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Abstract
The association between student motivation and learning, and changes in motivation across a course, were evaluated for 

students enrolled in one-semester foundation-level inorganic chemistry courses at multiple postsecondary institutions 

across the United States. The Academic Motivation Scale for Chemistry (AMS-Chemistry) and the Foundations of Inorganic 

Chemistry American Chemical Society Exam (i.e., a content knowledge measure) were used in this study. Evidence of 

validity, reliability, and longitudinal measurement invariance for data obtained from the AMS-Chemistry instrument with 

this population were found using methodologies appropriate for ordinal, non-parametric data. Positive and significant 

associations between intrinsic motivation measures and academic performance corroborate theoretical and empirical 

investigations; however, a lack of pre/post changes in motivation suggest that motivation may be less malleable in courses 

primarily populated by chemistry majors. Implications for inorganic chemistry instructors include paths for incorporating 

engaging pedagogies known to promote intrinsic motivation and methods for incorporating affect measures into 

assessment practices. Implications for researchers include a need for more work that disaggregates chemistry majors when 

evaluating relationships between affect and learning, and when making pre/post comparisons. Additionally, this work 

provides an example of how to implement more appropriate methods for treating data in studies using Likert-type 

response and nested data.

Introduction
Research on student experiences in upper-level chemistry courses (i.e., post-general chemistry and organic chemistry 

courses) is rare in the STEM and chemistry education research literature (National Research Council, 2012); Bodner and 
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Weaver (2008) argued in this Journal that such research, in particular, is necessary in upper-level chemistry courses due to 

the unique pedagogical challenges of such courses that arise from reliance on prerequisite coursework as a starting place 

for new learning (Bodner and Weaver, 2008). This lack of scholarship is likely due in part to small populations (N typically 

less than 20) in these courses that limit possible experimental designs, data collection techniques, and statistical power for 

analyses associated with studies of affect. These limited-sized populations, though, have been more suited to cognitive-

focused work in upper-division courses that has in turn resulted in associated literature reviews (e.g., Bain et al., 2014; Bain 

and Towns, 2016; Rodriguez and Towns, 2020). While insights into the affective experiences of students in general 

chemistry and organic chemistry courses exists (e.g., Villafañe et al., 2016; Liu et al., 2017, 2018; Gibbons et al., 2018; Raker 

et al., 2019), there is limited understanding of how findings from experiences of students in gateway chemistry courses 

translate into more homogeneously populated courses (e.g., majors-focused courses which are often upper-division 

courses). While students in introductory courses are making decisions about persistence in the major, students in upper-

division courses are making decisions about career, graduate school, and professional school (Seymour and Hunter, 2019). 

Upper-division courses are where students are exposed to the broader array of chemistry subdisciplines and begin to 

develop specialized interests in chemistry (e.g., laser spectroscopy, computational chemistry, air-sensitive syntheses); 

Bodner and Weaver (2008) asserted that upper-division courses are where students are exposed to “real” chemistry. Thus, 

understanding affect in upper-division courses will help us to begin to understand how student experiences impact 

chemistry learning across the entire post-secondary chemistry curriculum.  In this study, we investigated a measure of 

motivation for students enrolled in foundation-level inorganic chemistry courses at multiple study sites in the United States. 

Our results suggest that motivation is less malleable for students in non-gateway courses (i.e., is relatively unchanged 

between pre/post measures), and provides further evidence that the relationship between motivation and performance is 

persistent and significant in chemistry courses across the undergraduate curriculum.

Self-Determination Theory
Motivation is operationalized in our study through the theoretical lens of Self-Determination Theory (SDT) (Deci and 

Ryan, 2000; Ryan and Deci, 2000). SDT assumes that people (i.e., students taking an inorganic chemistry course in our 

study) have fundamental psychological needs that must be satisfied to thrive and learn. These needs include competence, 

relatedness, and autonomy. Competence is an individual’s need to feel effective in their interactions, express their 
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understanding and abilities, and seek out challenges that align with their cognitive level. Relatedness is an individual’s need 

for connection, to be cared for, and for a sense of belonging and community. Autonomy is an individual’s need to feel in 

control of their environment, their actions, and their behavior. These needs factor into three types of motivation on a 

continuum based on autonomy (Howard et. al. 2017).

The two ends of the continuum are amotivation and intrinsic motivation. Amotivation is characterized by a lack of 

interest and feeling forced to do something or not being in control of the learning experience. Intrinsic motivation is 

characterized by a person’s inner interests, perceived autonomy or control over a task, and competence. In the middle of 

the continuum lies extrinsic motivation, which represents various stages of increasing autonomy, competence, and 

relatedness. These stages are related to external factors including reward systems, deadlines, the desire to avoid guilt or 

shame, and finding value in the task itself. Overall, SDT operationalizes three types of motivation in terms of autonomy (i.e., 

level of self-determination or control), the source of the motivation, and how the type of motivation is regulated (i.e., 

prompted, responded to, put into action). 

When SDT is used as a lens to interpret student learning, intrinsic motivation supports learning by fulfilling basic 

psychological needs, while amotivation hinders learning as these needs are not met. Extrinsic motivation provides a 

pathway from amotivation to intrinsic motivation through increasing levels of autonomy, relatedness, and competence with 

decreasing reliance upon external motivators. Empirical evidence from chemistry course settings and other STEM course 

settings supports the assumptions of SDT regarding meeting psychological needs and emphasizing intrinsic motivation to 

support learning (e.g., Black and Deci, 2000; Vaino et al., 2012; Hagger et al., 2015; Kiemer et al., 2015). Previous studies 

have also shown that intrinsic motivation is linked to increased achievement (Lepper et al., 2005; Tseng and Tsai, 2010) and 

persistence in STEM (Vallerand and Blssonnette, 1992; Vallerand, 1997; Allen, 1999; French et al., 2005; Lavigne et al., 

2007; Maltese and Tai, 2011; Morrow and Ackermann, 2012). 

To increase intrinsic motivation and the likelihood of success in a class, focus should be placed on supporting student 

autonomy, competence, and relatedness. Learning environment structures are known to strongly influence student 

motivation and actions in the classroom (Potvin and Hasni, 2014). With more teacher-centered instructional practices, 

where the teacher is perceived as the locus of authority, students have less autonomy and are more likely to feel 

amotivated due to lacking opportunities to demonstrate competence or feel connected with peers or the instructor 

(Soenens et al., 2012). With more student-centered instruction that offers students more choices and control, students are 
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more likely to develop autonomy, make connections with peers, and have opportunities to demonstrate their 

understanding, all of which lead to increased intrinsic motivation (e.g., American Psychological Association Presidential Task 

Force on Psychology in Education, 1993; Lepper and Henderlong, 2000; Chirkov and Ryan, 2001; Niemiec and Ryan, 2009; 

Reeve, 2012; Vansteenkiste et al., 2012; León et al., 2015). Situations where students have choices, instructors are 

encouraging, and students’ inner curiosities and interests are primed, all support intrinsic motivation and the likelihood of 

student learning (Zimmerman, 2000; Deci and Ryan, 2008; Niemiec and Ryan, 2009).

