equations for the probability of death to accommodate 

the differences in the initial distributions of the area, perimeter and shape of the cells. These probabilities are 

summarized in equations (2-4) below19,36 – 

𝑝𝑑𝑒𝑎𝑡ℎ,1 =  𝑝
𝑋𝑖−𝑋0

𝑋𝑚− 𝑋0                                                                                    (2) 

𝑝𝑑𝑒𝑎𝑡ℎ,2 =  
1

1+(
1

𝑝
−1)

1

𝑝

𝑋𝑖−𝑋𝑚
𝑋0

                                                                              (3) 
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𝑝𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛,1 =  
1

1+(
1

𝑝
−1)

1

𝑝

−(𝑋𝑖−𝑋𝑚)

𝑋0

                                                                          (4) 

 

where 𝑝 is the baseline probability which dictates the likelihood that the average cell undergoes death or division. 𝑋𝑖, 𝑋0 

and 𝑋𝑚 are the current properties of the cell (cell area, perimeter or shape), the cell property if the cell was a circle (the 

rest state of a free cell suspended in solution) and the mean properties of all the cells extracted from the initial 

optimization where 𝑋 may be the area, perimeter, or shape (perimeter divided by the square root of area) of the cell.  

For the random death and division rule, the probabilities are simply equal to the baseline probability 𝑝. For the other 

rules, we propose two possible 𝑝𝑑𝑒𝑎𝑡ℎ equations which differ in their sensitivity to the property 𝑋𝑖  (Figure 1). Our choice 

on which of the two probability equations to use for each of the rules is based on the fact that the tissue must reach 

homeostasis. There are two considerations for this – firstly, under our division mechanism the area is perfectly 

conserved whereas the perimeter and shape are not. This means that at the time of division, the daughter cells have 

exactly half the area of the parent cell, but will have a perimeter and shape of greater than half of the original cell. 

Secondly, when we plot the distribution of the area, perimeter and shape of the cells after the initial optimization 

(Figure 1 C-E) we find that the perimeter and shape of the cells have more of a positive skew as compared to the area 

rule. They have kurtosis values of 17.46, 5.31 and 3.46 for area, perimeter and shape respectively meaning the 

perimeter and shape distributions have much fatter tails and a larger proportion of values greater than the median. 

Based on this, we use 𝑝𝑑𝑒𝑎𝑡ℎ,1, which is the steeper of the two equations for the perimeter and shape rules and use 

𝑝𝑑𝑒𝑎𝑡ℎ,2 for the area rule. Additionally, there is a nuance for the shape-based probability equation which relates to cells 

with very high shape values. The equations currently state that as the shape of the cell increases over the mean shape, 

there is higher likelihood for the cell to divide. However, from previous experimental studies46 we notice that for large 

values of the cell shape (𝑆𝑖 > 6), the cell is extremely elongated or stretched out which may cause the cell to undergo 

apoptosis, uneven mitosis or delayed mitosis and is not likely to divide symmetrically anymore. To incorporate this 

uncertainty in the fates of highly elongated cells, we apply the equation for 𝑆𝑖 ≤ 6 only. These equations are 

summarized in Table 1. 

Table 1: Death and division probabilities at the cellular level, under each of the rules derived from Equations (2-4) 

Death and 
Division Rule 

Probability of Cell Death - 𝑝𝑑𝑒𝑎𝑡ℎ Probability of Cell Division - 𝑝𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

Area Based 
Death and 
Division 

1

1 + (
1
𝑝 − 1)

1
𝑝

𝐴𝑖−𝐴𝑚
𝐴0

 
1

1 + (
1
𝑝 − 1)

1
𝑝

−(𝐴𝑖−𝐴𝑚)
𝐴0

 

Perimeter 
Based Death 
and Division 

 

min (1, 𝑝
𝑃𝑖−𝑃0

𝑃𝑚− 𝑃0) 

1

1 + (
1
𝑝

− 1)
1
𝑝

−(𝑃𝑖−𝑃𝑚)
𝑃0

 

Random 
Death and 
Division 

𝑝 𝑝 

Shape Based 
Death and 
Division 

 

𝑝
𝑆𝑖−𝑆0

𝑆𝑚− 𝑆0; 𝑆𝑖 < 6 

1

1 + (
1
𝑝 − 1)

1
𝑝

−(𝑆𝑖−𝑆𝑚)
𝑆0

;  𝑆𝑖 < 6 

 

Furthermore, the daughter cells from a newly divided cell are likely to be smaller than the average cell immediately after 

the division event, which would in turn increase their likelihood to die. To avoid this, we prevent the daughter cells from 
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dying for the duration of at least two death and division cycles or 500 configuration acceptances. This introduces 

dynamic features into the model as cells continuously change their geometrical properties, which influences their 

likelihood for division or death.  

Velocity and Displacement Measurements 

By tracking the movement of the centers of the cells over time, we can arrive at two important metrics to better 

understand our results – the instantaneous velocity and mean square displacement. Since only ~1% of the cells move 

every iteration, we obtain the instantaneous velocity by quantifying the mean displacement of all the cells over 100 

configuration acceptances, so that each cell would have moved during this period once, on average. We estimate this 

instantaneous velocity by calculating the average distance travelled by all the cells, excluding those that died or divided 

during this interval and subsequently dividing by 100.. The mean square displacement (MSD) is calculated in a similar 

manner, and is used to quantify the diffusive propensity of the cells by fitting the obtained data with the diffusion 

equation below – 

𝑀𝑆𝐷 =  𝐾𝛼𝑡𝛼                                                                                         (5) 

The constants 𝐾𝛼 and 𝛼 describe the non-linearity of the relationship between MSD and time. Furthermore, we 

calculate these constants for different global time intervals, to compare the nature of early and late timescale events 

under the same duration of observation. 

Tissue Mechanical Properties 

In order to extract the mechanical properties of the tissue as a whole, we subject the tissue to constant strain rates 

ranging from 0.1 𝑛𝑚/𝐼𝑡𝑒𝑟 to 40 𝑛𝑚/𝐼𝑡𝑒𝑟 implemented as moving the left boundary wall of the tissue at the 

corresponding rate so as to compress the tissue. We model the tissues as viscoelastic materials47,48. We then extract the 

evolution of energy in the tissue and fit it to one of 5 viscoelastic models. Models 1-3 are the Maxwell, Jeffreys and 

Zener models respectively which are well known, and standard models used in viscoelastic studies. Models 4 and 5 

include a constant force element49 to capture active contractile or extensile nature of the tissue. We choose 5 different 

viscoelastic models because it is not clear from the onset which of these viscoelastic models will sufficiently fit the tissue 

mechanical response, or whether the same model will describe the response of tissues with different death and division 

rules.”. The energy expressions for these material systems are summarized in Supplementary Table 1 and their 

corresponding derivations in Supplementary Table 2. 

In the expressions, 𝜇𝑖  is the stiffness of the spring, 𝜂𝑖  is the damping coefficient of the dashpot, 𝐹 is the constant force in 

the contractile element and 𝜀̇ is the constant strain rate applied to the tissue. Lastly, we compute the relaxation time 

using – 

𝜏𝑟 =  
𝜂

𝜇
                                                                                                 (6) 

Expansion Configuration 

We would like to see how the tissue expands into an empty space, under each of the rules. To investigate this, we 

construct a channel with a width 1/3rd of the boundary and look at what rate the leading cell travels into the channel. 

We initially fill the channel with phantom cells which do not have any stiffness or adhesion but have a negative internal 

pressure which makes it energetically favorable for those cells to shrink in size and allow the normal cells to fill into the 

channel. 