Prior affect work in chemistry education has considered students’ affective experiences in gateway chemistry courses 

(i.e., general chemistry and organic chemistry courses); however, the impact of academic major has been mostly 

overlooked (e.g., Bauer, 2005; Grove and Bretz, 2007; Liu et al., 2017, 2018). This is likely because gateway courses typically 

have low numbers of chemistry majors, even in the context of large enrollment courses, making single-institution 

quantitative studies not feasible. Research outside of chemistry has shown significant relationships between motivation, 

and other affective measures, with academic major, as well as the alignment between major and course content (e.g., 

motivation for majors in majors-focused courses is different than the motivation of majors in non-majors-focused courses) 

(e.g., Chase and Keene, 1981; Debacker and Nelson, 2000; Zhi-ling, 2003; Cole et al., 2006; Allen and Robbins, 2010; Glynn 

et al., 2011; Kirn and Benson, 2013; Shell and Soh, 2013; Wang and Degol, 2013; Komarraju et al., 2014). Additionally, 

studies have indicated that year in school is related to motivation (e.g., first-year and third-year students differ) 

(Mercincavage and Brooks, 1990; Coppola et al., 1997; Lynch, 2008; Cao, 2012; Ackerman et al., 2013; Planchard et al., 

2015). As such, there is precedent that we need to investigate motivation across chemistry courses given the concentration 

of majors, particularly chemistry majors, in courses varies. In addition, as students progress through the chemistry 

curriculum, a larger fraction of students are chemistry majors; thus, the population becomes more distinct, homogeneous, 

and warrants investigating how motivation relates to chemistry major and year in school. 

Inorganic Chemistry Education
Inorganic chemistry courses provide an opportunity not only to shed light on an understudied context but also to study 

a sample of students that primarily consists of chemistry majors. Foundation-level inorganic chemistry courses are varied in 

both curriculum and placement in a chemistry degree program (ranging from first year courses to junior and senior-level 

courses); however, there is a core set of topics that unite these courses: atoms and electronic structure, covalent bonding 
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and molecular orbital theory, transition metal complexes and coordination chemistry, acids and bases, symmetry and group 

theory, solids and solid-state chemistry (Raker et al., 2015a). An additional commonality is that inorganic chemistry courses 

are predominately taken by chemistry majors (Raker et al., 2015a, 2015b). It is through upper-level inorganic chemistry 

courses (and other upper-level courses) that students develop a deeper understanding of the scope of chemical research 

and potential chemistry careers. As Reisner and colleagues noted, the postsecondary inorganic chemistry course is a key 

opportunity to introduce primary literature and promote research skill development (Reisner et al., 2015). Recent work has 

analyzed inorganic chemistry students’ achievement emotions (i.e., anxiety and enjoyment) in relation to content 

knowledge, and calls for further work focused on student experiences in inorganic chemistry (Pratt and Raker, 2020). As 

such, based on previous research, we expect to observe differences in how motivation changes and how motivation is 

related to content knowledge acquisition in our foundation-level inorganic chemistry course contexts, as compared to 

gateway-course contexts. 

Research Questions
This study is an initial investigation of the learning experience of students within an inorganic chemistry course. The 

purpose is to characterize student experiences in foundation-level inorganic chemistry courses, including affective 

experiences using the Academic Motivation Scale - Chemistry (AMS-Chemistry) (Liu et al., 2017) and cognitive experiences 

using the 2016 ACS Foundations of Inorganic Chemistry Exam (ACS Exams, 2016). Results provide insight into how student 

motivation relates to inorganic chemistry content knowledge. To this end, we address three research questions (RQs):

1. What validity and reliability evidence supports using the AMS-Chemistry with students taking a foundation-level 

inorganic chemistry course?

2. What differences in student motivation towards inorganic chemistry are found when comparing motivation at the 

beginning and end of the course?

3. How is motivation towards inorganic chemistry associated with student content knowledge assessed by a 

summative examination?  

Methods
This study had three sequential stages: (1) gathering evidence for validity and reliability of data generated from the 

AMS-Chemistry, (2) gathering evidence for longitudinal measurement invariance between AMS-Chemistry administrations, 

and (3) determining changes in AMS-Chemistry scores and associations with student content knowledge.
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Participants
During Fall 2018 and Spring 2019 semesters, inorganic faculty members from eighteen universities within the United 

States participated in a multi-institution project focused on curricular change in foundation-level inorganic chemistry 

courses. While each studied foundation-level inorganic chemistry course is unique, all of the studied courses had general 

chemistry as a prerequisite; other perquisite requirements varied with some including organic chemistry while others 

required physical chemistry. Institution Review Board applications were submitted and approved at each study site. 

Faculty members administered achievement/performance and affective measures to students in their foundation-level 

inorganic chemistry courses. At the beginning of the semester, students completed a consent form agreeing to have their 

data de-identified and shared with the research team. To minimize students’ perceptions that participation would influence 

their course grades, consent forms were returned in a sealed envelope that was opened only after final grades were 

submitted for the term. Regardless of consent status, all students completed the cognitive and affect measures as part of 

their normal classroom experiences. After consent status was known, faculty members collated data for consenting 

students (N = 449), removed identifiers, and provided the de-identified matched data to the research team. 

The focus of the study herein is the affect measures of motivation towards chemistry courses using the AMS-Chemistry 

(Liu et al., 2017). The AMS-Chemistry was administered to students at two timepoints: pre (approximately the second week 

of the term) and post (approximately the last week of the term). The 2016 ACS Foundations of Inorganic Chemistry Exam 

(called the ACS exam herein) was given at all sites at the conclusion of the semester as a summative assessment of student 

content knowledge (ACS Exams, 2016). The ACS exam is a 60-question assessment designed to assess an array of topics 

covered in foundation-level inorganic chemistry courses. Only a subset of students participated in all three data collections 

(i.e., completed pre AMS-Chemistry, post AMS-Chemistry, and the ACS exam); N = 396 students participated in at least one 

of the three data collections (82% of total sample). For each analysis presented below, listwise deletion was used to subset 

the data corpus appropriately. 

Academic Motivation Scale – Chemistry (AMS-C)
The AMS-Chemistry (Liu et al., 2017) is a 28-question survey designed to measure three types of course-specific 

motivation aligned with Self-Determination Theory: amotivation, extrinsic motivation, and intrinsic motivation (Deci and 

Ryan, 2000; Ryan and Deci, 2000). The survey was adapted for use in postsecondary chemistry contexts from the Academic 

Motivation Scale (Vallerand et al., 1992). Work with general chemistry (Liu et al., 2017) and organic chemistry (Liu et al., 
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2018) students supports that the AMS-Chemistry has seven subscales (see Figure 1). Each subscale corresponds to a 

motivation sub-construct with differing degrees of regulation (i.e., the thoughts, actions, or behaviors through which 

students act to influence their choice, effort, or persistence) which is how SDT was operationalized into the AMS-C. For 

each subscale there are four questions/items with Likert-type response formats (Carifio and Perla, 2007). Students indicate 

“To what extent each of the following statements corresponds to one of the reasons why you are enrolled in this chemistry 

course” with five response options: Not at all (A), A Little (B), Moderately (C), A Lot (D), and Exactly (E). To make the AMS-

Chemistry more course-specific, the stem was modified to specify “…why you are enrolled in this inorganic chemistry 

course” (see Appendix 1). Modifying the stem in this way is supported by previous work measuring achievement emotions 

in another chemistry-specific disciplinary context (Raker et al., 2019; Pratt and Raker, 2020). 

Fig. 1: Diagram showing the subscales of the AMS-Chemistry (Liu et al., 2017) and the alignment with Self-Determination Theory (Deci and Ryan, 2000; 
Ryan and Deci, 2000; Reiche, 2013). 

Gathering Evidence of Validity and Reliability for AMS-Chemistry Data
While the AMS-Chemistry has been shown to function well with general chemistry and organic chemistry student 

populations, the AMS-Chemistry has not previously been used with an inorganic chemistry student population. Therefore, it 

is important to provide evidence for validity and reliability of generated data, in line with the Standards for Educational and 

Psychological Testing (called the Standards herein) (Arjoon et al., 2013; American Education Research Association et al., 

2014). One key evidence for validity in this study is internal structure validity to determine if the AMS-Chemistry functioned 

similarly with this new sample of students (i.e., measured the intended seven subscales/factors of motivation with the new 

sample). To investigate this, categorical responses (A-E) were numerically transformed (1-5, respectively) to represent the 
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ordinal nature of the data, and confirmatory factor analyses (CFA) were conducted. Previous studies of the internal 

structure validity of data from the AMS-Chemistry have treated the data as continuous when conducting CFA analyses (Liu 

et al., 2017, 2018). However, the data generated are ordinal and should be treated as such by using either diagonal 

weighted least squares (DWLS) or weighted least squares—mean and variance adjusted (WLSMV) estimators. DWLS is the 

default estimator for ordinal data in the LISREL program (Jöreskog, 2019) and the R (R Core Team, 2017) package Lavaan 

(Rosseel, 2012), while WLSMV is the default ordinal estimator in Mplus (Muthén and Muthén, 2017). When sample sizes 

are small and data are non-normally distributed, DWLS can produce problematic results and WLSMV is recommended 

(DiStefano and Morgan, 2014). As such, we conducted a seven factor CFA using the WLSMV estimator in Mplus 8.3. A 

schematic of the seven-factor model is provided in Figure 2. Note: all latent constructs (subscales) are modeled as 

correlated based on previous analyses of the AMS-Chemistry (Liu et al., 2017, 2018) and based on the theoretical 

conjecture that all seven constructs/subscales are interrelated with motivation. Additionally, this CFA is a congeneric model 

where the only constraints are on which items load onto which latent constructs, and which latent constructs are 

correlated; no correlated error variances were modelled. This model aligns with previous investigations of the internal 

structure of the AMS-Chemistry. While the congeneric CFA model evaluates the internal structure of the AMS-Chemistry for 

the overall inorganic chemistry student sample, a multilevel CFA was also conducted to evaluate the internal structure of 

the AMS-Chemistry when accounting for the nested nature of the data; since students are nested within multiple 

classrooms/institutions, a multilevel CFA evaluates the impact of between-institution differences on the internal structure 

validity of the data (Dyer et al., 2005). 

Fig. 2: Diagram showing the seven factor CFA model testing for internal structure validity of AMS-Chemistry data with students taking a foundation-level 
inorganic chemistry course. To simplify interpretation, errors are not displayed in the representation.

CFAs are evaluated based on model fit using a combination of statistics, including the chi-squared test (χ2), the 

Comparative Fit Index (CFI), the Tucker Lewis Index (TLI), the Root Mean Square Error of Approximation (RMSEA), and the 

Standardized Root Mean Squared Residual (SRMR) (Hooper et al., 2008; Kline, 2016; Parry, n.d.). However, when the 
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WLSMV estimator is used, only the CFI, TLI, and RMSEA are appropriate fit indices (Yu, 2002; Beauducel and Herzberg, 

2006; Bandalos, 2008; Komperda, Hosbein, et al., 2018). Chi-squared values, while reported, are typically only used for 

comparison purposes and not as indicators of model fit due to sensitivity to sample size and model complexity (Cheung and 

Rensvold, 2002; Schermelleh-Engel et al., 2003; Chen, 2007; Mueller and Hancock, 2008; Liu et al., 2017; Komperda, 

Hosbein, et al., 2018). There are a variety of cutoff values in the literature used to evaluate the fit of CFA models; cutoff 

values can be chosen based on the estimator used and/or previous work within the discipline. Experts in structured 

equation modeling do not agree on acceptable cutoffs, particularly when using the WLSMV estimator (Beauducel & 

Herzberg, 2006, Huggins-Manley & Han, 2016, Padgett & Morgan 2021); however, consensus exists that more conservative 

cutoff values are necessary when using the WLSMV estimator. For context, previous work within CER, as well as on previous 

psychometric analyses of the AMS-Chemistry, have used cutoff values of CFI > 0.91, TLI > 0.91, and RMSEA < 0.08 (Liu et al., 

2017, 2018; Gibbons et al., 2018; Komperda, Hosbein, et al., 2018; Raker et al., 2019). As we employed the WLSMV 

estimator in this study, more conservative cutoff values were chosen, in line with recent evaluations of the WLSMV 

estimator: our measures of fit indices were determined to be “acceptable” based on these cutoff metrics:  CFI ≥ 0.98, TLI ≥ 

0.98, and RMSEA ≤ 0.07 (Padgett & Morgan 2021). 

To investigate the reliability of the data (e.g., the internal consistency of each subscale), Cronbach’s alpha (α) 

coefficients are typically used (Cronbach, 1951). However, Cronbach’s α assumes unidimensionality and that all items are 

associated with the underlying factor to the same degree (i.e., equal item loadings in a parallel or tau equivalent model) 

(Komperda, Pentecost, et al., 2018). McDonald’s omega (ω) coefficient is a less restrictive alternative that relaxes the 

requirement for equal item loadings (i.e., a congeneric model) (McDonald, 1999; Hancock and An, 2020), but is conceptually 

like Cronbach’s α in interpretation (Zinbarg et al., 2005; Hancock and An, 2018). To determine which coefficient is 

appropriate for the AMS-Chemistry in this context, we conducted stepwise factor analyses where more constraints were 

added to the model, following recommendations by Komperda and colleagues (Komperda, Pentecost, et al., 2018):

1. Equal structure but freely estimated item errors and item loadings to the latent factor (i.e., the congeneric model)

2. Equal structure and equal item loadings but freely estimated item errors (i.e., the tau equivalent model)

3. Equal structure, item loadings, and item errors (i.e., the parallel model) 

Given the stepwise, additive nature of these analyses, analysis ends when one of the models fails to have acceptable fit 

statistics, using the cutoff values articulated above. There are no consistently agreed upon criteria for interpreting internal 
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consistency coefficients (i.e., acceptable values for either Cronbach’s α or McDonald’s ω) (Arjoon et al., 2013; Taber, 2018). 

However, for either coefficient, a value of 0.7 or higher is considered acceptable and consistent with previous AMS-

Chemistry studies (Liu et al., 2017, 2018) and other affect studies in CER (Gibbons et al., 2018; Raker et al., 2019; Pratt and 

Raker, 2020).

Investigating Longitudinal Measurement Invariance
The AMS-Chemistry was administered at two timepoints in this study, and it is therefore inappropriate to assume the 

instrument functioned similarly at both administrations; it is necessary to investigate whether there is evidence for 

measurement invariance between timepoints prior to any pairwise comparisons. Measurement invariance (or 

measurement equivalence) is evidence to suggest that the same construct(s) are being measured across some grouping 

variable (e.g. between demographic variables, timepoints, etc.) (Dimitrov, 2010; Millsap, 2011; Bialosiewicz et al., 2013; 

Bandalos, 2018; Rocabado, et al., 2020). While explicitly discussed in the Standards (Standard 7.1), many studies assume 

that instruments function similarly between groups/timepoints and conduct pairwise comparisons without evidence to 

support the appropriateness of the analyses (American Education Research Association et al., 2014). 