De-Mixing and Mixing Between Different Cell Types 

In earlier studies10,12,42 we have seen that cell death and division is crucial in determining the extent to which tissues with 

two different types of cells segregate or de-mix. It has been shown that without death and division, the tissue fails to de-

mix. Here we investigate the extent to which the tissues segregate under each of the death and division rule. We 

consider two populations – one with the baseline stiffness and the other with half of the stiffness, and two starting 
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configurations – one with the cells completely mixed initially and the other where the cells are completely segregated 

such that the stiffer cells are on one side of the tissue and the softer cells on the other. We then run the simulation and 

use the segregation parameter and interface length to quantify the extent of de-mixing or interpenetration in each of 

the tissues. 

Results 

Initial Optimization 

After running the simulation for 106 iterations, we consider the tissue to be optimized since the energy decreases by less 

than 0.5% over 103 iterations. Figure 1(B) shows this energy minimization. The mean area, perimeter and shape values 

are 1.057 x 102 µm2, 4.411 x 101 µm and 4.297 respectively, at which value, the probability of death equals the 

probability of division, 𝑝, for a specific cell. This optimization ensures that the immediate succeeding changes to the 

initial configuration are driven majorly by death and division since the energy from rearrangements has already been 

minimized. 

Homeostasis 

The primary requirement for the tissues under each of the death and division rules is that they reach homeostasis over 

time. This means that we must ensure the population does not grow indefinitely or decrease to zero. This is necessary to 

check the validity of the death and division probability equations which we have arrived at empirically. Figure 2(A) shows 

us that under each of the rules, the population does not go outside ~10% of the initial number of cells over the course of 

5 x 105 iterations (> 1,000 hours), which satisfies the homeostasis condition.  

Although all the tissues reach homeostasis, we see that the variability of the number of cells at short intervals of time is 

drastically different. We hypothesize that this is due to difference in turnover rates of the tissues. Looking at Figure 2(B), 

we see that the perimeter rule has the highest turnover rate, followed by area, random and lastly the shape rule. The 

death and division equations we propose dictate that more fat tailed distributions of the cell properties will have a 

higher turnover rate because a higher proportion of cells will have high death and division probabilities. This is 

confirmed from Figure 1(C) and by calculating the excess kurtosis, which is 0.89, 0.35 and 0.98 for the area, perimeter 

and shape rule respectively. Since a lower excess kurtosis corresponds to a distribution with fatter tails, the perimeter 

rule generates the tissue with the highest inter-cellular variability in probabilities. This could have important implications 

for the tissues when we look at the mechanical properties and mobility of the cell.  

Figure 2(D) shows that the perimeter and area rule have the fastest cells, followed by the random and shape rule with 

the cells in the tissue without death and division the slowest. However, Figure 2(C) shows that the random rule has cells 

with the highest diffusivity. This means that although the random-based cells are slower, they have a higher persistence 

length compared to the other rules. The cells undergo sub-diffusion under all the rules since 𝛼 < 1 as seen in Figure 

2(E). The stability of 𝐾𝛼 and 𝛼 over different global time intervals (Figure 2(E-F)) is additional evidence of homeostasis in 

these tissues. 

Response to Mechanical Compression 

Mechanical properties of a tissue constitute its stiffness and viscosity. Traditional methods to measure the mechanical 

properties of a tissue include mechanical testing50, imaging techniques such as magnetic resonance elastography51 and 

ultrasonography52, and probing techniques such as atomic force microscopy53. Here, we use a variation of uniaxial 

compression tests where we subject the tissue to a constant strain rate as opposed to a constant stress. 

We fit the energy profiles of the tissue samples to the restorative energy equations (Supplementary Table 1) using the 

trust region reflective algorithm. We use the adjusted 𝑅2 and the bounds of the coefficients to judge the validity of the 

fit. Models which have a high 𝑅2 and coefficients with bounds the same order of magnitude of the coefficient were 

accepted. From Supplementary Table 3-4 we see that most of the models have a valid 𝑅2 but with very large confidence 

intervals for the coefficients. This indicates that the 3-element viscoelastic models (Models 2, 4 and 5) overfit the data, 
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and a 2-element model is sufficient. Of the models which meet the criteria, we see that the Maxwell model is the only 

model which fits data across all the rules. Interestingly, in some cases the 3-element model - Model 3 fits the data very 

well with reasonable bounds for the parameters. However, upon closer inspection we see that this is because Model 3 

collapses from a 3-element model to the 2-element Maxwell model (Model 1) with 𝜇2 ≃ 0 and 𝜇1 =  𝜇 which further 

justifies our model choice. 

Qualitatively, we see that the energy for the area and perimeter rule saturate and for the random and shape rule 

continually increase (Supplementary Figure 1). The stiffness, viscosity and relaxation time of the tissues are summarized 

in Table 2. 

Using a characteristic length of 10 µ𝑚 (length of cell), we convert the obtained values of 𝜇, 𝜂 and 𝜏𝑟 into standard units 
and get that they lie in the order 101 – 104 𝑃𝑎, 105 – 107 𝑃𝑎. 𝑚𝑖𝑛 and 101 – 102 ℎ𝑜𝑢𝑟𝑠 respectively. We see that these 
parameters are of the same order of magnitude as seen in previous animal studies for each of the stiffness54–56, 
viscosity57 and relaxation time56,58. 
 

Table 2: Mechanical properties of the tissues under each of the death and division rules for 𝜀̇ = 2 𝑛𝑚/𝐼𝑡𝑒𝑟  

Tissue 
Stiffness 

Mechanical 
Parameters 
(Stiffness, 
Viscosity and 
Relaxation Time) 

Death and Division Rules 

Area Based 
Death and 
Division 

Perimeter Based 
Death and 
Division 

Random Death 
and Division 

Shape Based 
Death and 
Division 

Without 
Death and 
Division 

Baseline 
Stiffness 
(200 Pa) 

𝜇 (
𝑝𝑁

𝑛𝑚
) 

13.5 ± 4.0 264.8 ± 53.4 1.1 ± 0.3 1.5 ± 0.0 1 ± 0.0 

𝜂 (
µ𝑁. 𝐼𝑡𝑒𝑟

𝑛𝑚
) 

14.4 ± 2.0 79.2 ± 8.7 21.6 ± 2.1 30.7 ± 1.2 18.0 ± 0.2 

𝜏𝑟 (𝐼𝑡𝑒𝑟) 1130 ± 213 306 ± 32 19798 ± 3977 20188 ± 1139 17705 ± 188 

Half 
Stiffness 
(100 Pa) 

𝜇 (
𝑝𝑁

𝑛𝑚
) 

9.6 ± 2.9 214.9 ± 32.2 1.0 ± 0.0 1.3 ± 0.2 0.9 ± 0.0 

𝜂 (
µ𝑁. 𝐼𝑡𝑒𝑟

𝑛𝑚
) 

11.9 ± 1.4 73.4 ± 7.5 19.7 ± 1.0 33.3 ± 2.5 18.2 ± 0.3 

𝜏𝑟 (𝐼𝑡𝑒𝑟) 1310 ± 214 344 ± 17 19091 ± 1194 25521 ± 4893 19483 ± 510 

 
All the rules generate a higher stiffness and viscosity than the tissue with no death or division10,59,60, with the random 

rule only marginally higher. The relaxation time 𝜏𝑟 is a measure of the extent of fluidity in a material. We see that the 

cell size-dependent rules, perimeter and area produce much more fluid tissues than the other rules (Figure 3(E)). As 

expected, all the tissues demonstrate an increase in stiffness and viscosity with increasing strain rate (Figure 3(C-D)), but 

at very different rates. At high values of strain rate, all tissues begin demonstrating fluid-like characteristics because the 