For this study, measurement invariance was investigated between AMS-Chemistry administrations (i.e., longitudinal 

measurement invariance between pre and post administrations) with no correlated error variances. While multilevel 

confirmatory factor analysis was investigated, the small number of second-level groups (only 11 institutions had data for 

consented individuals for both pre & post AMS-Chemistry administrations) as well as small sample sizes at individual sites 

(ranging from 5 to 55) prohibit analogous measurement invariance studies. To this end, longitudinal measurement 

invariance was only investigated for the overall data corpus. To conduct the analysis, listwise deletion was used to subset 

the data corpus into a subset of participants with both pre and post AMS-Chemistry responses. A series of increasingly 

restrictive CFA models were tested on the subset where various constraints were set equal between groups and timepoints 

(Dimitrov, 2010; Millsap, 2011; Bialosiewicz et al., 2013). The stepwise, additive process for measurement invariance testing 

includes:

1. Testing for configural invariance (i.e., same factor structure between administrations)

2. Testing for metric invariance (i.e., same factor structure and equal item loadings to latent constructs between 

administrations)

3. Testing for scalar invariance (i.e., same factor structure, equal item loadings, and equal item intercepts between 

administrations) 
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11

4. Testing for strict invariance (i.e., same factor structure, equal item loadings, equal item intercepts, and equal item 

residuals between administrations)

Given the stepwise and additive nature of this analysis, analysis ends when one of the tests fails to have acceptable fit 

statistics, using the same cutoff values as previously described. If evidence for all levels of measurement invariance are 

found, the evidence then supports that the AMS-Chemistry functioned similarly between the two administrations and 

pairwise comparisons are appropriate to conduct. 

It is worth noting that the most restrictive model, called “strict” or residual invariance (i.e., adding in equal error 

variances between groups) (Putnick and Bornstein, 2016), is a necessary step for researchers investigating full factorial 

invariance (Meredith, 1993) and seeking to compare observed scores. Testing for residual invariance is not a requirement 

for studies seeking to compare latent factor means between groups (i.e., not observed scores) since residuals are not part 

of the latent factors (Vandenberg and Lance, 2000).

Interpreting Scores from the AMS-Chemistry
Based on the validity and reliability evidence (i.e., the seven-factor solution has acceptable fit and reliability 

coefficients, see the Results & Discussion section), it was appropriate to analyze student responses to the AMS-Chemistry in 

line with Research Questions 2 and 3. To interpret AMS-Chemistry scores in relation with a summative measure of content 

knowledge (i.e., ACS Exam), two simultaneous analyses were conducted. The first analysis used a measured variable 

framework where each factor was treated as individual subscales as suggested by the validity and reliability evidence. 

Factor scores/means were calculated for each subscale for the AMS-Chemistry by averaging the numeric responses (1-5) for 

the four items that comprised each subscale (a higher average score on the subscale is indicative of increasing agreement 

with those items and therefore evidence that the student has that type of motivation regulation, see Figure 1); factor 

scores were then correlated with ACS exam raw score (total number of questions correct, max of 60). Because of sample 

size and non-normal distribution of data, the non-parametric correlation coefficient Spearman’s Rho (ρ) was used 

(Spearman, 1904; Dodge, 2008). The second analysis used structured equation modeling to retain the original ordinal 

nature of the response options and is more in line with state-of-the-art quantitative research; in this analysis, AMS-

Chemistry responses were grouped by subscale/latent factor and then used to predict ACS exam raw scores. 

Additionally, because evidence for longitudinal measurement invariance was found (i.e., the AMS-Chemistry functioned 

similarly between the two administrations, see the Results & Discussion section), comparisons were conducted between 
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pre and post scores. The non-parametric omnibus Friedman Test (Friedman, 1937, 1939) and the non-parametric paired 

samples Wilcoxon Signed Ranks Test (Wilcoxon, 1945; Rey and Neuhäuser, 2011) were used to compare subscale scores 

between timepoints due to the ordinal and non-normally distributed data. Because multiple tests were conducted (i.e., 

each test for each subscale), the chance of a Type 1 error increases (i.e., increases the chance of concluding that there is a 

significant result when there is not one in reality). Therefore, to minimize Type 1 error, a Bonferroni correction was 

employed (Dunn, 1961; Haynes, 2013). The correction is performed by dividing our original significance level (α = 0.05) by 

the number of tests performed (i.e., seven). Therefore, if p ≤ 0.007 it is considered significant.

Results and Discussion
The results of this study showed positive evidence for the validity and reliability of data gathered using the AMS-

Chemistry with foundation-level inorganic chemistry students. Additionally, evidence suggested measurement invariance 

between timepoints indicating that pre-post comparisons were appropriate. Lastly, associations between intrinsic 

motivation factors and content knowledge (as measured by an ACS exam) were found. In this section we provide a 

discussion of how these results support prior work, offer new insights into investigating the learning experiences of a 

predominantly chemistry major student population within a non-gateway course, provide a foundation for considering 

motivation in the context of inorganic chemistry courses, and provide a useable exemplar for rigorous measurement 

analyses. 

Evidence of Validity and Reliability for AMS-Chemistry Data
Table 1 includes the response rates for both administrations of the AMS-Chemistry and the ACS exam. Not all students 

completed every measure; as such, we have delineated subsample sizes for students who completed both pre and post 

administrations of the AMS-Chemistry (i.e., measurement invariance analysis), as well as both the post AMS-Chemistry and 

ACS exam (i.e., relationship between motivation and content knowledge analysis).

Table 1. Number of student responses for survey and 
examination administrations.

Measure(s) Students (n)

Percentage of 
Student Sample 
(N total = 449)

Pre AMS-Chemistry 243 54.1

Post AMS-Chemistry 153 34.1

Pre & Post AMS-Chemistry 133 29.6

ACS Exam 269 59.9
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Post AMS-Chemistry & ACS Exam 134 29.8

To investigate the internal structure validity of AMS-Chemistry data, multiple CFAs were conducted using the WLSMV 

estimator and allowing the models to freely estimate all factor loadings and errors. CFA fit information for the seven-factor 

solution of the AMS-Chemistry that was previously proposed in prior investigations are provided in Table 2 for the entire 

data corpus (collapsing administrations together, n = 396), the pre administration (n = 243), and the post administration (n 

= 153). Conducting this analysis on individual administrations (pre/post) as well as on the entire data corpus (collapsing 

pre/post together) allows us to comment on the overall fit of the imposed factor structured on the data. As our sample 

sizes from individual administrations are considered small, conducting the full data corpus analysis was useful in evaluating 

the overall factor structure of our dataset. In all instances, fit indices were well within or at the boundaries of good fit. 

These results support that with this sample of students taking a foundation-level inorganic chemistry course, the AMS-

Chemistry functions in accordance with SDT and previous work with general chemistry and organic chemistry students (Liu 

et al., 2017, 2018). Furthermore, both pre and post AMS-Chemistry models have evidence for internal structure validity, 

thus analyzing the administrations separately is supported.

Table 2. Confirmatory factor analysis fit information for 7-factor congeneric 
measurement models using the WLSMV estimator.

 Model χ2 df P CFI TLI RMSEA

RMSEA 90% 
Confidence 
Interval

Entire Data Corpus (n = 396) 961.2 329 < 0.001 0.975 0.971 0.070 0.065 – 0.075

Pre AMS-Chemistry (n = 243) 687.6 329 < 0.001 0.977 0.973 0.067 0.060 – 0.074

Post AMS-Chemistry (n = 153) 549.8 329 < 0.001 0.979 0.975 0.066 0.056 – 0.076

Multilevel – Entire Data Corpus 742.4 658 0.012 0.980 0.977 0.018

Note: cut-off values for indication of good model fit for this study are CFI ≥ 0.98, TLI ≥ 0.98, and RMSEA ≤ 0.07.