external stimulus is sufficient to cause neighbor exchanges between the cells7. Increased cell density (Figure 3(B)) is a 

hallmark of tissue jamming61, which is demonstrated in the random, shape and no death and division rules. Also, these 

more jammed tissues show a transition from more solid-like behavior to fluid-like response62,63 as seen by the abrupt 

change in the slope of the relaxation time curve around 𝜀̇ = 1 𝑛𝑚/𝐼𝑡𝑒𝑟 (Figure 3(E)), whereas the perimeter and area 

rule show a more gradual change. Lastly, the properties of the tissues do not change much when we use cells with a 

lower stiffness, which indicates that the nature of death and division is much more important than the individual cell 

properties in determining tissue mechanics. 
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Expansion Propensity 

From Figure 4(B) we see that some rules cause the cells to be much more invasive than others. Early in the simulation, 

all the rules demonstrate similar invasiveness, but at larger times the area and perimeter rules have their leading cell 

fluctuating near the boundary whereas the random and shape rules64 cause the leading cell to continuously travel into 

the channel (Figure 4A, 4C, 4D).  

This is surprising because we would expect the more fluid tissues of area and perimeter-based rules to have a higher 

invasiveness. We postulate that this is because of the strong size dependence on death and division probabilities of the 

area and perimeter rules, and the lack of adhesion between these cells and the empty space (defined by phantom cells) 

within the empty channel which makes increasing the interface between actual and phantom cells less favorable 

(equation 1). This can be seen in Supplementary Video 1, where we show the tissue under the area rule. Because of its 

high fluidity, we see that the cells near the interface are highly motile, and sometimes even break away from their 

adjacent cells to travel into the channel, but quickly die once within the channel and surrounded by the non-adherent 

empty space. The opposite is however seen in Supplementary Video 2, where the shape death and division rule results 

in a less fluid tissue bulk, but migratory cells within the empty space leading to high invasiveness. 

Table 3: Distance travelled by leading cell into the channel 

Invasiveness 
Parameters 

Death and Division Rules 

Area Based 
Death and 
Division 

Perimeter Based 
Death and 
Division 

Random Death 
and Division 

Shape Based 
Death and 
Division 

Without Death 
and Division 

Distance 
Travelled by 
Leading Cell (µm) 

23.9 ± 1.3 20.9 ± 2.5 150.2 ± 55.0 69.6 ± 4.5 15.6 ± 1.5 

Area Occupied by 
Invading Cells 
(µm²) 

412 ± 194 292 ± 4 5265 ± 2666 3470 ± 111 210 ± 82 

 

Mixing and De-mixing of Cells with Different Stiffnesses 

In line with previous studies, we see that death and division, irrespective of the rule, drives the separation of stiff and 

soft cells into distinct phases12. We quantify the segregation by calculating the segregation parameter, which is defined 

as the total number of unlike neighbors divided by the total number of neighbors. A higher segregation parameter 

corresponds to a more mixed system. We were able to reproduce past results (Supplementary Figure 2) where we see 

that a lack of death and division does not cause segregation in the tissue. However, we see that death and division based 

on different rules produce vastly different outcomes in terms of the extent of segregation among the stiffer and softer 

cells (Figure 5(C), Supplementary Figure 3 and Supplementary Videos 3-4). As expected, the segregation parameter for 

the tissue without death and division is close to 1, signifying almost no segregation. The area, perimeter and random 

rule produce approximately the same segregation and the shape rule produces less1,22. 

The mixing of an initially segregated tissue shows strong differences in the outcomes for the different rules of cell-death 

and division, but the outcomes are also different from the initially mixed scenario (Figure 5(F) and Supplementary Figure 

4). Here, we look at the total length of the interface between the two types of cells to quantify the extent of 

interpenetration of the two cell types. A higher interfacial length corresponds to a higher degree of interpenetration. 

While tissue with perimeter-based rules for cell death and division had some of the highest degree of segregation, they 

also show the highest extent of interpenetration when starting from an initially segregated system (Figure 5(D,F) and 

Supplementary Video 5). This increased interpenetration of the neighboring stiff cells might be driven by a combination 

of increased fluidity (Figure 5(E) and Figure 3(E)) and increased proliferation of the softer cells in this system (Figure 5(F), 

hollow bars). The degree of interpenetration (Figure 5(F)) decreases with decreasing tissue fluidity (Figure 3(E)) and 

decreasing cell turnover rates (Figure 2(B)).“ 
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In both the initially mixed and initially segregated scenarios, we also look at the ratio of the two types of cells and if the 

potential differences in proliferation and death rates between soft and stiff cells manifest differently during segregation 

or mixing. We expect the number of softer cells to be greater than the number of stiffer cells for death and division 

driven by the area, perimeter, and shape rules. This is because the energy corresponding to the cortical stiffness is given 

by 
1

2
𝑘(𝑃𝑖 − 𝑃0)2 (Equation 1), which allows for the softer cells to have a larger perimeter, consequently allowing for 

increased cell area and cell shape parameters as well, though weakly. These increases in cell parameters increase the 

likelihood of division across all the cell parameter-based rules, albeit with different strengths. However, it is interesting 

to note that the ratio of the cell types varies widely and is not a strong predictor of the segregation parameter (Figure 

5(C)) or the interface length (Figure 5(D)) and that the death and division rules have an impact on the overall mixing and 

de-mixing dynamics beyond just changes in the proliferation rates of one cell type over another. 

Lastly, the instantaneous velocity profiles of cells in these tissue systems highlight some interesting trends (Figure 

5(B,E)). The cell death and division rules that increased tissue fluidization and cell turnover also increase overall cell 

speeds. More importantly, as seen in other studies, separated populations of softer cells showed high motility compared 

to separated populations of stiffer cells. This trend was observed irrespective of the various death and division rules, or 

an absence of death and division (later time points in Figure 5D, all time points in Figure 5E). However, when mixed, the 

motility of the softer cells influenced the motility of the stiffer cells and both populations moved at speeds comparable 

to those of separated softer cell populations. This matches observations seen in a previous experimental system65. An 

initially mixed system segregated into soft, fast-moving cells and stiff, slow-moving cells. However, when starting from 

an initially segregated system, even with interpenetration of the stiff cell regions by softer cells, there was no change in 

the average motility of either cell populations. We postulate that this is due to the dependence of the speed of a cell on 

the stiffness of the cells adjacent to it3,66,67. As de-mixing occurs in an initially mixed system, the stiffer cells are more 

likely to be surrounded by other stiffer cells, causing them to slow down68. This does not happen in the initially 

segregated system because cells are already surrounded by like neighbors and even with interpenetration, a large 

majority of the cells are still neighboring mechanically similar cells. 

Discussion 

From our analysis we see that each of the rules produce differences in both microscopic properties such as speed of the 

cells and macroscopic properties such as tissue fluidity, but the most striking contrast is that all the tissues with any type 

of death and division have significantly different behavior as compared to the tissue without death and division. Thus, 

incorporating the effects of cell death and division is essential to truly understanding tissue organization and dynamics. 

Furthermore, there were stronger similarities in outcomes of tissue compression, tissue expansion into an empty 

channel, and mixing and de-mixing  simulations for the area and perimeter rules of cell death and division, and between 

shape dependent and random rules for death and division. We believe that this is due to the strong correlation of the 

area and perimeter of a cell with its size, while there is only a weak correlation between cell shape and its size, and no 

correlation between cell size and the random rule for death and division. This similarity between rules that are size-

based and rules which are not size-based persist throughout our analysis, as seen in Figures 2-5. This is further 

confirmed by plotting the correlation of the area, perimeter and shape of the cells with their corresponding energies 

(Supplementary Figure 5). The correlation matrix shows us that the area and perimeter of a cell have correlation 

coefficients of -0.97 and -0.41 with its energy, which is a strong negative correlation. This means that cells with high 

energy in tissues under the area or perimeter rule are likely to have a low area or perimeter value, causing them to have 

a relatively higher probability of death and lower probability of division. Conversely, the correlation between the chape 

of a cell and its energy is 0.19. This weak correlation means that the shape of a cell, which drives the likelihood of its 

death and division under the shape rule, does not influence its energy strongly. This is close to the random rule for cell 

death and division, where there is no relation between the energy of the cell and its likelihood of death or division. 