 To evaluate the impact of the nested nature of the data (i.e., multiple institutions/sites) on the internal structure 

validity, intraclass coefficients (ICC) were first calculated; ICC values provide information about the impact of between-

institution differences on the model. Previous studies have suggested that ICC values ≥ 0.1 are evidence that the nested 

nature of the data do impact the model and thus a multilevel CFA is needed (Vajargah and Nikbakht, 2015). ICC values for 

the 28 AMS-Chemistry items are provided in Appendix 2; the values range from 0.036 to 0.193 with only 11 items having 

values ≥ 0.1. As such, the ICC values provide inconclusive evidence for whether the between-institution differences impact 
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the overall model. To error on the conservative side, we chose to conduct a multilevel CFAs on the entire data corpus, the 

pre administration, and the post administration to evaluate the impacts of the nested nature of the data. This multilevel 

approach adds an institution/context factor (level two) to the model above the seven subscales/latent factors shown in 

Figure 2 (i.e., a hierarchical model). Unfortunately, we were unable to evaluate multilevel CFAs for the pre and post 

administrations individually due to the small number of institutions/nests, as well as minimal variability between 

institutions. As such, only the collapsed full data corpus was evaluated in this manner. Model fit information for the 

multilevel CFA for the entire data corpus are provided in Table 2; the fit indices are within the boundaries of good fit and 

show improved fit over the un-nested models. This provides further evidence for internal structure validity of the AMS-

Chemistry when administered with foundation-level inorganic chemistry students while accounting for between-institution 

differences. 

 To investigate the reliability of the AMS-Chemistry, we determined which reliability coefficient was appropriate (i.e., 

Cronbach’s α or McDonald’s ω). Assumptions underlying the two coefficients were tested using additional CFA models. The 

first assumption for both measures is whether a congeneric model (i.e., freely estimated errors and item loadings) fits the 

data. Given that the fit indices for the congeneric models for both the pre and post AMS-Chemistry were within the cut-off 

values for good fit (see Table 2), the next step was to test whether items within each subscale load equally to the latent 

construct (i.e., tau equivalent models, an assumption for Cronbach’s α). The results of the CFA where constraints were 

added to force items within factors to load equally are given in Table 3. 

Table 3. Confirmatory factor analysis fit information for 7-factor tau equivalent 
measurement models using the WLSMV estimator.
Model χ2 df p CFI TLI RMSEA

Pre AMS-Chemistry 1366.1 350 < 0.001 0.934 0.928 0.109

Post AMS-Chemistry 829.9 350 < 0.001 0.953 0.950 0.095

Note: cut-off values for indication of good model fit for this study are CFI ≥ 0.98, TLI ≥ 0.98, and 
RMSEA ≤ 0.07.

 

Both pre and post AMS-Chemistry tau equivalent models have fit indices outside the limits of good fit. This suggests that 

both models lack strong overall fit evidence when constraints of equal item loadings are applied. Therefore, Cronbach’s α is 

not an appropriate reliability coefficient for these data, and McDonald’s ω is more appropriate as it does not require equal 

item loadings within factors (McDonald, 1999; Komperda, Pentecost, et al., 2018; Hancock and An, 2020). However, an 
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assumption of McDonald’s ω is that scales are unidimensional, meaning that each AMS-C subscale needs to be evaluated 

individually to ensure proper model fit prior to evaluating reliability. Previously, all models evaluated the full 7-factor model 

without evaluating each factor individually. Reported in Appendix 4 are the results of evaluating each subscale individually. 

The results of these single factor congeneric models are varied. Both pre and post administrations of the identified 

regulation subscale fail to have fit indices within the boundaries of good fit, indicating that this subscale does not meet the 

assumptions of reliability. All other subscales and timepoints have CFI and TLI indices approaching or within the boundaries 

of good fit. However, RMSEA values are varied with some approaching adequate fit and others well outside the bounds of 

adequate fit. Given the small sample sizes at both timepoints/administrations, these findings are less concerning as RMSEA 

values are sensitive to sample size resulting in evaluated values when sample sizes are small (Taasoobshirazi and Wang, 

2016). As such, we focus on the CFI and TLI values primarily in this analysis which all meet or exceed the cutoff values. 

McDonald’s ω coefficient values for the subscales with adequate fit, for both administrations of the AMS-Chemistry, are 

reported in Table 4. Across both administrations, all scales with evidence to support unidimensionality/the assumptions of 

reliability have ω > 0.80. These findings support the internal consistency/reliability of the data generated from the AMS-

Chemistry with students taking a foundation-level inorganic chemistry course. 

Table 4. McDonald’s ω reliability coefficients for 
the seven subscales of the AMS-Chemistry at 
both timepoints

McDonald’s ω

Subscale Pre (n = 243) Post (n = 153)

Amotivation 0.90 0.86

External Regulation 0.89 0.88

Introjected Regulation 0.90 0.90

Identified Regulation -- --

To Know 0.87 0.89

To Accomplish 0.90 0.90

To Experience 0.84 0.87

Note: Subscales that do not meet the assumption of 
unidimensionality do not have a reported ω

Longitudinal Measurement Invariance
Tests of longitudinal measurement invariance were conducted to determine whether the instrument functioned 

similarly between the two administrations (n = 133 students completed both pre & post administrations). To conduct this 
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analysis, every item on the instrument must have at least one data point for all response options (1-5). Question 2 on the 

post administration lacked any respondents that selected option Not at all. As recommended by the MPlus user guide, data 

were manipulated where a randomly selected respondent who originally selected A Little on Question 2 was recoded to Not 

at all (Muthén and Muthén, 2017). This results in modifying a single data entry of more than 3,000 data points (< 0.03% of 

the data) and is consistent with recommendations for conducting CFAs with ordinal data (Muthén and Muthén, 2017). 

Results from this analysis are shown in Table 5. 

Table 5. Longitudinal measurement invariance fit information and model comparisons for 7-factor measurement models 
comparing pre and post administrations using the WLSMV estimator.
Model χ2 df p Δχ2 Δdf p for Δχ2* CFI ΔCFI TLI RMSEA ΔRMSEA

Configural 
(equal 
structure)

1236.4 658 < 0.001 -- -- -- 0.977 -- 0.974 0.067 --

Metric 
(add in equal 
item 
loadings)

1245.5 679 < 0.001 12.9 21 0.913 0.978 0.001 0.975 0.065 -0.002

Scalar 
(add in equal 
item 
intercepts)

1314.8 753 < 0.001 86.9 74 0.145 0.978 0.000 0.978 0.061 -0.004

Strict 
(add in equal 
item 
residuals)

1371.8 796 < 0.001 -43 43 0.292 0.981 0.003 0.982 0.055 -0.006

Note: cut-off values for indication of good model fit fir this study are CFI ≥ 0.98, TLI ≥ 0.98, and RMSEA ≤ 0.07.
*Δχ2 difference test conducted at α = 0.05 using the difftest approach in Mplus (Asparouhov and Muthén, 2019; Koziol, 2010; Muthén and 
Muthén, 2017; Suh and Cho, 2014)

When conducting measurement invariance analyses, it is necessary to see how the fit indices change as increasing 

constraints are added. These additional criteria provide evidence for measurement invariance (Chen, 2007; Koziol, 2010; 

Rutkowski and Svetina, 2014; Suh and Cho, 2014; Putnick and Bornstein, 2016; Asparouhov and Muthén, 2019): 

● Non-significant differences in the χ2 values for consecutive models (i.e., the additional constraints did not 

significantly change the χ2 value)

● A ΔCFI of ≤ 0.01 between consecutive models

● A ΔRMSEA of ≤ 0.015 between consecutive models

Shown in Table 5 are fit indices and fit indices changes between consecutive models. Generally, all provide evidence for 

measurement invariance. It is worth noting that the ΔRMSEA for the strict model is outside the criteria for good fit; all other 

measures are within cutoff criteria. The complexity of the model (i.e., seven factors and two administrations), coupled with 
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the impact small sample sizes have on RMSEA values, help to alleviate any concerns and supports strict measurement 

invariance of the data (Taasoobshirazi and Wang, 2016).  Therefore, there is evidence to suggest that the AMS-Chemistry 

functioned similarly at both timepoints and pre/post pairwise comparisons are acceptable using observed scores.