Based on this, we believe that the similarity in tissue mechanics and dynamics between some of the rules is because of 

the different ways in which the energy minimization efforts of the tissues based on the area and perimeter of the cells 

(Equation 1) interplays with the death and division probabilities of the cells based on the area, perimeter, shape or none 

of these physical parameters of the cells (Equations 2-4). 
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Cell death and division in any form increases average cell mobility. This is because cell death and division cause local 

decrease and increase in cell density respectively, leading to faster rearrangements of the cells to minimize the energy. 

The size-dependent rules of area and perimeter produce much more fluid tissues than their random and shape-

dependent counterparts. We postulate that this is because of the density self-correcting nature of the size-dependent 

rules. If the local density of cells in any location of the tissue changes due to external stimulus or random perturbations, 

the likelihood of the cells to die or divide change rapidly under the size-dependent rule so as to bring the normalized cell 

density back to 1. The shape of a polyhedral cell is very weakly correlated to its size, so this effect is not very pronounced 

in the shape rule, leading to lower fluidity similar to what is seen in the random death and division rule. We have not 

considered changes in the active force generation ability of the cells in the tissue, which could be modeled by changing 

the (𝑘𝐵𝑇)𝑒𝑓𝑓 term in the Monte Carlo simulation, but we expect all tissues to become more fluid69 as this internal 

energy is increased. 

This fluidity does not however translate into invasiveness into an empty channel. We hypothesize that this difference is 

due to the lack of adhesion between the actual cells and the phantom cells in the channel. Due to this, the cells try to 

minimize their contact with the phantom cells. This results in a decrease in the perimeter and consequently the size of 

cells entering the channel, potentially increasing their death rate based on the perimeter and area based rules. Death 

and division rates based on shape rule being uncoupled from the size of the cell, remain mostly unaffected within the 

channel. Additionally, compression of the edge cells due to an unfavorable interface with the channel space can cause a 

flattening of these cells, driving proliferation based on the shape rule. Overall, the shape rule for death and division 

results in increased migration of the cells into the channels despite resulting in a less fluid, more jammed bulk system. 

The random rule’s death and division dynamics are unaffected by local changes to the size of the cell and hence have the 

highest propensity to migrate into the channel.  

In the de-mixing simulation setup, we see that any extent of death and division drives cells with different stiffnesses to 

de-mix from each other. We believe that this de-mixing is an outcome of three separate events – an initial unjamming 

transition due to cell death and division, and an increase in domain size due to division of cells, and an increase in cell 

division rate when surrounded by like-neighbors. Based on the extent to which each of these events contributes to the 

tissue reorganization, differences in segregation parameter, cell turnover rates and ratio of soft to stiff cells at the end of 

the simulation (Figure 5A-C, Supplementary Figure 3). It should be noted that a difference in the death and division rates 

between the two types of cells is not needed for de-mixing, as the random rule-based tissue also segregates. This 

suggests that the local slowing down (jamming) of stiff cells as they cluster post the initial unjamming transition and cell 

division events prevents any remixing of these populations.  

The mixing simulation setup tells a similar story. The faster moving softer cells are unable to penetrate the slower 

moving stiffer cells in scenarios with no death and division or death and division driven by either random or shape-based 

death and division rules. In the scenarios with size-dependent death and division rules, the increased mobility and 

fluidity of the stiffer cell region allows for interpenetration by faster moving and faster proliferating softer cell 

populations. However, collective domains are still maintained and even with interpenetration, there is no direct mixing 

of the cell populations (Figures 5D-F, Supplementary Figure 4).  