Interpreting Scores from the AMS-Chemistry
Descriptive statistics for students with subscale scores at both timepoints (n = 133) as well as for the ACS Foundations 

of Inorganic Chemistry Exam (n = 134) are reported in Table 6. While descriptive statistics are provided for all subscales, it is 

worth reminding the reader that both pre and post identified regulation data failed to meet the assumptions of reliability; 

the results of this subscale/factor should be interpreted cautiously. 

 Table 6. Descriptive statistics for the seven subscales of the AMS-Chemistry for pre and post 
administrations and the ACS exam.

Measure Min Max Mean Median Mode
Standard 
Deviation Skew Kurtosis

Pre Amotivation 1 4 1.2 1 1 0.43 2.91 10.65

Pre External Regulation 1 5 3.0 3 4 1.02 -0.04 -1.13

Pre Introjected Regulation 1 5 3.1 3 3 1.08 -0.18 -0.67

Pre Identified Regulation 1 5 4.0 4 5 0.81 -0.97 0.70

Pre To Know 2 5 3.8 4 4 0.85 -0.49 -0.26

Pre To Accomplish 1 5 3.5 4 4 0.95 -0.30 -0.66

Pre To Experience 1 5 3.1 3 3 1.00 -0.19 -0.53

Post Amotivation 1 4 1.3 1 1 0.53 2.22 5.21

Post External Regulation 1 5 2.9 3 3 0.98 -0.21 -0.91

Post Introjected Regulation 1 5 3.2 3 4 1.03 -0.16 -0.87

Post Identified Regulation 1 5 3.9 4 4 0.78 -1.02 1.07

Post To Know 1 5 3.6 4 4 0.84 -0.41 -0.38

Post To Accomplish 1 5 3.4 4 4 0.94 -0.29 -0.57

Post To Experience 1 5 3.2 3 4 1.02 -0.28 -0.69

ACS Exam Raw Score (out of 60) 14 52 31.3 29.5 26 8.90 0.43 -0.69

Scores for all measures are non-normally distributed (Shapiro-Wilk test for normality for all measures is p < 0.05) and 

data are ordinal (Shapiro and Wilk, 1965); therefore, non-parametric statistics were used to analyze the data. A Friedman 

test was first performed to indicate if there were detectable differences between timepoints across the seven subscales of 

the AMS-Chemistry; results showed that there were detectable differences: χ2 (13) = 817.2, p < 0.001. Follow-up tests to 

determine the source(s) of differences by comparing pre/post subscale scores using Wilcoxon Signed Ranks tests are shown 
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in Table 7 (Wilcoxon, 1945; Rey and Neuhäuser, 2011). No evidence of significant differences were found after the 

Bonferroni correction (p ≤ 0.007) between the pre and post administrations of the AMS-Chemistry with this sample. 

Table 7. Wilcoxon Signed Ranks Test 
comparing pre and post AMS-Chemistry 
subscale scores (n = 133)
Subscale Z p*

Amotivation 1.713 0.087

External Regulation 0.670 0.503

Introjected Regulation 0.635 0.525

Identified Regulation -- --

To Know 2.626 0.009

To Accomplish 0.252 0.801

To Experience 0.873 0.383

*Note: significance determined at α ≤ 0.007 
with Bonferroni correction. The Identified 
Regulation subscale was not evaluated due to 
failing to meet reliability assumptions.

These results differ from previous investigations where significant changes over time were found with External 

Regulation with general chemistry students (Liu et al., 2017) and Amotivation, Introjected Regulation, and Identified 

Regulation with organic chemistry students (Liu et al., 2018). Given that most students enrolled in foundation-level 

inorganic chemistry courses are chemistry majors, these results may suggest that chemistry majors are a different 

population than non-chemistry majors in terms of how motivation towards chemistry courses is related to course 

performance. Previous findings from the AMS-Chemistry with general chemistry and organic chemistry students, where 

major was not studied or disaggregated, should be interpreted cautiously when extrapolating to non-gateway courses, and 

future studies should explicitly investigate the impact of major and/or career goals on the development of motivation 

related to chemistry coursework. 

To investigate the association between motivation and content knowledge, two simultaneous analyses were 

conducted. The first analysis used a measured variable framework that involved calculating correlations between the post 

administration of the AMS-Chemistry and raw scores from the ACS Foundations of Inorganic Chemistry Exam (ACS Exams, 

2016). Previous analyses of the AMS-Chemistry have used similar, measured variable frameworks so analyzing the data in 

this manner will allow for comparisons to other studies. Additionally, the measured variable analysis is most similar to how 
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chemistry practitioners may analyze these results (i.e., calculating scores for all seven AMS-Chemistry subscales) making 

this analysis useful for readers. 

In addition to the measured variable framework, a more rigorous analysis was also conducted that considered both the 

non-normal distribution of the data as well as the ordinal nature of response options; in this analysis, structured equation 

modeling was used to predict raw scores from the ACS exam using post AMS-Chemistry responses, grouped by latent 

factor/subscale. While this is a more robust analysis that is aligned with the types of data collected, it is not an analysis that 

a chemistry instructor would typically use. Thus, providing both the measured framework analysis and the structured 

equation modeling analysis is warranted to speak to both researchers and practitioners, a specific goal of this Journal. 

In both analyses, post administrations of the AMS-Chemistry were compared with ACS exam raw scores due in part to 

the temporal proximity in which each were completed, as well as literature precedence from other studies using the AMS-

Chemistry (Liu et al., 2018). Results from the measured variable framework (see Table 8) indicate that two of the seven 

subscales have significant correlations with the ACS exam: To Know and To Accomplish. These subscales are measures of 

intrinsic motivation, and both subscales have positive, but small correlations with ACS exam raw score. These results agree 

with Self-Determination Theory which suggests that increased intrinsic motivation (i.e., internalized motivation associated 

with interest and enjoyment in the topic) supports learning (Deci and Ryan, 2000; Ryan and Deci, 2000). While no other 

subscales have significant correlations at the Bonferroni corrected level, it is worth noting the magnitude and signs of the 

correlation values for To Experience (small and positive) and Amotivation (small and negative). These two subscales further 

support the claims of Self-Determination Theory; Amotivation (i.e., the lack of motivation) hinders learning while To 

Experience (an intrinsic motivation component) supports learning. As such, these results provide further empirical evidence 

of the impact of affect on learning, specifically student motivation and student content knowledge. Previous work in 

general chemistry and organic chemistry courses have further supported this claim, with similar results showing the impact 

of amotivation and intrinsic motivation on learning (Liu et al., 2017, 2018). Additionally, work in organic chemistry has also 

demonstrated a strong connection between student motivation and emotions directly related to achievement (enjoyment, 

anxiety, etc.) (Raker et al., 2019). 