While the results described above qualitatively match prior predictions and observations in-terms of cell migration 

speeds for soft vs stiff cells, jammed vs unjammed nature of tissues with and without death and division, and mixing/de-

mixing scenarios, direct validation at this point is difficult. However, the fact that a large variety of outcomes are 

observed in in vivo and in vitro, and there is significant complexity in fully describing tissue dynamics in healthy and 

diseased tissues, the specific results described here may point to key missing pieces of the overall puzzle.  

This work considers death and division rules either primarily based on size or shape. The perimeter rule combines both 

the size and geometry and results in the most significant differences in outcomes compared to tissue dynamics without 

any cell death or division. Other rules combing different triggers for cellular apoptosis and division can also be conceived 

that could result in other emergent phenomena. Also, we have not considered clock-based rules of death and division 
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where the age of a cell factors into its likelihood to die to divide. Our modeling framework can easily incorporate these 

additions and updates for future work. 

Conclusions 

We have presented a first of its kind study describing the influence of various cell death and division triggering 

mechanisms on cell migration dynamics within tissues and overall tissue mechanics. We show that while cell death and 

division events indeed increase cell mobility within the tissues, this does not always translate to an overall decrease in 

tissue fluidity. Additionally, we observe complex interplays between tissue fluidity, tissue expansion propensity, tissue 

invasiveness, and self-organization within the tissue. These dynamics are strongly influenced by specific cell fate triggers. 

While the triggers we considered are limited to cell area, cell perimeter, cell shape or random, these triggers have strong 

biological relevance. Tissues that do not have any death and division events occurring behave significantly differently 

from tissues with even low cell turnover rates. In all, these results emphasize the need to accurately quantify the rules 

governing cell death and division within dense tissues to fully understand their dynamics. They also show the 

importance of incorporating different cell death and division mechanisms within in silico tissue models for improving 

their descriptive and predictive power.    
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Figure 1: (A) Voronoi polygons representing cells where the dots are the nuclei (B) Energy minimization of the tissue during initial 

optimization (C) Distribution of area, perimeter, and shape of the cells respectively after initial optimization overlayed with cell 

death and division probabilities  
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Figure 2: (A) Variation in number of cells against time (B) Total number of cells killed and divided for each of the rules, representing 

tissue turnover rate (C) Mean square of cell displacement (D) Instantaneous velocity (E-F) Variation of diffusion parameters 𝐾𝛼  and 𝛼 

by global time interval  
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Figure 3: (A) Fitting of the energy profile with the Maxwell model for the area-based death and division rule (B) Variation of cell 

density during tissue compression (C-E) Viscoelastic response of tissues under different strain rates plotted on a log-log scale 
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Figure 4: (A) Cells expanding into channel for the shape rule with the phantom cells marked in black (B) Distance travelled by leading 

cell into the channel for each of the death and division rules (C-D) Cells expanding into channel for the area and perimeter rules 

respectively 
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Figure 5: (A) De-mixing simulation setup with stiff (blue) and soft (green) cells; initial configuration (left) and final configuration for 

the perimeter rule (right) (B) Velocity profiles over time for stiff (solid line) and soft (dashed line) cells in the de-mixing setup (C) 

Segregation parameter (colored bars) and ratio of stiff to soft cells (hollow bars) in the de-mixing setup (D) Mixing simulation setup 

with stiff (blue) and soft (green) cells; initial configuration (left) and final configuration for the perimeter rule (right) (E) Velocity 

profiles over time for stiff (solid line) and soft (dashed line) cells in the mixing setup (F) Length of interface between soft and stiff 

cells (colored bars) and ratio of stiff to soft cells (hollow bars) in the mixing setup  
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