Table 8. Spearman’s ρ correlations 
comparing post AMS-Chemistry subscale 
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scores with ACS Foundations of Inorganic 
Chemistry Exam raw scores (n = 134)
Subscale Spearman’s ρ p*

Amotivation -0.172 0.047

External Regulation -0.004 0.963

Introjected Regulation 0.130 0.133

Identified Regulation -- --

To Know 0.281 0.001*

To Accomplish 0.248 0.004*

To Experience 0.222 0.010

*Note: significant at α ≤ 0.007 with Bonferroni 
correction. The Identified Regulation subscale was 
not evaluated due to failing to meet reliability 
assumptions.

Results from the structured equation modeling analysis are included in Table 9. From this analysis, three AMS-

Chemistry subscales are significant predictors of raw ACS exam scores: To Know, To Accomplish, and To Experience. All 

three of these subscales are measures of intrinsic motivation, which Self-Determination Theory suggests supports student 

learning (Deci and Ryan, 2000; Ryan and Deci, 2000). Similar to the measured variable framework, signs for the non-

significant predictors provide further support for SDT as a useful framework for conceptualizing student learning in 

relationship to motivation.

Table 9. Structured equation modeling analysis using the 
WLSMV estimator to predict ACS Exam raw scores from 
post AMS-Chemistry responses, grouped by subscale (n 
= 134)

Subscale
Standardized 
Coefficient

Standard 
Error p*

Amotivation -0.148 0.076 0.051

External Regulation -0.026 0.085 0.756

Introjected Regulation 0.136 0.083 0.100

Identified Regulation -- -- --

To Know 0.282 0.076 < 0.001*

To Accomplish 0.263 0.084 0.002*

To Experience 0.253 0.081 0.002*

*Note: significant at α ≤ 0.007 with Bonferroni correction. The 
Identified Regulation subscale was not evaluated due to failing 
to meet reliability assumptions.
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Overall, results from both analyses suggest that instructors of inorganic chemistry courses should consider affect in 

addition to measures of content knowledge when evaluating the success of students and impacts of instructional practices. 

Considerations of affect should be incorporated into classroom culture, practices, assessments, etc. and used as additional 

evidence to support teaching decisions. Results comparing pre/post administrations (considering previous findings with 

general chemistry and organic chemistry students) also suggest that while motivation is related to learning, motivation may 

also be difficult to change. As such, using instructional practices that promote intrinsic motivation (e.g., active learning 

approaches) can help support student success while also impacting affective characteristics that are key components of the 

learning process (Farrell et al., 1999; Eberlein et al., 2008; National Research Council, 2012; Freeman et al., 2014; Wieman, 

2014). 

Conclusions and Implications
Our results support using the AMS-Chemistry with students taking foundation-level inorganic chemistry courses. 

Evidence from our study suggests that the instrument elicits valid and reliable data and provides insights into the student 

experience (RQ 1). Additionally, the lack of changes in motivation over a semester may indicate unique characteristics of 

chemistry majors enrolled in chemistry courses (RQ 2). Despite the lack of observed changes over time, associations found 

between intrinsic motivation and content knowledge add to the growing body of literature emphasizing the impacts of 

affect on student learning (RQ 3). Associations found with amotivation and extrinsic motivation complement previous 

research examining motivation with general chemistry and organic chemistry students (Liu et al., 2017, 2018) and provide 

additional empirical evidence to support SDT as a lens for interpreting student experiences in the classroom (Deci and Ryan, 

2000; Ryan and Deci, 2000). 

Overall, these findings have clear implications for researchers and practitioners. For researchers, our analyses 

investigating the validity, reliability, and invariance of AMS-Chemistry data serves as a model for future work where Likert-

type response data are treated as ordinal and not continuous (Carifio and Perla, 2007; Bishop and Herron, 2015) and the 

nested (i.e., multi-level) nature of collected data are considered in analyses. Additionally, our efforts to determine the 

appropriate reliability coefficient for the data answers the call from recent work (Komperda, Pentecost, et al., 2018) to 

move away from using Cronbach’s α as a default measure and to become more purposeful in analytic choices. Lastly, results 

showing the relationships between motivation and student learning provide evidence to support further investigations of 
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affective measures and the student experience, and to develop interventions that can help students move towards intrinsic 

motivation to foster learning and success.

For practitioners, these results add to our understanding of students and understanding of assessment (Rodriguez and 

Towns, 2019). First and foremost, these findings support that affect is important for student learning. As such, instruction 

should emphasize the affective experience of students in promoting student success. Additionally, more than a decade of 

research shows the positive impacts of active learning teaching approaches on student learning (National Research Council, 

2012; Freeman et al., 2014; Wieman, 2014); while not explicitly investigated in this study, relating active learning 

pedagogies to student motivation provides one lens for interpreting these findings. Active learning promotes student 

ownership (autonomy), active involvement in knowledge construction (competence), and feeling part of a classroom 

community (relatedness). These components impact the affective experiences of students (particularly intrinsic motivation) 

as shown by SDT (Deci and Ryan, 2000; Ryan and Deci, 2000), other learning theories (Bretz, 2001; Novak, 2010; Sousa, 

2011), previous work in chemistry (Liu et al., 2017, 2018; Pratt and Raker, 2020) and other disciplines (Lepper and 

Henderlong, 2000; Chirkov and Ryan, 2001; Reeve, 2012), and this study, and are positively related to student learning. As 

such, chemistry assessments and evaluations should focus not only on measures of student content knowledge, but also on 

measures of student experiences. Affective measures can provide evidence to inform teaching decisions, as well as provide 

evidence in interpreting student success and the effectiveness of instructional practices. By incorporating considerations of 

student experiences (e.g., motivation) into classroom culture, practices, assessments, etc., chemistry educators can more 

effectively support chemistry learning. 

Limitations
A key limitation of this study is the lack of additional institution and student demographics, as well as course and 

institution type analyses. Given eighteen institutions/instructors participated in this project, all responses should be 

considered nested within their unique institutional contexts. However, given only thirteen sites provided AMS-Chemistry 

data (see Appendix 3), analyses that considered the multilevel nature of the data were limited due to limited variability and 

small n at the institution level. This resulted in a multilevel analysis focused on the entire data corpus where pre & post 

administrations were collapsed; this calls into question the assumption of data independence for such an analysis. A more 

thorough analysis would analyze the pre and post administrations individually using a multilevel approach. However, as 
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previously mentioned, sample sizes at individual institutions (i.e., nests) limited that ability. Instead, choosing to conduct 

the analysis on the data corpus allows us to provide empirical evidence for the imposed factor structure/SDT when taking 

into consideration the “noise” associated with multiple institutions/nests. It does not allow us to comment on the pre and 

post administrations nor use the nested data in subsequent analyses (i.e., comparing institutions/nests). Therefore, our 

multilevel approach, while novel for this Journal, should be interpreted cautiously and conservatively. It is only intended to 

provide further support for the 7-factor structure/Self-determination Theory constructs when considering the additional 

“noise” or complexity of multiple institutions/nests. 

Additionally, previous work has shown that sex differences may exist in relation to motivation (Zhi-ling, 2003; Grouzet 

et al., 2006; Ackerman et al., 2013; Liu et al., 2017). However, student demographic information was not collected as part 

of IRB procedures for sharing student data outside of individual institutions; therefore, analyses based on demographics 

were impractical. Lastly, previous work suggests that foundation-level inorganic chemistry courses are highly varied in 

terms of content taught (Raker et al., 2015a). As such, analyses should consider the specific types of foundation-level 

inorganic chemistry courses, adding further complexity and nesting to the analyses. However, given the lack of variability 

and thirteen sites at the nesting level, there is insufficient power and variability to add additional nesting to the analyses. 

Despite these limitations, the multiple CFAs conducted have fit indices well within boundaries of good fit despite not 

accounting for instructional contexts and student demographics. Therefore, these analyses provide support that the data 

collected in this study fit the seven-factor AMS-chemistry model as conceptualized in SDT for students in foundation-level 

inorganic chemistry courses, and that the constructs are well-defined and rise above any noise associated with factors such 

as institution, course, or student demographics not accounted for in the models. While we cannot extrapolate these specific 

results to all populations of inorganic chemistry students, the findings provide empirical support for the theoretical 

underpinnings of the work (i.e., SDT) as well as previous findings from other disciplines (e.g., Mercincavage and Brooks, 

1990; Zhi-ling, 2003; Cole et al., 2006; Allen and Robbins, 2010; Kirn and Benson, 2013; Shell and Soh, 2013; Wang and 

Degol, 2013; Komarraju et al., 2014; León et al., 2015). Therefore, the implications of this work are applicable to courses in 

inorganic chemistry, and to contexts in which student samples primarily consist of chemistry majors in chemistry courses. 

Future work should consider institution type, course type, and student demographics in analyses to expand the evidence 

regarding the complex relationships between motivation and student learning. However, it is worth noting that sufficient 
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sample size is a limiting factor for these types of analyses; we suggest conducting more multi-institution studies and/or 

studies conducted over multiple years at a single institution as ways to mitigate sample size limitations.  

Conflicts of Interest
There are no conflicts to declare.

Appendices
Appendix 1: Copy of adapted AMS-Chemistry used in this study

Your instructor, in collaboration with the Interactive Online Network of Inorganic Chemists, is interested in your 
experience taking inorganic chemistry this term. We ask that you complete the survey below. There are no right or 
wrong answers. Please be candid and honest in responding to this survey. The information will be used to 
evaluate the course.
 

WHY ARE YOU ENROLLED IN THIS CHEMISTRY COURSE?
Using the scale below, indicate to what extent each of the following statements corresponds to one of the reasons 
why you are enrolled in this inorganic chemistry course. 

A = NOT AT ALL          B = A LITTLE          C = MODERATELY          D = A LOT          E = EXACTLY

WHY ARE YOU ENROLLED IN THIS CHEMISTRY COURSE? A B C D E

1 Because without having taken chemistry, I would not find a high-paying job later on

2 Because I experience pleasure and satisfaction while learning new things

3 Because I think that chemistry courses will help me better prepare for the career I have 
chosen

4 For the feelings I experience when I am communicating chemistry ideas to others

5 Honestly, I don’t know; I really feel that I am wasting my time taking 
chemistry courses

6 For the satisfaction I experience while improving my understanding 
of chemistry

7 To prove to myself that I am capable of succeeding in chemistry

8 In order to obtain a better job later on

9 For the pleasure I experience when I learn new things about chemistry

10 Because taking chemistry will enable me to enter the job market in a 
field that I like

11 For the pleasure that I experience when I perform chemistry experiments

12 I once had good reasons for taking chemistry courses; however, now 
I wonder whether I should continue

13 For the satisfaction I experience while succeeding in chemistry

14 Because when I succeed in chemistry I feel smart

15 Because I want to have a well-paying careers
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16 For the pleasure that I experience in broadening my knowledge 
about chemistry

17 Because taking chemistry courses will help me make more informed 
choices about my career options

18 For the enjoyment I experience when I think about the world in terms 
of atoms and molecules

19 I don’t know why I take chemistry courses, I couldn’t care less about them

20 For the satisfaction I feel as I work toward an understanding of chemistry

21 To show myself that I am an intelligent person

22 In order to have a better salary later on

23 Because studying chemistry allows me to continue to learn about things that interest 
me

24 Because I believe that chemistry courses will improve my skills in 
my chosen career

25 For the satisfaction I experience while learning about various chemistry topics

26 I don’t know; I can’t understand what I am doing taking chemistry courses

27 Because chemistry courses allow me to experience satisfaction in my 
quest for knowledge

28 Because I want to show myself that I can succeed in studying chemistry

Appendix 2: Intraclass Coefficients (ICC)

Intraclass coefficients (ICC) for 
the 28 items of the AMS-
Chemistry
Item Number ICC value

1 0.037
2 0.096
3 0.054
4 0.087
5 0.036
6 0.125
7 0.167
8 0.115
9 0.142

10 0.041
11 0.127
12 0.052
13 0.144
14 0.082
15 0.051
16 0.167
17 0.051
18 0.103
19 0.046
20 0.158
21 0.089
22 0.039
23 0.104
24 0.053
25 0.193

Page 25 of 32 Chemistry Education Research and Practice

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

26 0.039
27 0.113
28 0.099

Appendix 3: Sample sizes delineated by institution/data collection site

Sample sizes (n) for each data collection delineated by 
institution/data collection site

Institution
Pre 
AMS-Chemistry

Post 
AMS-Chemistry ACS Exam 

1 43 -- 39
2 -- -- 5
3 20 15 26
4 -- -- --
5 7 6 7
6 14 13 14
7 -- -- --
8 -- -- --
9 -- -- --

10 15 15 15
11 7 7 7
12 12 12 12
13 13 8 13
14 5 5 5
15 7 7 7
16 55 52 58
17 32 -- 48
18 13 13 13

Note: “--” indicates data were either not provided or IRB-approval was not obtained

Appendix 4: Results of congeneric factor models for individual subscales/factors of AMS-C

Confirmatory factor analysis fit information for individual, single factor congeneric 
measurement models using the WLSMV estimator (pre models n = 243, post models n = 153).

 Model χ2 df P CFI TLI RMSEA

RMSEA 90% 
Confidence 
Interval

Pre Amotivation factor 7.140 2 0.028 0.995 0.984 0.103 0.029 – 0.189

Pre Amotivation factor 2.569 2 0.277 0.999 0.998 0.043 0.000 – 0.172

Pre External Regulation 4.811 2 0.090 0.999 0.998 0.076 0.000 – 0.166

Post External Regulation 2.187 2 0.335 1.000 1.000 0.025 0.000 – 0.164

Pre Introjected Regulation 9.241 2 0.010 0.997 0.990 0.122 0.051 – 0.206

Post Introjected Regulation 0.637 2 0.727 1.000 1.002 0.000 0.000 – 0.114

Pre Identified Regulation 16.495 2 < 0.001 0.985 0.956 0.173 0.102 – 0.254

Post Identified Regulation 12.262 2 0.002 0.979 0.936 0.183 0.094 – 0.287

Pre To Know 4.626 2 0.099 0.999 0.997 0.074 0.000 – 0.164

Post To Know 8.142 2 0.017 0.996 0.989 0.142 0.051 – 0.249

Pre To Accomplish 10.137 2 0.006 0.998 0.993 0.129 0.059 – 0.213
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Post To Accomplish 4.581 2 0.101 0.999 0.996 0.092 0.000 – 0.206

Pre To Experience 1.630 2 0.443 1.000 1.001 0.000 0.000 – 0.120

Post To Experience 9.174 2 0.010 0.994 0.981 0.153 0.063 – 0.259

Note: cut-off values for indication of good model fit for this study are CFI ≥ 0.98, TLI ≥ 0.98, and RMSEA ≤ 
0.07.
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